default search action
Sanjeev R. Kulkarni
Person information
- affiliation: Princeton University, NJ, USA
- affiliation (PhD 1991): MIT, Cambridge, MA, USA
Other persons with the same name
- Sanjeev Kulkarni 0002 — Twitter Inc.
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j87]Kun Yang, Mohammad Mohammadi Amiri, Sanjeev R. Kulkarni:
Greedy centroid initialization for federated K-means. Knowl. Inf. Syst. 66(6): 3393-3425 (2024) - [c90]Viraj Nadkarni, Sanjeev Kulkarni, Pramod Viswanath:
Adaptive Curves for Optimally Efficient Market Making. AFT 2024: 25:1-25:22 - [c89]Mahsa Bastankhah, Viraj Nadkarni, Chi Jin, Sanjeev Kulkarni, Pramod Viswanath:
Thinking Fast and Slow: Data-Driven Adaptive DeFi Borrow-Lending Protocol. AFT 2024: 27:1-27:23 - [c88]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. AISTATS 2024: 2746-2754 - [i56]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. CoRR abs/2402.11800 (2024) - [i55]Melda Alaluf, Giulia Crippa, Sinong Geng, Zijian Jing, Nikhil Krishnan, Sanjeev Kulkarni, Wyatt Navarro, Ronnie Sircar, Jonathan Tang:
Reinforcement Learning Paycheck Optimization for Multivariate Financial Goals. CoRR abs/2403.06011 (2024) - [i54]Nicolò Dal Fabbro, Arman Adibi, H. Vincent Poor, Sanjeev R. Kulkarni, Aritra Mitra, George J. Pappas:
DASA: Delay-Adaptive Multi-Agent Stochastic Approximation. CoRR abs/2403.17247 (2024) - [i53]Xiang Ji, Sanjeev Kulkarni, Mengdi Wang, Tengyang Xie:
Self-Play with Adversarial Critic: Provable and Scalable Offline Alignment for Language Models. CoRR abs/2406.04274 (2024) - [i52]Viraj Nadkarni, Sanjeev Kulkarni, Pramod Viswanath:
Adaptive Curves for Optimally Efficient Market Making. CoRR abs/2406.13794 (2024) - [i51]Mahsa Bastankhah, Viraj Nadkarni, Xuechao Wang, Chi Jin, Sanjeev Kulkarni, Pramod Viswanath:
Thinking Fast and Slow: Data-Driven Adaptive DeFi Borrow-Lending Protocol. CoRR abs/2407.10890 (2024) - [i50]Zhixu Tao, Rajita Chandak, Sanjeev Kulkarni:
On the Convergence of a Federated Expectation-Maximization Algorithm. CoRR abs/2408.05819 (2024) - 2023
- [j86]Melda Alaluf, Giulia Crippa, Sinong Geng, Zijian Jing, Nikhil Krishnan, Sanjeev Kulkarni, Wyatt Navarro, Ronnie Sircar, Jonathan Tang:
Reinforcement learning paycheck optimization for multivariate financial goals. Risk Decis. Anal. 9(1): 11-18 (2023) - [c87]Kun Yang, Mohammad Mohammadi Amiri, Sanjeev R. Kulkarni:
Greedy Centroid Initialization for Federated K-means. CISS 2023: 1-6 - [i49]Zhixu Tao, Kun Yang, Sanjeev R. Kulkarni:
Byzantine-Robust Clustered Federated Learning. CoRR abs/2306.00638 (2023) - [i48]Soham Jana, Kun Yang, Sanjeev R. Kulkarni:
Adversarially robust clustering with optimality guarantees. CoRR abs/2306.09977 (2023) - [i47]Pengcheng Fang, Peng Gao, Yun Peng, Qingzhao Zhang, Tao Xie, Dawn Song, Prateek Mittal, Sanjeev R. Kulkarni, Zhuotao Liu, Xusheng Xiao:
CONTRACTFIX: A Framework for Automatically Fixing Vulnerabilities in Smart Contracts. CoRR abs/2307.08912 (2023) - [i46]Viraj Nadkarni, Jiachen Hu, Ranvir Rana, Chi Jin, Sanjeev R. Kulkarni, Pramod Viswanath:
ZeroSwap: Data-driven Optimal Market Making in DeFi. CoRR abs/2310.09413 (2023) - 2022
- [j85]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Convergence of Federated Learning Over a Noisy Downlink. IEEE Trans. Wirel. Commun. 21(3): 1422-1437 (2022) - 2021
- [j84]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Convergence of Update Aware Device Scheduling for Federated Learning at the Wireless Edge. IEEE Trans. Wirel. Commun. 20(6): 3643-3658 (2021) - [j83]Mohammad Mohammadi Amiri, Tolga M. Duman, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Blind Federated Edge Learning. IEEE Trans. Wirel. Commun. 20(8): 5129-5143 (2021) - [c86]Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song:
Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence. ICDE 2021: 193-204 - [c85]Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song:
A System for Efficiently Hunting for Cyber Threats in Computer Systems Using Threat Intelligence. ICDE 2021: 2705-2708 - [c84]Mohammad Mohammadi Amiri, Sanjeev R. Kulkarni, H. Vincent Poor:
Federated Learning with Downlink Device Selection. SPAWC 2021: 306-310 - [i45]Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song:
A System for Efficiently Hunting for Cyber Threats in Computer Systems Using Threat Intelligence. CoRR abs/2101.06761 (2021) - [i44]Mohammad Mohammadi Amiri, Sanjeev R. Kulkarni, H. Vincent Poor:
Federated Learning with Downlink Device Selection. CoRR abs/2107.03510 (2021) - 2020
- [j82]Emmanuel Abbe, Sanjeev R. Kulkarni, Eun Jee Lee:
Generalized Nonbacktracking Bounds on the Influence. J. Mach. Learn. Res. 21: 31:1-31:36 (2020) - [c83]Peng Gao, Xusheng Xiao, Ding Li, Kangkook Jee, Haifeng Chen, Sanjeev R. Kulkarni, Prateek Mittal:
Querying Streaming System Monitoring Data for Enterprise System Anomaly Detection. ICDE 2020: 1774-1777 - [c82]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Update Aware Device Scheduling for Federated Learning at the Wireless Edge. ISIT 2020: 2598-2603 - [i43]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Update Aware Device Scheduling for Federated Learning at the Wireless Edge. CoRR abs/2001.10402 (2020) - [i42]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Federated Learning With Quantized Global Model Updates. CoRR abs/2006.10672 (2020) - [i41]Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Convergence of Federated Learning over a Noisy Downlink. CoRR abs/2008.11141 (2020) - [i40]Mohammad Mohammadi Amiri, Tolga M. Duman, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor:
Blind Federated Edge Learning. CoRR abs/2010.10030 (2020) - [i39]Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song:
Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence. CoRR abs/2010.13637 (2020)
2010 – 2019
- 2019
- [j81]Peng Gao, Xusheng Xiao, Zhichun Li, Kangkook Jee, Fengyuan Xu, Sanjeev R. Kulkarni, Prateek Mittal:
A Query System for Efficiently Investigating Complex Attack Behaviors for Enterprise Security. Proc. VLDB Endow. 12(12): 1802-1805 (2019) - [i38]Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R. Kulkarni, Prateek Mittal:
A Stream-based Query System for Efficiently Detecting Abnormal System Behaviors for Enterprise Security. CoRR abs/1903.08159 (2019) - 2018
- [c81]Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R. Kulkarni, Kurt Thomas, Prateek Mittal:
SYBILFUSE: Combining Local Attributes with Global Structure to Perform Robust Sybil Detection. CNS 2018: 1-9 - [c80]Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R. Kulkarni, Prateek Mittal:
AIQL: Enabling Efficient Attack Investigation from System Monitoring Data. USENIX ATC 2018: 113-126 - [c79]Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R. Kulkarni, Prateek Mittal:
SAQL: A Stream-based Query System for Real-Time Abnormal System Behavior Detection. USENIX Security Symposium 2018: 639-656 - [i37]Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R. Kulkarni, Kurt Thomas, Prateek Mittal:
SybilFuse: Combining Local Attributes with Global Structure to Perform Robust Sybil Detection. CoRR abs/1803.06772 (2018) - [i36]Peng Gao, Xusheng Xiao, Zhichun Li, Kangkook Jee, Fengyuan Xu, Sanjeev R. Kulkarni, Prateek Mittal:
AIQL: Enabling Efficient Attack Investigation from System Monitoring Data. CoRR abs/1806.02290 (2018) - [i35]Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R. Kulkarni, Prateek Mittal:
SAQL: A Stream-based Query System for Real-Time Abnormal System Behavior Detection. CoRR abs/1806.09339 (2018) - [i34]Peng Gao, Xusheng Xiao, Zhichun Li, Kangkook Jee, Fengyuan Xu, Sanjeev R. Kulkarni, Prateek Mittal:
A Query Tool for Efficiently Investigating Risky Software Behaviors. CoRR abs/1810.03464 (2018) - 2017
- [c78]Emmanuel Abbe, Sanjeev R. Kulkarni, Eun Jee Lee:
Nonbacktracking Bounds on the Influence in Independent Cascade Models. NIPS 2017: 1407-1416 - [i33]Emmanuel Abbe, Sanjeev R. Kulkarni, Eun Jee Lee:
Nonbacktracking Bounds on the Influence in Independent Cascade Models. CoRR abs/1706.05295 (2017) - 2016
- [j80]Mete Ozay, Inaki Esnaola, Fatos Tünay Yarman Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Machine Learning Methods for Attack Detection in the Smart Grid. IEEE Trans. Neural Networks Learn. Syst. 27(8): 1773-1786 (2016) - [c77]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Energy efficiency of wireless cooperation. Allerton 2016: 664-671 - [c76]Eun Jee Lee, Sudeep Kamath, Emmanuel Abbe, Sanjeev R. Kulkarni:
Spectral bounds for independent cascade model with sensitive edges. CISS 2016: 649-653 - 2015
- [j79]Shang Shang, Paul Cuff, Pan Hui, Sanjeev R. Kulkarni:
An Upper Bound on the Convergence Time for Quantized Consensus of Arbitrary Static Graphs. IEEE Trans. Autom. Control. 60(4): 1127-1132 (2015) - [i32]Mete Ozay, Inaki Esnaola, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Sparse Attack Construction and State Estimation in the Smart Grid: Centralized and Distributed Models. CoRR abs/1502.04254 (2015) - [i31]Mete Ozay, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Fusion of Image Segmentation Algorithms using Consensus Clustering. CoRR abs/1502.05435 (2015) - [i30]Peng Gao, Neil Zhenqiang Gong, Sanjeev R. Kulkarni, Kurt Thomas, Prateek Mittal:
SybilFrame: A Defense-in-Depth Framework for Structure-Based Sybil Detection. CoRR abs/1503.02985 (2015) - [i29]Mete Özay, Inaki Esnaola, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Machine Learning Methods for Attack Detection in the Smart Grid. CoRR abs/1503.06468 (2015) - [i28]Pingmei Xu, Krista A. Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R. Kulkarni, Jianxiong Xiao:
TurkerGaze: Crowdsourcing Saliency with Webcam based Eye Tracking. CoRR abs/1504.06755 (2015) - 2014
- [j78]Aurélie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire:
Convergence and Consistency of Regularized Boosting With Weakly Dependent Observations. IEEE Trans. Inf. Theory 60(1): 651-660 (2014) - [c75]Marc Reinhardt, Benjamin Noack, Sanjeev Kulkarni, Uwe D. Hanebeck:
Distributed Kalman filtering in the presence of packet delays and losses. FUSION 2014: 1-7 - [c74]Shang Shang, Tiance Wang, Paul Cuff, Sanjeev R. Kulkarni:
The application of differential privacy for rank aggregation: Privacy and accuracy. FUSION 2014: 1-7 - [c73]Zhuo Zhang, Sanjeev R. Kulkarni:
Detection of shilling attacks in recommender systems via spectral clustering. FUSION 2014: 1-8 - [c72]Marc Reinhardt, Sanjeev Kulkarni, Uwe D. Hanebeck:
Generalized covariance intersection based on noise decomposition. MFI 2014: 1-8 - [c71]Zhuo Zhang, Pan Hui, Sanjeev R. Kulkarni, Christoph Peylo:
Enabling an augmented reality ecosystem: a content-oriented survey. MARS@MobiSys 2014: 41-46 - [c70]Shang Shang, Yuk Hui, Pan Hui, Paul Cuff, Sanjeev R. Kulkarni:
Beyond personalization and anonymity: towards a group-based recommender system. SAC 2014: 266-273 - [i27]Shang Shang, Paul W. Cuff, Pan Hui, Sanjeev R. Kulkarni:
An Upper Bound on the Convergence Time for Quantized Consensus of Arbitrary Static Graphs. CoRR abs/1409.6828 (2014) - [i26]Shang Shang, Tiance Wang, Paul W. Cuff, Sanjeev R. Kulkarni:
