default search action
George J. Pappas
Person information
- affiliation: University of Pennsylvania, Philadelphia, PA, USA
- award (2002): Presidential Early Career Award for Scientists and Engineers
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j141]Han Wang, Aritra Mitra, Hamed Hassani, George J. Pappas, James Anderson:
Federated TD Learning with Linear Function Approximation under Environmental Heterogeneity. Trans. Mach. Learn. Res. 2024 (2024) - [j140]Aritra Mitra, George J. Pappas, Hamed Hassani:
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning. Trans. Mach. Learn. Res. 2024 (2024) - [c382]Matthew Cleaveland, Insup Lee, George J. Pappas, Lars Lindemann:
Conformal Prediction Regions for Time Series Using Linear Complementarity Programming. AAAI 2024: 20984-20992 - [c381]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. AISTATS 2024: 2746-2754 - [c380]Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, Volkan Cevher:
Adversarial Training Should Be Cast as a Non-Zero-Sum Game. ICLR 2024 - [c379]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Conformal Prediction with Learned Features. ICML 2024 - [c378]Thomas T. C. K. Zhang, Bruce D. Lee, Ingvar M. Ziemann, George J. Pappas, Nikolai Matni:
Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples. ICML 2024 - [c377]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss. ICML 2024 - [c376]Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-Elizabeth Tzes, George J. Pappas, Nikolay Atanasov:
Optimal Scene Graph Planning with Large Language Model Guidance. ICRA 2024: 14062-14069 - [c375]Kong Yao Chee, Thales C. Silva, M. Ani Hsieh, George J. Pappas:
Uncertainty quantification and robustification of model-based controllers using conformal prediction. L4DC 2024: 528-540 - [c374]Charis J. Stamouli, Lars Lindemann, George J. Pappas:
Recursively feasible shrinking-horizon MPC in dynamic environments with conformal prediction guarantees. L4DC 2024: 1330-1342 - [c373]Renukanandan Tumu, Matthew Cleaveland, Rahul Mangharam, George J. Pappas, Lars Lindemann:
Multi-modal conformal prediction regions by optimizing convex shape templates. L4DC 2024: 1343-1356 - [i188]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss. CoRR abs/2402.05928 (2024) - [i187]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. CoRR abs/2402.11800 (2024) - [i186]Jiabao Ji, Bairu Hou, Alexander Robey, George J. Pappas, Hamed Hassani, Yang Zhang, Eric Wong, Shiyu Chang:
Defending Large Language Models against Jailbreak Attacks via Semantic Smoothing. CoRR abs/2402.16192 (2024) - [i185]Nicolò Dal Fabbro, Arman Adibi, H. Vincent Poor, Sanjeev R. Kulkarni, Aritra Mitra, George J. Pappas:
DASA: Delay-Adaptive Multi-Agent Stochastic Approximation. CoRR abs/2403.17247 (2024) - [i184]Prithvi Akella, Anushri Dixit, Mohamadreza Ahmadi, Lars Lindemann, Margaret P. Chapman, George J. Pappas, Aaron D. Ames, Joel W. Burdick:
Risk-Aware Robotics: Tail Risk Measures in Planning, Control, and Verification. CoRR abs/2403.18972 (2024) - [i183]Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Williams, George J. Pappas, Hamed Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, J. Zico Kolter:
Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation. CoRR abs/2403.19103 (2024) - [i182]Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramèr, Hamed Hassani, Eric Wong:
JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models. CoRR abs/2404.01318 (2024) - [i181]Charis J. Stamouli, Ingvar M. Ziemann, George J. Pappas:
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method. CoRR abs/2404.07937 (2024) - [i180]Bruce D. Lee, Ingvar M. Ziemann, George J. Pappas, Nikolai Matni:
Active Learning for Control-Oriented Identification of Nonlinear Systems. CoRR abs/2404.09030 (2024) - [i179]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Conformal Prediction with Learned Features. CoRR abs/2404.17487 (2024) - [i178]Charis J. Stamouli, Lars Lindemann, George J. Pappas:
Recursively Feasible Shrinking-Horizon MPC in Dynamic Environments with Conformal Prediction Guarantees. CoRR abs/2405.10875 (2024) - [i177]Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, Paris Perdikaris:
Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective. CoRR abs/2405.13998 (2024) - [i176]Mahdi Sabbaghi, George J. Pappas, Hamed Hassani, Surbhi Goel:
Explicitly Encoding Structural Symmetry is Key to Length Generalization in Arithmetic Tasks. CoRR abs/2406.01895 (2024) - [i175]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Length Optimization in Conformal Prediction. CoRR abs/2406.18814 (2024) - [i174]Zhixian Xie, Wenlong Zhang, Yi Ren, Zhaoran Wang, George J. Pappas, Wanxin Jin:
Safe MPC Alignment with Human Directional Feedback. CoRR abs/2407.04216 (2024) - [i173]Nicolò Dal Fabbro, Arman Adibi, Aritra Mitra, George J. Pappas:
Finite-Time Analysis of Asynchronous Multi-Agent TD Learning. CoRR abs/2407.20441 (2024) - 2023
- [j139]Alëna Rodionova, Lars Lindemann, Manfred Morari, George J. Pappas:
Combined Left and Right Temporal Robustness for Control Under STL Specifications. IEEE Control. Syst. Lett. 7: 619-624 (2023) - [j138]Nicolò Dal Fabbro, Aritra Mitra, George J. Pappas:
Federated TD Learning Over Finite-Rate Erasure Channels: Linear Speedup Under Markovian Sampling. IEEE Control. Syst. Lett. 7: 2461-2466 (2023) - [j137]Lars Lindemann, Matthew Cleaveland, Gihyun Shim, George J. Pappas:
Safe Planning in Dynamic Environments Using Conformal Prediction. IEEE Robotics Autom. Lett. 8(8): 5116-5123 (2023) - [j136]Anastasios Tsiamis, George J. Pappas:
Online Learning of the Kalman Filter With Logarithmic Regret. IEEE Trans. Autom. Control. 68(5): 2774-2789 (2023) - [j135]Alëna Rodionova, Lars Lindemann, Manfred Morari, George J. Pappas:
Temporal Robustness of Temporal Logic Specifications: Analysis and Control Design. ACM Trans. Embed. Comput. Syst. 22(1): 13:1-13:44 (2023) - [j134]Lars Lindemann, Lejun Jiang, Nikolai Matni, George J. Pappas:
Risk of Stochastic Systems for Temporal Logic Specifications. ACM Trans. Embed. Comput. Syst. 22(3): 54:1-54:31 (2023) - [j133]Yukun Yuan, Desheng Zhang, Fei Miao, John A. Stankovic, Tian He, George J. Pappas, Shan Lin:
: Mobility-Driven Integration of Heterogeneous Urban Cyber-Physical Systems Under Disruptive Events. IEEE Trans. Mob. Comput. 22(2): 906-922 (2023) - [j132]Xiaoyi Cai, Brent Schlotfeldt, Kasra Khosoussi, Nikolay Atanasov, George J. Pappas, Jonathan P. How:
Energy-Aware, Collision-Free Information Gathering for Heterogeneous Robot Teams. IEEE Trans. Robotics 39(4): 2585-2602 (2023) - [c372]Lars Lindemann, Xin Qin, Jyotirmoy V. Deshmukh, George J. Pappas:
