


Остановите войну!
for scientists:


default search action
Alejandro Ribeiro
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j141]Santiago Paternain
, Miguel Calvo-Fullana
, Luiz F. O. Chamon
, Alejandro Ribeiro
:
Safe Policies for Reinforcement Learning via Primal-Dual Methods. IEEE Trans. Autom. Control. 68(3): 1321-1336 (2023) - [j140]Luiz F. O. Chamon
, Santiago Paternain
, Miguel Calvo-Fullana
, Alejandro Ribeiro
:
Constrained Learning With Non-Convex Losses. IEEE Trans. Inf. Theory 69(3): 1739-1760 (2023) - [j139]Juan Cerviño
, Luana Ruiz
, Alejandro Ribeiro
:
Learning by Transference: Training Graph Neural Networks on Growing Graphs. IEEE Trans. Signal Process. 71: 233-247 (2023) - [j138]Landon Butler
, Alejandro Parada-Mayorga
, Alejandro Ribeiro
:
Convolutional Learning on Multigraphs. IEEE Trans. Signal Process. 71: 933-946 (2023) - [j137]Navid Naderializadeh
, Mark Eisen
, Alejandro Ribeiro
:
Learning Resilient Radio Resource Management Policies With Graph Neural Networks. IEEE Trans. Signal Process. 71: 995-1009 (2023) - [i187]Elijah S. Lee, Lifeng Zhou, Alejandro Ribeiro, Vijay Kumar:
Graph Neural Networks for Decentralized Multi-Agent Perimeter Defense. CoRR abs/2301.09689 (2023) - [i186]Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro:
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back. CoRR abs/2303.11323 (2023) - [i185]Saurabh Sihag, Gonzalo Mateos, Corey T. McMillan, Alejandro Ribeiro:
Transferability of coVariance Neural Networks and Application to Interpretable Brain Age Prediction using Anatomical Features. CoRR abs/2305.01807 (2023) - 2022
- [j136]Harshat Kumar, Santiago Paternain, Alejandro Ribeiro
:
Navigation of a quadratic potential with ellipsoidal obstacles. Autom. 146: 110643 (2022) - [j135]Paul Brown, Mark Eisen, Santiago Segarra
, Alejandro Ribeiro
, Gabriel Egan:
How the Word Adjacency Network (WAN) works. Digit. Scholarsh. Humanit. 37(2): 321-335 (2022) - [j134]Elvin Isufi
, Fernando Gama
, Alejandro Ribeiro
:
EdgeNets: Edge Varying Graph Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 7457-7473 (2022) - [j133]Daniel Mox
, Vijay Kumar
, Alejandro Ribeiro
:
Learning Connectivity-Maximizing Network Configurations. IEEE Robotics Autom. Lett. 7(2): 5552-5559 (2022) - [j132]Zhan Gao
, Fernando Gama
, Alejandro Ribeiro
:
Spherical convolutional neural networks: Stability to perturbations in SO(3). Signal Process. 196: 108529 (2022) - [j131]Vinícius Lima
, Mark Eisen
, Konstantinos Gatsis
, Alejandro Ribeiro
:
Model-Free design of control systems over wireless fading channels. Signal Process. 197: 108540 (2022) - [j130]Luiz F. O. Chamon
, Alexandre Amice
, Alejandro Ribeiro
:
Approximately Supermodular Scheduling Subject to Matroid Constraints. IEEE Trans. Autom. Control. 67(3): 1384-1396 (2022) - [j129]Santiago Paternain
, Juan Andrés Bazerque
, Alejandro Ribeiro
:
Policy Gradient for Continuing Tasks in Discounted Markov Decision Processes. IEEE Trans. Autom. Control. 67(9): 4467-4482 (2022) - [j128]Zhan Gao
, Mark Eisen
, Alejandro Ribeiro
:
Resource Allocation via Model-Free Deep Learning in Free Space Optical Communications. IEEE Trans. Commun. 70(2): 920-934 (2022) - [j127]Ting-Kuei Hu, Fernando Gama
, Tianlong Chen, Wenqing Zheng
, Zhangyang Wang
, Alejandro Ribeiro
, Brian M. Sadler
:
Scalable Perception-Action-Communication Loops With Convolutional and Graph Neural Networks. IEEE Trans. Signal Inf. Process. over Networks 8: 12-24 (2022) - [j126]Zhiyang Wang
, Mark Eisen
, Alejandro Ribeiro
:
Learning Decentralized Wireless Resource Allocations With Graph Neural Networks. IEEE Trans. Signal Process. 70: 1850-1863 (2022) - [j125]Fernando Gama
, Qingbiao Li
, Ekaterina I. Tolstaya, Amanda Prorok
, Alejandro Ribeiro
:
Synthesizing Decentralized Controllers With Graph Neural Networks and Imitation Learning. IEEE Trans. Signal Process. 70: 1932-1946 (2022) - [j124]Zhan Gao
, Alec Koppel
, Alejandro Ribeiro
:
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems. IEEE Trans. Signal Process. 70: 3693-3708 (2022) - [j123]Zhan Gao
, Fernando Gama
, Alejandro Ribeiro
:
Wide and Deep Graph Neural Network With Distributed Online Learning. IEEE Trans. Signal Process. 70: 3862-3877 (2022) - [j122]Navid Naderializadeh
, Mark Eisen
, Alejandro Ribeiro
:
State-Augmented Learnable Algorithms for Resource Management in Wireless Networks. IEEE Trans. Signal Process. 70: 5898-5912 (2022) - [c278]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Convolutional Neural Networks on Manifolds: From Graphs and Back. IEEECONF 2022: 356-360 - [c277]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker Planck Equation. COLT 2022: 817-841 - [c276]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro
:
Training Stable Graph Neural Networks Through Constrained Learning. ICASSP 2022: 4223-4227 - [c275]Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro
:
Adaptive Wireless Power Allocation with Graph Neural Networks. ICASSP 2022: 5213-5217 - [c274]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro
:
Stability of Neural Networks on Manifolds to Relative Perturbations. ICASSP 2022: 5473-5477 - [c273]Zhiyang Wang, Luana Ruiz, Mark Eisen, Alejandro Ribeiro
:
Stable and Transferable Wireless Resource Allocation Policies Via Manifold Neural Networks. ICASSP 2022: 8912-8916 - [c272]Samar Hadou, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Space-Time Graph Neural Networks. ICLR 2022 - [c271]Zebang Shen, Juan Cerviño, Hamed Hassani, Alejandro Ribeiro:
An Agnostic Approach to Federated Learning with Class Imbalance. ICLR 2022 - [c270]Walker Gosrich, Siddharth Mayya, Rebecca Li, James Paulos, Mark Yim, Alejandro Ribeiro
, Vijay Kumar:
Coverage Control in Multi-Robot Systems via Graph Neural Networks. ICRA 2022: 8787-8793 - [c269]Juan Elenter, Navid Naderializadeh, Alejandro Ribeiro:
A Lagrangian Duality Approach to Active Learning. NeurIPS 2022 - [c268]Saurabh Sihag, Gonzalo Mateos, Corey McMillan, Alejandro Ribeiro:
coVariance Neural Networks. NeurIPS 2022 - [c267]Lifeng Zhou, Vishnu D. Sharma, Qingbiao Li, Amanda Prorok, Alejandro Ribeiro
, Pratap Tokekar, Vijay Kumar:
Graph Neural Networks for Decentralized Multi-Robot Target Tracking. SSRR 2022: 195-202 - [i184]Juan Elenter, Navid Naderializadeh, Alejandro Ribeiro:
A Lagrangian Duality Approach to Active Learning. CoRR abs/2202.04108 (2022) - [i183]Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro:
Learning Resilient Radio Resource Management Policies with Graph Neural Networks. CoRR abs/2203.11012 (2022) - [i182]Max Wasserman, Saurabh Sihag, Gonzalo Mateos
, Alejandro Ribeiro:
Learning Graph Structure from Convolutional Mixtures. CoRR abs/2205.09575 (2022) - [i181]Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Graph Neural Networks Are More Powerful Than we Think. CoRR abs/2205.09801 (2022) - [i180]Saurabh Sihag, Gonzalo Mateos
, Corey McMillan, Alejandro Ribeiro:
coVariance Neural Networks. CoRR abs/2205.15856 (2022) - [i179]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker-Planck Equation. CoRR abs/2206.00860 (2022) - [i178]Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro:
State-Augmented Learnable Algorithms for Resource Management in Wireless Networks. CoRR abs/2207.02242 (2022) - [i177]Alejandro Parada-Mayorga, Zhiyang Wang, Fernando Gama, Alejandro Ribeiro:
Stability of Aggregation Graph Neural Networks. CoRR abs/2207.03678 (2022) - [i176]Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Convolutional Learning on Multigraphs. CoRR abs/2209.11354 (2022) - [i175]Ignacio Hounie, Luiz F. O. Chamon, Alejandro Ribeiro:
Automatic Data Augmentation via Invariance-Constrained Learning. CoRR abs/2209.15031 (2022) - [i174]Juan Cerviño, Navid Naderializadeh, Alejandro Ribeiro:
Federated Representation Learning via Maximal Coding Rate Reduction. CoRR abs/2210.00299 (2022) - [i173]Juan Cerviño, Luiz F. O. Chamon, Benjamin D. Haeffele, René Vidal, Alejandro Ribeiro:
Learning Globally Smooth Functions on Manifolds. CoRR abs/2210.00301 (2022) - [i172]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Convolutional Neural Networks on Manifolds: From Graphs and Back. CoRR abs/2210.00376 (2022) - [i171]Damian Owerko, Fernando Gama, Alejandro Ribeiro:
Unsupervised Optimal Power Flow Using Graph Neural Networks. CoRR abs/2210.09277 (2022) - [i170]Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro:
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back. CoRR abs/2210.15058 (2022) - [i169]Damian Owerko, Charilaos I. Kanatsoulis, Alejandro Ribeiro, Donald J. Bucci Jr., Jennifer Bondarchuk:
Deep Convolutional Neural Networks for Multi-Target Tracking: A Transfer Learning Approach. CoRR abs/2210.15539 (2022) - [i168]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro:
Training Graph Neural Networks on Growing Stochastic Graphs. CoRR abs/2210.15567 (2022) - [i167]Juan Cerviño, Juan Andrés Bazerque, Miguel Calvo-Fullana, Alejandro Ribeiro:
Multi-task Bias-Variance Trade-off Through Functional Constraints. CoRR abs/2210.15573 (2022) - [i166]Ignacio Hounie, Juan Elenter, Alejandro Ribeiro:
Neural Networks with Quantization Constraints. CoRR abs/2210.15623 (2022) - [i165]Samar Hadou, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Space-Time Graph Neural Networks with Stochastic Graph Perturbations. CoRR abs/2210.16270 (2022) - [i164]Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Learning with Multigraph Convolutional Filters. CoRR abs/2210.16272 (2022) - [i163]Saurabh Sihag, Gonzalo Mateos
, Corey McMillan, Alejandro Ribeiro:
Predicting Brain Age using Transferable coVariance Neural Networks. CoRR abs/2210.16363 (2022) - [i162]Yigit Berkay Uslu, Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro:
A State-Augmented Approach for Learning Optimal Resource Management Decisions in Wireless Networks. CoRR abs/2210.16412 (2022) - [i161]Elijah S. Lee, Lifeng Zhou, Alejandro Ribeiro, Vijay Kumar:
Learning Decentralized Strategies for a Perimeter Defense Game with Graph Neural Networks. CoRR abs/2211.01757 (2022) - [i160]Mikhail Hayhoe, Hans Riess, Victor M. Preciado, Alejandro Ribeiro