The Application of Differential Privacy for Rank Aggregation: Privacy and Accuracy. CoRR abs/1409.6831 (2014) - [i25]Tiance Wang, Pan Hui, Sanjeev R. Kulkarni, Paul W. Cuff:
Cooperative Caching based on File Popularity Ranking in Delay Tolerant Networks. CoRR abs/1409.7047 (2014) - 2013
- [j77]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
A sequential predictor retraining algorithm and its application to market prediction. Ann. Oper. Res. 208(1): 209-225 (2013) - [j76]Jieqi Yu, Sanjeev R. Kulkarni, H. Vincent Poor:
Dimension expansion and customized spring potentials for sensor localization. EURASIP J. Adv. Signal Process. 2013: 20 (2013) - [j75]Mete Ozay, Inaki Esnaola, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Sparse Attack Construction and State Estimation in the Smart Grid: Centralized and Distributed Models. IEEE J. Sel. Areas Commun. 31(7): 1306-1318 (2013) - [j74]Jarmo Lundén, Sanjeev R. Kulkarni, Visa Koivunen, H. Vincent Poor:
Multiagent Reinforcement Learning Based Spectrum Sensing Policies for Cognitive Radio Networks. IEEE J. Sel. Top. Signal Process. 7(5): 858-868 (2013) - [c69]Mengjuan Liu, Zhuo Zhang, Pan Hui, Yujie Qin, Sanjeev R. Kulkarni:
Measurement and understanding of cyberlocker URL-sharing sites: focus on movie files. ASONAM 2013: 902-909 - [c68]Mete Ozay, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Fusion of image segmentation algorithms using consensus clustering. ICIP 2013: 4049-4053 - [c67]Shang Shang, Paul W. Cuff, Pan Hui, Sanjeev R. Kulkarni:
An upper bound on the convergence time for quantized consensus. INFOCOM 2013: 600-604 - [c66]Zhuo Zhang, Sanjeev R. Kulkarni:
Graph-based detection of shilling attacks in recommender systems. MLSP 2013: 1-6 - [c65]Zhuo Zhang, Shang Shang, Sanjeev R. Kulkarni, Pan Hui:
Improving augmented reality using recommender systems. RecSys 2013: 173-176 - [i24]Shang Shang, Yuk Hui, Pan Hui, Paul W. Cuff, Sanjeev R. Kulkarni:
Privacy Preserving Recommendation System Based on Groups. CoRR abs/1305.0540 (2013) - 2012
- [j73]Ali N. Akansu, Sanjeev R. Kulkarni, Marco Avellaneda, Andrew R. Barron:
Introduction to the Issue on Signal Processing Methods in Finance and Electronic Trading. IEEE J. Sel. Top. Signal Process. 6(4): 297 (2012) - [j72]Dmitriy Shutin, Christoph Zechner, Sanjeev R. Kulkarni, H. Vincent Poor:
Regularized Variational Bayesian Learning of Echo State Networks with Delay&Sum Readout. Neural Comput. 24(4): 967-995 (2012) - [j71]Jieqi Yu, Sanjeev R. Kulkarni, H. Vincent Poor:
Robust ellipse and spheroid fitting. Pattern Recognit. Lett. 33(5): 492-499 (2012) - [j70]Aman Jain, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor, Sergio Verdú:
Energy-Distortion Tradeoffs in Gaussian Joint Source-Channel Coding Problems. IEEE Trans. Inf. Theory 58(5): 3153-3168 (2012) - [j69]Dmitriy Shutin, Sanjeev R. Kulkarni, H. Vincent Poor:
Incremental Reformulated Automatic Relevance Determination. IEEE Trans. Signal Process. 60(9): 4977-4981 (2012) - [c64]Tiance Wang, John Sturm, Paul W. Cuff, Sanjeev R. Kulkarni:
Condorcet voting methods avoid the paradoxes of voting theory. Allerton Conference 2012: 201-203 - [c63]Shang Shang, Paul W. Cuff, Sanjeev R. Kulkarni, Pan Hui:
An upper bound on the convergence time for distributed binary consensus. FUSION 2012: 369-375 - [c62]Shang Shang, Sanjeev R. Kulkarni, Paul W. Cuff, Pan Hui:
A randomwalk based model incorporating social information for recommendations. MLSP 2012: 1-6 - [c61]Zhuo Zhang, Paul Cuff, Sanjeev R. Kulkarni:
Iterative collaborative filtering for recommender systems with sparse data. MLSP 2012: 1-6 - [c60]Mete Ozay, Inaki Esnaola, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed models for sparse attack construction and state vector estimation in the smart grid. SmartGridComm 2012: 306-311 - [c59]Mete Ozay, Inaki Esnaola, Fatos T. Yarman-Vural, Sanjeev R. Kulkarni, H. Vincent Poor:
Smarter security in the smart grid. SmartGridComm 2012: 312-317 - [i23]Shang Shang, Paul W. Cuff, Sanjeev R. Kulkarni, Pan Hui:
An Upper Bound on the Convergence Time for Distributed Binary Consensus. CoRR abs/1208.0525 (2012) - [i22]Shang Shang, Pan Hui, Sanjeev R. Kulkarni, Paul W. Cuff:
Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models. CoRR abs/1208.0782 (2012) - [i21]Shang Shang, Sanjeev R. Kulkarni, Paul W. Cuff, Pan Hui:
A Random Walk Based Model Incorporating Social Information for Recommendations. CoRR abs/1208.0787 (2012) - [i20]Shang Shang, Paul W. Cuff, Pan Hui, Sanjeev R. Kulkarni:
An Upper Bound on the Convergence Time for Quantized Consensus. CoRR abs/1208.0788 (2012) - 2011
- [j68]Guanchun Wang, Sanjeev R. Kulkarni, H. Vincent Poor, Daniel N. Osherson:
Aggregating Large Sets of Probabilistic Forecasts by Weighted Coherent Adjustment. Decis. Anal. 8(2): 128-144 (2011) - [j67]Ilya Pollak, Marco Avellaneda, Emmanuel Bacry, Rama Cont, Sanjeev R. Kulkarni:
Improving the Visibility of Financial Applications Among Signal Processing Researchers[From the Guest Editors]. IEEE Signal Process. Mag. 28(5): 14-15 (2011) - [j66]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Multicasting in Large Wireless Networks: Bounds on the Minimum Energy Per Bit. IEEE Trans. Inf. Theory 57(1): 14-32 (2011) - [j65]Aaron B. Wagner, Pramod Viswanath, Sanjeev R. Kulkarni:
Probability Estimation in the Rare-Events Regime. IEEE Trans. Inf. Theory 57(6): 3207-3229 (2011) - [j64]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Energy Efficiency of Decode-and-Forward for Wideband Wireless Multicasting. IEEE Trans. Inf. Theory 57(12): 7695-7713 (2011) - [j63]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Attribute-Distributed Learning: Models, Limits, and Algorithms. IEEE Trans. Signal Process. 59(1): 386-398 (2011) - [j62]Dmitriy Shutin, Thomas Buchgraber, Sanjeev R. Kulkarni, H. Vincent Poor:
Fast Variational Sparse Bayesian Learning With Automatic Relevance Determination for Superimposed Signals. IEEE Trans. Signal Process. 59(12): 6257-6261 (2011) - [c58]Dmitriy Shutin, Sanjeev R. Kulkarni, H. Vincent Poor:
Stationary point variational Bayesian attribute-distributed sparse learning with ℓ1 sparsity constraints. CAMSAP 2011: 277-280 - [c57]Jarmo Lundén, Visa Koivunen, Sanjeev R. Kulkarni, H. Vincent Poor:
Exploiting spatial diversity in multiagent reinforcement learning based spectrum sensing. CAMSAP 2011: 325-328 - [c56]Jieqi Yu, Sanjeev R. Kulkarni, H. Vincent Poor:
A distributed spring model algorithm for sensor localization using dimension expansion and hyperbolic tangential force. CAMSAP 2011: 381-384 - [c55]Guanchun Wang, Sanjeev R. Kulkarni, H. Vincent Poor, Daniel N. Osherson:
Improving aggregated forecasts of probability. CISS 2011: 1-5 - [c54]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Consensus clustering: The Filtered Stochastic Best-One-Element-Move Algorithm. CISS 2011: 1-6 - [c53]Hamza Aftab, Nevin Raj, Paul W. Cuff, Sanjeev R. Kulkarni:
Mutual information scheduling for ranking. FUSION 2011: 1-8 - [c52]Dmitriy Shutin, Thomas Buchgraber, Sanjeev R. Kulkarni, H. Vincent Poor:
Fast adaptive variational sparse Bayesian learning with automatic relevance determination. ICASSP 2011: 2180-2183 - [c51]Yiyue Wu, Haipeng Zheng, A. Robert Calderbank, Sanjeev R. Kulkarni, H. Vincent Poor:
On optimal precoding in wireless multicast systems. ICASSP 2011: 3068-3071 - [c50]Shang Shang, Pan Hui, Sanjeev R. Kulkarni, Paul W. Cuff:
Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models. ICPADS 2011: 835-840 - 2010
- [j61]Jieqi Yu, Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Two-Stage Outlier Elimination for Robust Curve and Surface Fitting. EURASIP J. Adv. Signal Process. 2010 (2010) - [j60]Fernando Pérez-Cruz, Sanjeev R. Kulkarni:
Robust and Low Complexity Distributed Kernel Least Squares Learning in Sensor Networks. IEEE Signal Process. Lett. 17(4): 355-358 (2010) - [c49]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Attribute-distributed learning: The iterative covariance optimization algorithm and its applications. ACC 2010: 6783-6788 - [c48]Dmitriy Shutin, Haipeng Zheng, Bernard H. Fleury, Sanjeev R. Kulkarni, H. Vincent Poor:
Space-alternating attribute-distributed sparse learning. CIP 2010: 209-214 - [c47]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Agent selection for regression on attribute distributed data. ICASSP 2010: 2242-2245 - [c46]Aman Jain, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor, Sergio Verdú:
Energy efficient lossy transmission over sensor networks with feedback. ICASSP 2010: 5558-5561 - [c45]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Minimum Energy per Bit for Wideband Wireless Multicasting: Performance of Decode-and-Forward. INFOCOM 2010: 2393-2401 - [c44]Aman Jain, Deniz Gündüz, Sanjeev R. Kulkarni, H. Vincent Poor, Sergio Verdú:
Energy-distortion tradeoff with multiple sources and feedback. ITA 2010: 142-146
2000 – 2009
- 2009
- [j59]Qing Wang, Sanjeev R. Kulkarni, Sergio Verdú:
Universal Estimation of Information Measures for Analog Sources. Found. Trends Commun. Inf. Theory 5(3): 265-353 (2009) - [j58]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
A Collaborative Training Algorithm for Distributed Learning. IEEE Trans. Inf. Theory 55(4): 1856-1871 (2009) - [j57]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Finding all small error-prone substructures in LDPC codes. IEEE Trans. Inf. Theory 55(5): 1976-1999 (2009) - [j56]Qing Wang, Sanjeev R. Kulkarni, Sergio Verdú:
Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Inf. Theory 55(5): 2392-2405 (2009) - [j55]Joel B. Predd, Robert Seiringer, Elliott H. Lieb, Daniel N. Osherson, H. Vincent Poor, Sanjeev R. Kulkarni:
Probabilistic coherence and proper scoring rules. IEEE Trans. Inf. Theory 55(10): 4786-4792 (2009) - [j54]Jing Deng, Yunghsiang S. Han, Sanjeev R. Kulkarni:
Can multiple subchannels improve the delay performance of RTS/CTS-based MAC schemes? IEEE Trans. Wirel. Commun. 8(4): 1591-1596 (2009) - [c43]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Minimum energy per bit for Gaussian broadcast channels with common message and cooperating receivers. Allerton 2009: 740-747 - [c42]Guanchun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Aggregating disparate judgments using a coherence penalty. CISS 2009: 23-27 - [c41]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Cooperative training for attribute-distributed data: Trade-off between data transmission and performance. FUSION 2009: 664-671 - [c40]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Multicasting in large random wireless networks: Bounds on the minimum energy per bit. ISIT 2009: 2627-2631 - [c39]Fernando Pérez-Cruz, Sanjeev R. Kulkarni:
Distributed least square for consensus building in sensor networks. ISIT 2009: 2877-2881 - [i19]Aman Jain, Sanjeev R. Kulkarni, Sergio Verdú:
Multicasting in Large Wireless Networks: Bounds on the Minimum Energy per Bit. CoRR abs/0905.3858 (2009) - [i18]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Cooperative Training for Attribute-Distributed Data: Trade-off Between Data Transmission and Performance. CoRR abs/0907.5141 (2009) - [i17]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Collaborative Training in Sensor Networks: A graphical model approach. CoRR abs/0907.5168 (2009) - 2008