Conformal Prediction for STL Runtime Verification. Allerton 2023: 1 - [c371]Austin K. Chen, Bryce L. Ferguson, Daigo Shishika, Michael R. Dorothy, Jason R. Marden, George J. Pappas, Vijay Kumar:
Path Defense in Dynamic Defender-Attacker Blotto Games (dDAB) with Limited Information. ACC 2023: 447-453 - [c370]Ignacio Boero, Igor Spasojevic, Mariana del Castillo, George J. Pappas, Vijay Kumar, Alejandro Ribeiro:
Navigation with Shadow Prices to Optimize Multi-Commodity Flow Rates. CDC 2023: 253-258 - [c369]Kong Yao Chee, M. Ani Hsieh, George J. Pappas:
Uncertainty Quantification for Learning-based MPC using Weighted Conformal Prediction. CDC 2023: 342-349 - [c368]Shuo Yang, George J. Pappas, Rahul Mangharam, Lars Lindemann:
Safe Perception-Based Control Under Stochastic Sensor Uncertainty Using Conformal Prediction. CDC 2023: 6072-6078 - [c367]Shaoru Chen, Kong Yao Chee, Nikolai Matni, M. Ani Hsieh, George J. Pappas:
Safety Filter Design for Neural Network Systems via Convex Optimization. CDC 2023: 6356-6363 - [c366]Samarth Kalluraya, George J. Pappas, Yiannis Kantaros:
Resilient Temporal Logic Planning in the Presence of Robot Failures. CDC 2023: 7520-7526 - [c365]Ingvar M. Ziemann, Anastasios Tsiamis, Bruce D. Lee, Yassir Jedra, Nikolai Matni, George J. Pappas:
A Tutorial on the Non-Asymptotic Theory of System Identification. CDC 2023: 8921-8939 - [c364]Lars Lindemann, Xin Qin, Jyotirmoy V. Deshmukh, George J. Pappas:
Conformal Prediction for STL Runtime Verification. ICCPS 2023: 142-153 - [c363]Jacob H. Seidman, Georgios Kissas, George J. Pappas, Paris Perdikaris:
Variational Autoencoding Neural Operators. ICML 2023: 30491-30522 - [c362]Samarth Kalluraya, George J. Pappas, Yiannis Kantaros:
Multi-Robot Mission Planning in Dynamic Semantic Environments. ICRA 2023: 1630-1637 - [c361]Mariliza Tzes, Nikolaos Bousias, Evangelos Chatzipantazis, George J. Pappas:
Graph Neural Networks for Multi-Robot Active Information Acquisition. ICRA 2023: 3497-3503 - [c360]Matthew Malencia, George J. Pappas, Vijay Kumar:
Socially Fair Coverage Control. ICRA 2023: 7656-7662 - [c359]Igor Spasojevic, Xu Liu, Ankit Prabhu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Robust Localization of Aerial Vehicles via Active Control of Identical Ground Vehicles. IROS 2023: 3048-3055 - [c358]Kong Yao Chee, Thales C. Silva, M. Ani Hsieh, George J. Pappas:
Enhancing Sample Efficiency and Uncertainty Compensation in Learning-Based Model Predictive Control for Aerial Robots. IROS 2023: 9435-9441 - [c357]Anushri Dixit, Lars Lindemann, Skylar X. Wei, Matthew Cleaveland, George J. Pappas, Joel W. Burdick:
Adaptive Conformal Prediction for Motion Planning among Dynamic Agents. L4DC 2023: 300-314 - [c356]Tianqi Cui, Thomas Bertalan, George J. Pappas, Manfred Morari, Yannis G. Kevrekidis, Mahyar Fazlyab:
Certified Invertibility in Neural Networks via Mixed-Integer Programming. L4DC 2023: 483-496 - [c355]Thomas Beckers, Qirui Wu, George J. Pappas:
Physics-enhanced Gaussian Process Variational Autoencoder. L4DC 2023: 521-533 - [c354]Aritra Mitra, Hamed Hassani, George J. Pappas:
Linear Stochastic Bandits over a Bit-Constrained Channel. L4DC 2023: 1387-1399 - [c353]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