:
Stable and Transferable Hyper-Graph Neural Networks. CoRR abs/2211.06513 (2022) - [i159]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro
:
Convolutional Filtering on Sampled Manifolds. CoRR abs/2211.11058 (2022) - [i158]Alejandro Parada-Mayorga, Zhiyang Wang, Alejandro Ribeiro
:
Graphon Pooling for Reducing Dimensionality of Signals and Convolutional Operators on Graphs. CoRR abs/2212.08171 (2022) - 2021
- [j121]Miguel Calvo-Fullana, Alexander Pyattaev
, Daniel Mox, Sergey Andreev
, Alejandro Ribeiro
:
Communications and Robotics Simulation in UAVs: A Case Study on Aerial Synthetic Aperture Antennas. IEEE Commun. Mag. 59(1): 22-27 (2021) - [j120]Luana Ruiz
, Fernando Gama
, Alejandro Ribeiro
:
Graph Neural Networks: Architectures, Stability, and Transferability. Proc. IEEE 109(5): 660-682 (2021) - [j119]Miguel Calvo-Fullana
, Daniel Mox, Alexander Pyattaev
, Jonathan Fink, Vijay Kumar
, Alejandro Ribeiro
:
ROS-NetSim: A Framework for the Integration of Robotic and Network Simulators. IEEE Robotics Autom. Lett. 6(2): 1120-1127 (2021) - [j118]Arbaaz Khan
, Vijay Kumar, Alejandro Ribeiro
:
Large Scale Distributed Collaborative Unlabeled Motion Planning With Graph Policy Gradients. IEEE Robotics Autom. Lett. 6(3): 5340-5347 (2021) - [j117]Zhan Gao, Elvin Isufi, Alejandro Ribeiro
:
Stability of graph convolutional neural networks to stochastic perturbations. Signal Process. 188: 108216 (2021) - [j116]Luiz F. O. Chamon
, George J. Pappas
, Alejandro Ribeiro
:
Approximate Supermodularity of Kalman Filter Sensor Selection. IEEE Trans. Autom. Control. 66(1): 49-63 (2021) - [j115]Alec Koppel
, Garrett Warnell
, Ethan Stump
, Peter Stone
, Alejandro Ribeiro
:
Policy Evaluation in Continuous MDPs With Efficient Kernelized Gradient Temporal Difference. IEEE Trans. Autom. Control. 66(4): 1856-1863 (2021) - [j114]Santiago Paternain
, Juan Andrés Bazerque
, Austin Small
, Alejandro Ribeiro
:
Stochastic Policy Gradient Ascent in Reproducing Kernel Hilbert Spaces. IEEE Trans. Autom. Control. 66(8): 3429-3444 (2021) - [j113]Alejandro Parada-Mayorga
, Alejandro Ribeiro
:
Algebraic Neural Networks: Stability to Deformations. IEEE Trans. Signal Process. 69: 3351-3366 (2021) - [j112]Zhan Gao
, Elvin Isufi
, Alejandro Ribeiro
:
Stochastic Graph Neural Networks. IEEE Trans. Signal Process. 69: 4428-4443 (2021) - [j111]Luana Ruiz
, Luiz F. O. Chamon
, Alejandro Ribeiro
:
Graphon Signal Processing. IEEE Trans. Signal Process. 69: 4961-4976 (2021) - [j110]Juan Cerviño
, Juan Andrés Bazerque
, Miguel Calvo-Fullana
, Alejandro Ribeiro
:
Multi-Task Reinforcement Learning in Reproducing Kernel Hilbert Spaces via Cross-Learning. IEEE Trans. Signal Process. 69: 5947-5962 (2021) - [c266]Luana Ruiz, Luiz F. O. Chamon, Alejandro Ribeiro
:
Transferable Graph Neural Networks on Large-Scale Stochastic Graphs. ACSCC 2021: 1563-1567 - [c265]Bruno Augusto Angélico
, Luiz F. O. Chamon, Santiago Paternain, Alejandro Ribeiro
, George J. Pappas:
Source Seeking in Unknown Environments with Convex Obstacles. ACC 2021: 5055-5061 - [c264]Juan Cerviño, Juan Andrés Bazerque
, Miguel Calvo-Fullana, Alejandro Ribeiro
:
Multi-task Supervised Learning via Cross-learning. EUSIPCO 2021: 1381-1385 - [c263]Zhan Gao, Fernando Gama, Alejandro Ribeiro
:
Stability of Spherical Convolutional Neural Networks to Rotation Diffeomorphisms. EUSIPCO 2021: 1451-1455 - [c262]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro
:
Stability of Neural Networks on Riemannian Manifolds. EUSIPCO 2021: 1845-1849 - [c261]Ting-Kuei Hu, Fernando Gama, Tianlong Chen, Zhangyang Wang, Alejandro Ribeiro
, Brian M. Sadler:
VGAI: End-to-End Learning of Vision-Based Decentralized Controllers for Robot Swarms. ICASSP 2021: 4900-4904 - [c260]Alejandro Parada-Mayorga, Alejandro Ribeiro
:
Stability of Algebraic Neural Networks to Small Perturbations. ICASSP 2021: 5205-5209 - [c259]Zhan Gao, Elvin Isufi, Alejandro Ribeiro
:
Variance-Constrained Learning for Stochastic Graph Neural Networks. ICASSP 2021: 5245-5249 - [c258]Luana Ruiz, Zhiyang Wang, Alejandro Ribeiro
:
Graphon and Graph Neural Network Stability. ICASSP 2021: 5255-5259 - [c257]Fernando Gama, Ekaterina I. Tolstaya, Alejandro Ribeiro
:
Graph Neural Networks for Decentralized Controllers. ICASSP 2021: 5260-5264 - [c256]Luana Ruiz, Fernando Gama, Alejandro Ribeiro
, Elvin Isufi:
Nonlinear State-Space Generalizations of Graph Convolutional Neural Networks. ICASSP 2021: 5265-5269 - [c255]Zhan Gao, Alejandro Ribeiro
, Fernando Gama:
Wide and Deep Graph Neural Networks with Distributed Online Learning. ICASSP 2021: 5270-5274 - [c254]Zhiyang Wang, Mark Eisen, Alejandro Ribeiro
:
Unsupervised Learning for Asynchronous Resource Allocation In Ad-Hoc Wireless Networks. ICASSP 2021: 8143-8147 - [c253]Samuel Pfrommer, Alejandro Ribeiro
, Fernando Gama:
Discriminability of Single-Layer Graph Neural Networks. ICASSP 2021: 8508-8512 - [c252]Ekaterina I. Tolstaya, Landon Butler, Daniel Mox, James Paulos, Vijay Kumar, Alejandro Ribeiro
:
Learning Connectivity for Data Distribution in Robot Teams. IROS 2021: 413-420 - [c251]Ekaterina I. Tolstaya, James Paulos, Vijay Kumar, Alejandro Ribeiro
:
Multi-Robot Coverage and Exploration using Spatial Graph Neural Networks. IROS 2021: 8944-8950 - [c250]Harshat Kumar, Dionysios S. Kalogerias, George J. Pappas, Alejandro Ribeiro
:
Actor-only Deterministic Policy Gradient via Zeroth-order Gradient Oracles in Action Space. ISIT 2021: 1676-1681 - [c249]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, Alejandro Ribeiro:
Adversarial Robustness with Semi-Infinite Constrained Learning. NeurIPS 2021: 6198-6215 - [i157]Miguel Calvo-Fullana, Daniel Mox, Alexander Pyattaev, Jonathan Fink, Vijay Kumar, Alejandro Ribeiro:
ROS-NetSim: A Framework for the Integration of Robotic and Network Simulators. CoRR abs/2101.10113 (2021) - [i156]Clark Zhang, Santiago Paternain, Alejandro Ribeiro:
Sufficiently Accurate Model Learning for Planning. CoRR abs/2102.06099 (2021) - [i155]Arbaaz Khan, Vijay Kumar, Alejandro Ribeiro:
Large Scale Distributed Collaborative Unlabeled Motion Planning with Graph Policy Gradients. CoRR abs/2102.06284 (2021) - [i154]Miguel Calvo-Fullana, Santiago Paternain, Luiz F. O. Chamon, Alejandro Ribeiro:
State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards. CoRR abs/2102.11941 (2021) - [i153]Ekaterina I. Tolstaya, Landon Butler, Daniel Mox, James Paulos, Vijay Kumar, Alejandro Ribeiro:
Learning Connectivity for Data Distribution in Robot Teams. CoRR abs/2103.05091 (2021) - [i152]Luiz F. O. Chamon, Santiago Paternain, Miguel Calvo-Fullana, Alejandro Ribeiro:
Constrained Learning with Non-Convex Losses. CoRR abs/2103.05134 (2021) - [i151]Ekaterina I. Tolstaya, Ethan Stump, Alec Koppel, Alejandro Ribeiro:
Composable Learning with Sparse Kernel Representations. CoRR abs/2103.14474 (2021) - [i150]Lifeng Zhou, Vishnu D. Sharma, Qingbiao Li, Amanda Prorok, Alejandro Ribeiro, Vijay Kumar:
Graph Neural Networks for Decentralized Multi-Robot Submodular Action Selection. CoRR abs/2105.08601 (2021) - [i149]Zhan Gao, Subhrajit Bhattacharya, Leiming Zhang, Rick S. Blum, Alejandro Ribeiro, Brian M. Sadler:
Training Robust Graph Neural Networks with Topology Adaptive Edge Dropping. CoRR abs/2106.02892 (2021) - [i148]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro:
Increase and Conquer: Training Graph Neural Networks on Growing Graphs. CoRR abs/2106.03693 (2021) - [i147]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Stability of Manifold Neural Networks to Deformations. CoRR abs/2106.03725 (2021) - [i146]Zhan Gao, Elvin Isufi, Alejandro Ribeiro:
Stability of Graph Convolutional Neural Networks to Stochastic Perturbations. CoRR abs/2106.10526 (2021) - [i145]Ting-Kuei Hu, Fernando Gama, Tianlong Chen, Wenqing Zheng, Zhangyang Wang, Alejandro Ribeiro, Brian M. Sadler:
Scalable Perception-Action-Communication Loops with Convolutional and Graph Neural Networks. CoRR abs/2106.13358 (2021) - [i144]Zhan Gao, Fernando Gama, Alejandro Ribeiro:
Wide and Deep Graph Neural Network with Distributed Online Learning. CoRR abs/2107.09203 (2021) - [i143]Alejandro Parada-Mayorga, Alejandro Ribeiro:
Convolutional Filtering and Neural Networks with Non Commutative Algebras. CoRR abs/2108.09923 (2021) - [i142]Walker Gosrich, Siddharth Mayya, Rebecca Li, James Paulos, Mark Yim, Alejandro Ribeiro, Vijay Kumar:
Coverage Control in Multi-Robot Systems via Graph Neural Networks. CoRR abs/2109.15278 (2021) - [i141]Samar Hadou, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Space-Time Graph Neural Networks. CoRR abs/2110.02880 (2021) - [i140]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro:
Training Stable Graph Neural Networks Through Constrained Learning. CoRR abs/2110.03576 (2021) - [i139]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Stability of Neural Networks on Manifolds to Relative Perturbations. CoRR abs/2110.04702 (2021) - [i138]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, Alejandro Ribeiro:
Adversarial Robustness with Semi-Infinite Constrained Learning. CoRR abs/2110.15767 (2021) - [i137]Luana Ruiz, Luiz F. O. Chamon, Alejandro Ribeiro:
Transferability Properties of Graph Neural Networks. CoRR abs/2112.04629 (2021) - [i136]Anastasios Tsiamis, Dionysios S. Kalogerias, Alejandro Ribeiro, George J. Pappas:
Linear Quadratic Control with Risk Constraints. CoRR abs/2112.07564 (2021) - [i135]Daniel Mox, Vijay Kumar, Alejandro Ribeiro:
Learning Connectivity-Maximizing Network Configurations. CoRR abs/2112.07663 (2021) - 2020
- [j109]Aryan Mokhtari, Alec Koppel, Martin Takác, Alejandro Ribeiro:
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning. J. Mach. Learn. Res. 21: 120:1-120:51 (2020) - [j108]Aryan Mokhtari
, Alejandro Ribeiro
:
Stochastic Quasi-Newton Methods. Proc. IEEE 108(11): 1906-1922 (2020) - [j107]Fernando Gama
, Antonio G. Marques
, Gonzalo Mateos
, Alejandro Ribeiro
:
Rethinking sketching as sampling: A graph signal processing approach. Signal Process. 169: 107404 (2020) - [j106]