
Stephen P. Boyd
Person information
- affiliation: Stanford University, USA
- award (2017): IEEE James H. Mulligan, Jr. Education Medal
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j114]Mojtaba Tefagh
, Stephen P. Boyd:
SWIFTCORE: a tool for the context-specific reconstruction of genome-scale metabolic networks. BMC Bioinform. 21(1): 140 (2020) - [j113]Reza Takapoui, Nicholas Moehle, Stephen P. Boyd, Alberto Bemporad:
A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control 93(1): 2-12 (2020) - [j112]Bartolomeo Stellato, Goran Banjac
, Paul Goulart, Alberto Bemporad, Stephen P. Boyd:
OSQP: an operator splitting solver for quadratic programs. Math. Program. Comput. 12(4): 637-672 (2020) - [j111]Akshay Agrawal, Stephen P. Boyd:
Disciplined quasiconvex programming. Optim. Lett. 14(7): 1643-1657 (2020) - [j110]Shane T. Barratt, Guillermo Angeris, Stephen P. Boyd:
Minimizing a sum of clipped convex functions. Optim. Lett. 14(8): 2443-2459 (2020) - [j109]Zhengyuan Zhou
, Panayotis Mertikopoulos
, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
On the Convergence of Mirror Descent beyond Stochastic Convex Programming. SIAM J. Optim. 30(1): 687-716 (2020) - [j108]Junzi Zhang
, Brendan O'Donoghue, Stephen P. Boyd:
Globally Convergent Type-I Anderson Acceleration for Nonsmooth Fixed-Point Iterations. SIAM J. Optim. 30(4): 3170-3197 (2020) - [j107]Anqi Fu
, Junzi Zhang
, Stephen P. Boyd:
Anderson Accelerated Douglas-Rachford Splitting. SIAM J. Sci. Comput. 42(6): A3560-A3583 (2020) - [c97]Shane T. Barratt, Stephen P. Boyd:
Fitting a Kalman Smoother to Data. ACC 2020: 1526-1531 - [c96]Jongho Kim, Youngsuk Park, John D. Fox, Stephen P. Boyd, William J. Dally:
Optimal Operation of a Plug-in Hybrid Vehicle with Battery Thermal and Degradation Model. ACC 2020: 3083-3090 - [c95]Youngsuk Park, Sauptik Dhar, Stephen P. Boyd, Mohak Shah:
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize. ICASSP 2020: 3597-3601 - [c94]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd, Bartolomeo Stellato:
Learning Convex Optimization Control Policies. L4DC 2020: 361-373 - [c93]Malayandi Palan, Shane T. Barratt, Alex McCauley, Dorsa Sadigh, Vikas Sindhwani, Stephen P. Boyd:
Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint. L4DC 2020: 374-383 - [i34]Jonathan Tuck, Stephen P. Boyd:
Eigen-Stratified Models. CoRR abs/2001.10389 (2020) - [i33]Jonathan Tuck, Stephen P. Boyd:
Fitting Laplacian Regularized Stratified Gaussian Models. CoRR abs/2005.01752 (2020) - [i32]Shane T. Barratt, Guillermo Angeris, Stephen P. Boyd:
Optimal Representative Sample Weighting. CoRR abs/2005.09065 (2020) - [i31]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd:
Learning Convex Optimization Models. CoRR abs/2006.04248 (2020) - [i30]Junzi Zhang, Jongho Kim, Brendan O'Donoghue, Stephen P. Boyd:
Sample Efficient Reinforcement Learning with REINFORCE. CoRR abs/2010.11364 (2020)
2010 – 2019
- 2019
- [j106]David Hallac
, Peter Nystrup
, Stephen P. Boyd:
Greedy Gaussian segmentation of multivariate time series. Adv. Data Anal. Classif. 13(3): 727-751 (2019) - [j105]Peter Nystrup
, Stephen P. Boyd, Erik Lindström
, Henrik Madsen
:
Multi-period portfolio selection with drawdown control. Ann. Oper. Res. 282(1-2): 245-271 (2019) - [j104]Enzo Busseti
, Walaa M. Moursi
, Stephen P. Boyd:
Solution refinement at regular points of conic problems. Comput. Optim. Appl. 74(3): 627-643 (2019) - [j103]Jonathan Tuck, David Hallac, Stephen P. Boyd:
Distributed majorization-minimization for Laplacian regularized problems. IEEE CAA J. Autom. Sinica 6(1): 45-52 (2019) - [j102]Nicholas Moehle, Xinyue Shen, Zhi-Quan Luo, Stephen P. Boyd:
A Distributed Method for Optimal Capacity Reservation. J. Optim. Theory Appl. 182(3): 1130-1149 (2019) - [j101]Goran Banjac
, Paul Goulart, Bartolomeo Stellato, Stephen P. Boyd:
Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization. J. Optim. Theory Appl. 183(2): 490-519 (2019) - [j100]Akshay Agrawal, Steven Diamond, Stephen P. Boyd:
Disciplined geometric programming. Optim. Lett. 13(5): 961-976 (2019) - [j99]Shane T. Barratt
, Mykel J. Kochenderfer
, Stephen P. Boyd:
Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace From Position Data. IEEE Trans. Intell. Transp. Syst. 20(9): 3536-3545 (2019) - [c92]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. NeurIPS 2019: 9558-9570 - [i29]Shane T. Barratt, Stephen P. Boyd:
Least Squares Auto-Tuning. CoRR abs/1904.05460 (2019) - [i28]Jonathan Tuck, Shane T. Barratt, Stephen P. Boyd:
A Distributed Method for Fitting Laplacian Regularized Stratified Models. CoRR abs/1904.12017 (2019) - [i27]Akshay Agrawal, Stephen P. Boyd:
Disciplined Quasiconvex Programming. CoRR abs/1905.00562 (2019) - [i26]Dave Deriso, Stephen P. Boyd:
A General Optimization Framework for Dynamic Time Warping. CoRR abs/1905.12893 (2019) - [i25]Youngsuk Park, Sauptik Dhar, Stephen P. Boyd, Mohak Shah:
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize. CoRR abs/1910.07056 (2019) - [i24]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. CoRR abs/1910.12430 (2019) - [i23]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd, Bartolomeo Stellato:
Learning Convex Optimization Control Policies. CoRR abs/1912.09529 (2019) - 2018
- [j98]Alberto Bemporad, Valentina Breschi
, Dario Piga, Stephen P. Boyd:
Fitting jump models. Autom. 96: 11-21 (2018) - [j97]Jaehyun Park, Stephen P. Boyd:
A semidefinite programming method for integer convex quadratic minimization. Optim. Lett. 12(3): 499-518 (2018) - [j96]Steven Diamond, Reza Takapoui, Stephen P. Boyd:
A general system for heuristic minimization of convex functions over non-convex sets. Optim. Methods Softw. 33(1): 165-193 (2018) - [j95]Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen P. Boyd, Wolfgang Heidrich
, Felix Heide, Gordon Wetzstein:
End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37(4): 114:1-114:13 (2018) - [c91]Valentina Breschi
, Alberto Bemporad, Dario Piga, Stephen P. Boyd:
Prediction error methods in learning jump ARMAX models. CDC 2018: 2247-2252 - [c90]Bartolomeo Stellato, Vihangkumar V. Naik, Alberto Bemporad, Paul Goulart, Stephen P. Boyd:
Embedded Mixed-Integer Quadratic optimization Using the OSQP Solver. ECC 2018: 1536-1541 - [c89]Qingyun Sun, Mengyuan Yan, David L. Donoho, Stephen P. Boyd:
Convolutional Imputation of Matrix Networks. ICML 2018: 4825-4834 - [c88]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-based Clustering of Multivariate Time Series Data. IJCAI 2018: 5254-5258 - [i22]Ping Yin, Steven Diamond, Bill Lin, Stephen P. Boyd:
Network Optimization for Unified Packet and Circuit Switched Networks. CoRR abs/1808.00586 (2018) - [i21]Shane T. Barratt, Mykel J. Kochenderfer, Stephen P. Boyd:
Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace from Position Data. CoRR abs/1810.09568 (2018) - [i20]Akshay Agrawal, Steven Diamond, Stephen P. Boyd:
Disciplined Geometric Programming. CoRR abs/1812.04074 (2018) - 2017
- [j94]Stephen P. Boyd, Enzo Busseti
, Steven Diamond, Ronald N. Kahn, Kwangmoo Koh, Peter Nystrup
, Jan Speth:
Multi-Period Trading via Convex Optimization. Found. Trends Optim. 3(1): 1-76 (2017) - [j93]David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosic, Stephen P. Boyd, Jure Leskovec:
SnapVX: A Network-Based Convex Optimization Solver. J. Mach. Learn. Res. 18: 4:1-4:5 (2017) - [j92]Nicholas Boyd, Trevor Hastie, Stephen P. Boyd, Benjamin Recht, Michael I. Jordan:
Saturating Splines and Feature Selection. J. Mach. Learn. Res. 18: 197:1-197:32 (2017) - [j91]Steven Diamond
, Stephen P. Boyd:
Stochastic Matrix-Free Equilibration. J. Optim. Theory Appl. 172(2): 436-454 (2017) - [j90]Pontus Giselsson, Stephen P. Boyd:
Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM. IEEE Trans. Autom. Control. 62(2): 532-544 (2017) - [j89]Nan Zhang, Zhiqiang Yao, Yixian Liu, Stephen P. Boyd, Zhi-Quan Luo:
Dynamic Resource Allocation for Energy Efficient Transmission in Digital Subscriber Lines. IEEE Trans. Signal Process. 65(16): 4353-4366 (2017) - [c87]Youngsuk Park, David Hallac, Stephen P. Boyd, Jure Leskovec:
Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields. AISTATS 2017: 1302-1310 - [c86]Matt Wytock, Nicholas Moehle, Stephen P. Boyd:
Dynamic energy management with scenario-based robust MPC. ACC 2017: 2042-2047 - [c85]Goran Banjac
, Bartolomeo Stellato, Nicholas Moehle, Paul Goulart, Alberto Bemporad, Stephen P. Boyd:
Embedded code generation using the OSQP solver. CDC 2017: 1906-1911 - [c84]David Hallac, Youngsuk Park, Stephen P. Boyd, Jure Leskovec:
Network Inference via the Time-Varying Graphical Lasso. KDD 2017: 205-213 - [c83]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. KDD 2017: 215-223 - [c82]Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
Stochastic Mirror Descent in Variationally Coherent Optimization Problems. NIPS 2017: 7040-7049 - [i19]Steven Diamond, Vincent Sitzmann, Stephen P. Boyd, Gordon Wetzstein, Felix Heide:
Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data. CoRR abs/1701.06487 (2017) - [i18]David Hallac, Youngsuk Park, Stephen P. Boyd, Jure Leskovec:
Network Inference via the Time-Varying Graphical Lasso. CoRR abs/1703.01958 (2017) - [i17]Nicholas Moehle, Xinyue Shen, Zhi-Quan Luo, Stephen P. Boyd:
A Distributed Method for Optimal Capacity Reservation. CoRR abs/1705.00677 (2017) - [i16]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. CoRR abs/1706.03161 (2017) - [i15]Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
Mirror descent in non-convex stochastic programming. CoRR abs/1706.05681 (2017) - [i14]Akshay Agrawal, Robin Verschueren, Steven Diamond, Stephen P. Boyd:
A Rewriting System for Convex Optimization Problems. CoRR abs/1709.04494 (2017) - [i13]Alberto Bemporad, Valentina Breschi, Dario Piga, Stephen P. Boyd:
Fitting Jump Models. CoRR abs/1711.09220 (2017) - 2016
- [j88]Madeleine Udell
, Stephen P. Boyd:
Bounding duality gap for separable problems with linear constraints. Comput. Optim. Appl. 64(2): 355-378 (2016) - [j87]Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen P. Boyd:
Generalized Low Rank Models. Found. Trends Mach. Learn. 9(1): 1-118 (2016) - [j86]Steven Diamond, Stephen P. Boyd:
CVXPY: A Python-Embedded Modeling Language for Convex Optimization. J. Mach. Learn. Res. 17: 83:1-83:5 (2016) - [j85]Weijie Su, Stephen P. Boyd, Emmanuel J. Candès:
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights. J. Mach. Learn. Res. 17: 153:1-153:43 (2016) - [j84]Brendan O'Donoghue, Eric Chu, Neal Parikh, Stephen P. Boyd:
Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding. J. Optim. Theory Appl. 169(3): 1042-1068 (2016) - [j83]Thomas Lipp, Stephen P. Boyd:
Antagonistic control. Syst. Control. Lett. 98: 44-48 (2016) - [c81]Nicholas Moehle, Stephen P. Boyd:
Optimal current waveforms for switched-reluctance motors. CCA 2016: 1129-1136 - [c80]Reza Takapoui, Nicholas Moehle, Stephen P. Boyd, Alberto Bemporad:
A simple effective heuristic for embedded mixed-integer quadratic programming. ACC 2016: 5619-5625 - [c79]Xinyue Shen, Steven Diamond, Yuantao Gu, Stephen P. Boyd:
Disciplined convex-concave programming. CDC 2016: 1009-1014 - [c78]Pontus Giselsson, Mattias Fält, Stephen P. Boyd:
Line search for averaged operator iteration. CDC 2016: 1015-1022 - [c77]Nicholas Moehle, Stephen P. Boyd:
Maximum torque-per-current control of induction motors via semidefinite programming. CDC 2016: 1920-1925 - [c76]Nan Zhang, Zhiqiang Yao, Yixian Liu, Stephen P. Boyd, Zhi-Quan Luo:
Optimal Resource Allocation for Energy Efficient Transmission in DSL. GLOBECOM 2016: 1-6 - [c75]Matt Wytock, Steven Diamond, Felix Heide, Stephen P. Boyd:
A New Architecture for Optimization Modeling Frameworks. PyHPC@SC 2016: 36-44 - [i12]Nicholas Moehle, Stephen P. Boyd:
Optimal Current Waveforms for Switched-Reluctance Motors. CoRR abs/1601.03768 (2016) - [i11]Qingyun Sun, Mengyuan Yan, Stephen P. Boyd:
Convolutional Imputation of Matrix Network. CoRR abs/1606.00925 (2016) - [i10]Reza Takapoui, Stephen P. Boyd:
Linear Programming Heuristics for the Graph Isomorphism Problem. CoRR abs/1611.00711 (2016) - 2015
- [j82]Pontus Giselsson, Stephen P. Boyd:
Metric selection in fast dual forward-backward splitting. Autom. 62: 1-10 (2015) - [j81]Ernest K. Ryu, Stephen P. Boyd:
Extensions of Gauss Quadrature Via Linear Programming. Found. Comput. Math. 15(4): 953-971 (2015) - [j80]Nicholas Moehle, Stephen P. Boyd:
Optimal current waveforms for brushless permanent magnet motors. Int. J. Control 88(7): 1389-1399 (2015) - [j79]Nicholas Moehle
, Stephen P. Boyd:
A perspective-based convex relaxation for switched-affine optimal control. Syst. Control. Lett. 86: 34-40 (2015) - [j78]Lipeng Ning, Tryphon T. Georgiou
, Allen R. Tannenbaum, Stephen P. Boyd:
Linear Models Based on Noisy Data and the Frisch Scheme. SIAM Rev. 57(2): 167-197 (2015) - [c74]Saahil Shenoy, Dimitry M. Gorinevsky, Stephen P. Boyd:
Non-parametric regression modeling for stochastic optimization of power grid load forecast. ACC 2015: 1010-1015 - [c73]Steven Diamond, Stephen P. Boyd:
Convex Optimization with Abstract Linear Operators. ICCV 2015: 675-683 - [c72]David Hallac, Jure Leskovec
, Stephen P. Boyd:
Network Lasso: Clustering and Optimization in Large Graphs. KDD 2015: 387-396 - [c71]Alnur Ali, J. Zico Kolter, Steven Diamond, Stephen P. Boyd:
Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization. UAI 2015: 62-71 - [i9]Jaehyun Park, Stephen P. Boyd:
A Semidefinite Programming Method for Integer Convex Quadratic Minimization. CoRR abs/1504.07672 (2015) - [i8]David Hallac, Jure Leskovec, Stephen P. Boyd:
Network Lasso: Clustering and Optimization in Large Graphs. CoRR abs/1507.00280 (2015) - [i7]David Hallac, Christopher Wong, Steven Diamond, Rok Sosic, Stephen P. Boyd, Jure Leskovec:
SnapVX: A Network-Based Convex Optimization Solver. CoRR abs/1509.06397 (2015) - 2014
- [b2]Stephen P. Boyd, Lieven Vandenberghe:
Convex Optimization. Cambridge University Press 2014, ISBN 978-0-521-83378-3 - [j77]Stephen P. Boyd, Mark T. Müller, Brendan O'Donoghue, Yang Wang:
Performance Bounds and Suboptimal Policies for Multi-Period Investment. Found. Trends Optim. 1(1): 1-72 (2014) - [j76]Matt Kraning, Eric Chu, Javad Lavaei, Stephen P. Boyd:
Dynamic Network Energy Management via Proximal Message Passing. Found. Trends Optim. 1(2): 73-126 (2014) - [j75]Neal Parikh, Stephen P. Boyd:
Proximal Algorithms. Found. Trends Optim. 1(3): 127-239 (2014) - [j74]Thomas Lipp, Stephen P. Boyd:
Minimum-time speed optimisation over a fixed path. Int. J. Control 87(6): 1297-1311 (2014) - [j73]Neal Parikh, Stephen P. Boyd:
Block splitting for distributed optimization. Math. Program. Comput. 6(1): 77-102 (2014) - [j72]Aditya G. Parameswaran, Stephen P. Boyd, Hector Garcia-Molina, Ashish Gupta, Neoklis Polyzotis, Jennifer Widom:
Optimal Crowd-Powered Rating and Filtering Algorithms. Proc. VLDB Endow. 7(9): 685-696 (2014) - [c70]Pontus Giselsson, Stephen P. Boyd:
Diagonal scaling in Douglas-Rachford splitting and ADMM. CDC 2014: 5033-5039 - [c69]Pontus Giselsson, Stephen P. Boyd:
Preconditioning in fast dual gradient methods. CDC 2014: 5040-5045 - [c68]Pontus Giselsson, Stephen P. Boyd:
Monotonicity and restart in fast gradient methods. CDC 2014: 5058-5063 - [c67]Stephen P. Boyd:
Plenary talk: Performance bounds and suboptimal policies for multi-period investment. MED 2014: 1 - [c66]Weijie Su, Stephen P. Boyd, Emmanuel J. Candès:
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights. NIPS 2014: 2510-2518 - [c65]Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond, Stephen P. Boyd:
Convex optimization in Julia. HPTCDL@SC 2014: 18-28 - [i6]Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen P. Boyd:
Generalized Low Rank Models. CoRR abs/1410.0342 (2014) - [i5]Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond, Stephen P. Boyd:
Convex Optimization in Julia. CoRR abs/1410.4821 (2014) - 2013
- [j71]Tobias Gybel Hovgaard, Stephen P. Boyd, Lars Finn Sloth Larsen, John Bagterp Jørgensen
:
Nonconvex model predictive control for commercial refrigeration. Int. J. Control 86(8): 1349-1366 (2013) - [j70]Vanya Van Belle, Patrick Neven, Vernon Harvey, Sabine Van Huffel, Johan A. K. Suykens
, Stephen P. Boyd:
Risk group detection and survival function estimation for interval coded survival methods. Neurocomputing 112: 200-210 (2013) - [j69]Brendan O'Donoghue, Giorgos Stathopoulos, Stephen P. Boyd:
A Splitting Method for Optimal Control. IEEE Trans. Control. Syst. Technol. 21(6): 2432-2442 (2013) - [c64]Eric Chu, Neal Parikh, Alexander Domahidi, Stephen P. Boyd:
Code generation for embedded second-order cone programming. ECC 2013: 1547-1552 - [c63]Alexander Domahidi, Eric Chu, Stephen P. Boyd:
ECOS: An SOCP solver for embedded systems. ECC 2013: 3071-3076 - [c62]Brendan O'Donoghue, Yang Wang, Stephen P. Boyd:
Iterated approximate value functions. ECC 2013: 3882-3888 - [c61]Tobias Gybel Hovgaard, Lars Finn Sloth Larsen, John Bagterp Jørgensen, Stephen P. Boyd:
MPC for wind power gradients - utilizing forecasts, rotor inertia, and central energy storage. ECC 2013: 4071-4076 - [c60]Martin Hast, Karl Johan Åström, Bo Bernhardsson, Stephen P. Boyd:
PID design by convex-concave optimization. ECC 2013: 4460-4465 - [i4]Lipeng Ning, Tryphon T. Georgiou, Allen R. Tannenbaum, Stephen P. Boyd:
Linear models based on noisy data and the Frisch scheme. CoRR abs/1304.3877 (2013) - 2012
- [j68]Henrik Ohlsson, Fredrik Gustafsson, Lennart Ljung
, Stephen P. Boyd:
Smoothed state estimates under abrupt changes using sum-of-norms regularization. Autom. 48(4): 595-605 (2012) - [c59]Eric Chu, Arezou Keshavarz, Dimitry M. Gorinevsky, Stephen P. Boyd:
Moving horizon estimation for staged QP problems. CDC 2012: 3177-3182 - [c58]Vanya Van Belle, Sabine Van Huffel, Johan A. K. Suykens, Stephen P. Boyd:
Interval coded scoring systems for survival analysis. ESANN 2012 - [c57]Stephen P. Boyd, Corinna Cortes, Mehryar Mohri, Ana Radovanovic:
Accuracy at the Top. NIPS 2012: 962-970 - [i3]Matt Kraning, Eric Chu, Javad Lavaei, Stephen P. Boyd:
Message Passing for Dynamic Network Energy Management. CoRR abs/1204.1106 (2012) - 2011
- [j67]Michael M. Zavlanos, A. Agung Julius, Stephen P. Boyd, George J. Pappas
:
Inferring stable genetic networks from steady-state data. Autom. 47(6): 1113-1122 (2011) - [j66]Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato
, Jonathan Eckstein:
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 3(1): 1-122 (2011) - [j65]Evelyn Mintarno, Joëlle Skaf, Rui Zheng, Jyothi Velamala, Yu Cao, Stephen P. Boyd, Robert W. Dutton, Subhasish Mitra:
Self-Tuning for Maximized Lifetime Energy-Efficiency in the Presence of Circuit Aging. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(5): 760-773 (2011) - [j64]Yang Wang, Stephen P. Boyd:
Fast Evaluation of Quadratic Control-Lyapunov Policy. IEEE Trans. Control. Syst. Technol. 19(4): 939-946 (2011) - [c56]Mohsen Soltani
, Rafael Wisniewski, Per Brath, Stephen P. Boyd:
Load reduction of wind turbines using receding horizon control. CCA 2011: 852-857 - [c55]Benjamin Biegel, Morten Juelsgaard, Matt Kraning, Stephen P. Boyd, Jakob Stoustrup
:
Wind turbine pitch optimization. CCA 2011: 1327-1334 - [c54]Arezou Keshavarz, Yang Wang, Stephen P. Boyd:
Imputing a convex objective function. ISIC 2011: 613-619