The noise level in linear regression with dependent data. NeurIPS 2023 - [c352]Igor Spasojevic, Xu Liu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Active Collaborative Localization in Heterogeneous Robot Teams. Robotics: Science and Systems 2023 - [c351]Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pappas, Hamed Hassani, Corina S. Pasareanu, Clark W. Barrett:
Toward Certified Robustness Against Real-World Distribution Shifts. SaTML 2023: 537-553 - [e6]Nikolai Matni, Manfred Morari, George J. Pappas:
Learning for Dynamics and Control Conference, L4DC 2023, 15-16 June 2023, Philadelphia, PA, USA. Proceedings of Machine Learning Research 211, PMLR 2023 [contents] - [i172]Aritra Mitra, George J. Pappas, Hamed Hassani:
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning. CoRR abs/2301.00944 (2023) - [i171]Tianqi Cui, Thomas Bertalan, George J. Pappas, Manfred Morari, Ioannis G. Kevrekidis, Mahyar Fazlyab:
Certified Invertibility in Neural Networks via Mixed-Integer Programming. CoRR abs/2301.11783 (2023) - [i170]Han Wang, Aritra Mitra, Hamed Hassani, George J. Pappas, James Anderson:
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity. CoRR abs/2302.02212 (2023) - [i169]Jacob H. Seidman, Georgios Kissas, George J. Pappas, Paris Perdikaris:
Variational Autoencoding Neural Operators. CoRR abs/2302.10351 (2023) - [i168]Shuo Yang, George J. Pappas, Rahul Mangharam, Lars Lindemann:
Safe Perception-Based Control under Stochastic Sensor Uncertainty using Conformal Prediction. CoRR abs/2304.00194 (2023) - [i167]Matthew Cleaveland, Insup Lee, George J. Pappas, Lars Lindemann:
Conformal Prediction Regions for Time Series using Linear Complementarity Programming. CoRR abs/2304.01075 (2023) - [i166]Samarth Kalluraya, George J. Pappas, Yiannis Kantaros:
Resilient Temporal Logic Planning in the Presence of Robot Failures. CoRR abs/2305.05485 (2023) - [i165]Nicolò Dal Fabbro, Aritra Mitra, George J. Pappas:
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling. CoRR abs/2305.08104 (2023) - [i164]Thomas Beckers, Qirui Wu, George J. Pappas:
Physics-enhanced Gaussian Process Variational Autoencoder. CoRR abs/2305.09006 (2023) - [i163]Thomas Beckers, Jacob H. Seidman, Paris Perdikaris, George J. Pappas:
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. CoRR abs/2305.09017 (2023) - [i162]Thomas Beckers, Tom Z. Jiahao, George J. Pappas:
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification. CoRR abs/2305.09689 (2023) - [i161]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
The noise level in linear regression with dependent data. CoRR abs/2305.11165 (2023) - [i160]Igor Spasojevic, Xu Liu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Active Collaborative Localization in Heterogeneous Robot Teams. CoRR abs/2305.18193 (2023) - [i159]Alëna Rodionova, Lars Lindemann, Manfred Morari, George J. Pappas:
Combined Left and Right Temporal Robustness for Control under STL Specifications. CoRR abs/2306.04936 (2023) - [i158]Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, Volkan Cevher:
Adversarial Training Should Be Cast as a Non-Zero-Sum Game. CoRR abs/2306.11035 (2023) - [i157]Kong Yao Chee, Thales C. Silva, M. Ani Hsieh, George J. Pappas:
Enhancing Sample Efficiency and Uncertainty Compensation in Learning-based Model Predictive Control for Aerial Robots. CoRR abs/2308.00570 (2023) - [i156]Igor Spasojevic, Xu Liu, Ankit Prabhu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Robust Localization of Aerial Vehicles via Active Control of Identical Ground Vehicles. CoRR abs/2308.06658 (2023) - [i155]Shaoru Chen, Kong Yao Chee, Nikolai Matni, M. Ani Hsieh, George J. Pappas:
Safety Filter Design for Neural Network Systems via Convex Optimization. CoRR abs/2308.08086 (2023) - [i154]Ingvar M. Ziemann, Anastasios Tsiamis, Bruce D. Lee, Yassir Jedra, Nikolai Matni, George J. Pappas:
A Tutorial on the Non-Asymptotic Theory of System Identification. CoRR abs/2309.03873 (2023) - [i153]Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-Elizabeth Tzes, George J. Pappas, Nikolay Atanasov:
Optimal Scene Graph Planning with Large Language Model Guidance. CoRR abs/2309.09182 (2023) - [i152]Ignacio Boero, Igor Spasojevic, Mariana del Castillo, George J. Pappas, Vijay Kumar, Alejandro Ribeiro:
Navigation with shadow prices to optimize multi-commodity flow rates. CoRR abs/2309.14284 (2023) - [i151]Charis J. Stamouli, Evangelos Chatzipantazis, George J. Pappas:
Structural Risk Minimization for Learning Nonlinear Dynamics. CoRR abs/2309.16527 (2023) - [i150]Alexander Robey, Eric Wong, Hamed Hassani, George J. Pappas:
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks. CoRR abs/2310.03684 (2023) - [i149]Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, Eric Wong:
Jailbreaking Black Box Large Language Models in Twenty Queries. CoRR abs/2310.08419 (2023) - [i148]Thomas Waite, Alexander Robey, Hamed Hassani, George J. Pappas, Radoslav Ivanov:
Data-Driven Modeling and Verification of Perception-Based Autonomous Systems. CoRR abs/2312.06848 (2023) - [i147]Renukanandan Tumu, Matthew Cleaveland, Rahul Mangharam, George J. Pappas, Lars Lindemann:
Multi-Modal Conformal Prediction Regions by Optimizing Convex Shape Templates. CoRR abs/2312.07434 (2023) - 2022
- [j131]Matthew Cleaveland, Lars Lindemann, Radoslav Ivanov, George J. Pappas:
Risk verification of stochastic systems with neural network controllers. Artif. Intell. 313: 103782 (2022) - [j130]Thomas Beckers, Leonardo J. Colombo, Sandra Hirche, George J. Pappas:
Online Learning-Based Trajectory Tracking for Underactuated Vehicles With Uncertain Dynamics. IEEE Control. Syst. Lett. 6: 2090-2095 (2022) - [j129]Sean L. Bowman, Kostas Daniilidis, George J. Pappas:
Robust Object-Level Semantic Visual SLAM Using Semantic Keypoints. Field Robotics 2(1): 513-524 (2022) - [j128]Georgios Kissas, Jacob H. Seidman, Leonardo Ferreira Guilhoto, Victor M. Preciado, George J. Pappas, Paris Perdikaris:
Learning Operators with Coupled Attention. J. Mach. Learn. Res. 23: 215:1-215:63 (2022) - [j127]Mahyar Fazlyab, Manfred Morari, George J. Pappas:
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming. IEEE Trans. Autom. Control. 67(1): 1-15 (2022) - [j126]Vasileios Tzoumas, Ali Jadbabaie, George J. Pappas:
Robust and Adaptive Sequential Submodular Optimization. IEEE Trans. Autom. Control. 67(1): 89-104 (2022) - [j125]Lars Lindemann, George J. Pappas, Dimos V. Dimarogonas:
Reactive and Risk-Aware Control for Signal Temporal Logic. IEEE Trans. Autom. Control. 67(10): 5262-5277 (2022) - [j124]Andreea B. Alexandru, George J. Pappas:
Private Weighted Sum Aggregation. IEEE Trans. Control. Netw. Syst. 9(1): 219-230 (2022) - [j123]Brent Schlotfeldt, Vasileios Tzoumas, George J. Pappas:
Resilient Active Information Acquisition With Teams of Robots. IEEE Trans. Robotics 38(1): 244-261 (2022) - [j122]Yiannis Kantaros, Samarth Kalluraya, Qi Jin, George J. Pappas:
Perception-Based Temporal Logic Planning in Uncertain Semantic Maps. IEEE Trans. Robotics 38(4): 2536-2556 (2022) - [j121]Lifeng Zhou, Vasileios Tzoumas, George J. Pappas, Pratap Tokekar:
Distributed Attack-Robust Submodular Maximization for Multirobot Planning. IEEE Trans. Robotics 38(5): 3097-3112 (2022) - [c350]Thomas Beckers, Jacob H. Seidman, Paris Perdikaris, George J. Pappas:
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. CDC 2022: 1447-1453 - [c349]Anastasia Impicciatore, Anastasios Tsiamis, Yuriy Zacchia Lun, Alessandro D'Innocenzo, George J. Pappas:
Secure state estimation over Markov wireless communication channels. CDC 2022: 2935-2940 - [c348]Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J. Pappas, Rajeev Alur:
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks. CDC 2022: 3389-3396 - [c347]Arman Adibi, Aritra Mitra, George J. Pappas, Hamed Hassani:
Distributed Statistical Min-Max Learning in the Presence of Byzantine Agents. CDC 2022: 4179-4184 - [c346]Thomas Beckers, Leonardo J. Colombo, Manfred Morari, George J. Pappas:
Learning-based Balancing of Model-based and Feedback Control for Second-order Mechanical Systems. CDC 2022: 4667-4673 - [c345]Orlando Romero, Mouhacine Benosman, George J. Pappas:
ODE Discretization Schemes as Optimization Algorithms. CDC 2022: 6318-6325 - [c344]Thomas Beckers, George J. Pappas, Leonardo J. Colombo:
Learning Rigidity-based Flocking Control using Gaussian Processes with Probabilistic Stability Guarantees. CDC 2022: 7254-7259 - [c343]Anastasios Tsiamis, Ingvar M. Ziemann, Manfred Morari, Nikolai Matni, George J. Pappas:
Learning to Control Linear Systems can be Hard. COLT 2022: 3820-3857 - [c342]Lars Lindemann, Alëna Rodionova, George J. Pappas:
Temporal Robustness of Stochastic Signals. HSCC 2022: 10:1-10:11 - [c341]Allan Zhou, Fahim Tajwar, Alexander Robey, Tom Knowles, George J. Pappas, Hamed Hassani, Chelsea Finn:
Do deep networks transfer invariances across classes? ICLR 2022 - [c340]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani:
Probabilistically Robust Learning: Balancing Average and Worst-case Performance. ICML 2022: 18667-18686 - [c339]Mariliza Tzes, Vasileios Vasilopoulos, Yiannis Kantaros, George J. Pappas:
Reactive Informative Planning for Mobile Manipulation Tasks under Sensing and Environmental Uncertainty. ICRA 2022: 7320-7326 - [c338]Matthew Malencia, Sandeep Manjanna, M. Ani Hsieh, George J. Pappas, Vijay Kumar:
Adaptive Sampling of Latent Phenomena using Heterogeneous Robot Teams (ASLaP-HR). IROS 2022: 8762-8769 - [c337]Charis J. Stamouli, Anastasios Tsiamis, Manfred Morari, George J. Pappas:
Adaptive Stochastic MPC under Unknown Noise Distribution. L4DC 2022: 596-607 - [c336]Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf:
Probable Domain Generalization via Quantile Risk Minimization. NeurIPS 2022 - [c335]Aritra Mitra, Arman Adibi, George J. Pappas, Hamed Hassani:
Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds. NeurIPS 2022 - [c334]Jacob H. Seidman, Georgios Kissas, Paris Perdikaris, George J. Pappas:
NOMAD: Nonlinear Manifold Decoders for Operator Learning. NeurIPS 2022 - [i146]