- [j53]Joel B. Predd, Daniel N. Osherson, Sanjeev R. Kulkarni, H. Vincent Poor:
Aggregating Probabilistic Forecasts from Incoherent and Abstaining Experts. Decis. Anal. 5(4): 177-189 (2008) - [j52]Hua Li, Patricia R. Barbosa, Edwin K. P. Chong, Jan Hannig, Sanjeev R. Kulkarni:
Zero-error target tracking with limited communication. IEEE J. Sel. Areas Commun. 26(4): 686-694 (2008) - [c38]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Dimensionally distributed learning models and algorithm. FUSION 2008: 1-8 - [i16]Haipeng Zheng, Sanjeev R. Kulkarni, H. Vincent Poor:
Dimensionally Distributed Learning: Models and Algorithm. CoRR abs/0807.3050 (2008) - 2007
- [j51]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Finite-Dimensional Bounds on BBZm and Binary LDPC Codes With Belief Propagation Decoders. IEEE Trans. Inf. Theory 53(1): 56-81 (2007) - [j50]Aurélie C. Lozano, Sanjeev R. Kulkarni, Pramod Viswanath:
Throughput scaling in wireless networks with restricted mobility. IEEE Trans. Wirel. Commun. 6(2): 670-679 (2007) - [c37]Aaron B. Wagner, Pramod Viswanath, Sanjeev R. Kulkarni:
A Better Good-Turing Estimator for Sequence Probabilities. ISIT 2007: 2356-2360 - [i15]Aaron B. Wagner, Pramod Viswanath, Sanjeev R. Kulkarni:
A Better Good-Turing Estimator for Sequence Probabilities. CoRR abs/0704.1455 (2007) - [i14]Gusztáv Morvai, Sanjeev R. Kulkarni, Andrew B. Nobel:
Regression estimation from an individual stable sequence. CoRR abs/0710.2496 (2007) - [i13]Andrew B. Nobel, Gusztáv Morvai, Sanjeev R. Kulkarni:
Density estimation from an individual numerical sequence. CoRR abs/0710.2500 (2007) - 2006
- [j49]Jan Hannig, Edwin K. P. Chong, Sanjeev R. Kulkarni:
Relative Frequencies of Generalized Simulated Annealing. Math. Oper. Res. 31(1): 199-216 (2006) - [j48]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed learning in wireless sensor networks. IEEE Signal Process. Mag. 23(4): 56-69 (2006) - [j47]Joel B. Predd, Sanjeev R. Kulkarni, Harold Vincent Poor:
Consistency in models for distributed learning under communication constraints. IEEE Trans. Inf. Theory 52(1): 52-63 (2006) - [j46]Haixiao Cai, Sanjeev R. Kulkarni, Sergio Verdú:
Universal Divergence Estimation for Finite-Alphabet Sources. IEEE Trans. Inf. Theory 52(8): 3456-3475 (2006) - [j45]Haixiao Cai, Sanjeev R. Kulkarni, Sergio Verdú:
An Algorithm for Universal Lossless Compression With Side Information. IEEE Trans. Inf. Theory 52(9): 4008-4016 (2006) - [c36]Sung-Hyun Son, Sanjeev R. Kulkarni, Stuart C. Schwartz:
Distributed estimation with dependent observations in wireless sensor networks. EUSIPCO 2006: 1-5 - [c35]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor, Daniel N. Osherson:
Scalable Algorithms for Aggregating Disparate Forecasts of Probability. FUSION 2006: 1-8 - [c34]Qing Wang, Sanjeev R. Kulkarni, Sergio Verdú:
A Nearest-Neighbor Approach to Estimating Divergence between Continuous Random Vectors. ISIT 2006: 242-246 - [c33]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Upper Bounding the Performance of Arbitrary Finite LDPC Codes on Binary Erasure Channels. ISIT 2006: 411-415 - [c32]Aurélie C. Lozano, Sanjeev R. Kulkarni:
Convergence and Consistency of Recursive Boosting. ISIT 2006: 2185-2189 - [c31]Aaron B. Wagner, Pramod Viswanath, Sanjeev R. Kulkarni:
Strong Consistency of the Good-Turing Estimator. ISIT 2006: 2526-2530 - [c30]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed Kernel Regression: An Algorithm for Training Collaboratively. ITW 2006: 332-336 - [i12]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed Kernel Regression: An Algorithm for Training Collaboratively. CoRR abs/cs/0601089 (2006) - [i11]Joel B. Predd, Sanjeev R. Kulkarni, Daniel N. Osherson, H. Vincent Poor:
Scalable Algorithms for Aggregating Disparate Forecasts of Probability. CoRR abs/cs/0601131 (2006) - [i10]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Upper Bounding the Performance of Arbitrary Finite LDPC Codes on Binary Erasure Channels. CoRR abs/cs/0605086 (2006) - [i9]Aaron B. Wagner, Pramod Viswanath, Sanjeev R. Kulkarni:
Strong Consistency of the Good-Turing Estimator. CoRR abs/cs/0607014 (2006) - [i8]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Exhausting Error-Prone Patterns in LDPC Codes. CoRR abs/cs/0609046 (2006) - [i7]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Finite-Dimensional Bounds on Zm and Binary LDPC Codes with Belief Propagation Decoders. CoRR abs/cs/0610052 (2006) - 2005
- [j44]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Arbitrary side observations in bandit problems. Adv. Appl. Math. 34(4): 903-938 (2005) - [j43]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Bandit problems with side observations. IEEE Trans. Autom. Control. 50(3): 338-355 (2005) - [j42]Qing Wang, Sanjeev R. Kulkarni, Sergio Verdú:
Divergence Estimation of Continuous Distributions Based on Data-Dependent Partitions. IEEE Trans. Inf. Theory 51(9): 3064-3074 (2005) - [j41]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Density evolution for asymmetric memoryless channels. IEEE Trans. Inf. Theory 51(12): 4216-4236 (2005) - [c29]Jan Hannig, Edwin K. P. Chong, Sanjeev R. Kulkarni:
Relative Frequencies of Non-homogeneous Markov Chains in Simulated Annealing and Related Algorithms. CDC/ECC 2005: 6626-6631 - [c28]Sung-Hyun Son, Sanjeev R. Kulkarni, Stuart C. Schwartz, Mike Roan:
Communication-estimation tradeoffs in wireless sensor networks. ICASSP (5) 2005: 1065-1068 - [c27]Qing Wang, Sanjeev R. Kulkarni, Sergio Verdú:
Universal estimation of divergence for continuous distributions via data-dependent partitions. ISIT 2005: 152-156 - [c26]Alex Reznik, Sanjeev R. Kulkarni, Sergio Verdú:
Broadcast-relay channel: capacity region bounds. ISIT 2005: 820-824 - [c25]Aurélie C. Lozano, Sanjeev R. Kulkarni:
A wireless network can achieve maximum throughput without each node meeting all others. ISIT 2005: 2119-2123 - [c24]Haixiao Cai, Sanjeev R. Kulkarni, Sergio Verdú:
A universal lossless compressor with side information based on context tree weighting. ISIT 2005: 2340-2344 - [c23]Aurélie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire:
Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations. NIPS 2005: 819-826 - [i6]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Bandit Problems with Side Observations. CoRR abs/cs/0501063 (2005) - [i5]Chih-Chun Wang, H. Vincent Poor, Sanjeev R. Kulkarni:
On the Typicality of the Linear Code Among the LDPC Coset Code Ensemble. CoRR abs/cs/0502084 (2005) - [i4]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Consistency in Models for Distributed Learning under Communication Constraints. CoRR abs/cs/0503071 (2005) - [i3]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed Learning in Wireless Sensor Networks. CoRR abs/cs/0503072 (2005) - [i2]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections. CoRR abs/cs/0507039 (2005) - [i1]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Density Evolution for Asymmetric Memoryless Channels. CoRR abs/cs/0509014 (2005) - 2004
- [j40]Sanjeev R. Kulkarni, Pramod Viswanath:
A Deterministic Approach to Throughput Scaling in Wireless Networks. IEEE Trans. Inf. Theory 50(6): 1041-1049 (2004) - [j39]Haixiao Cai, Sanjeev R. Kulkarni, Sergio Verdú:
Universal entropy estimation via block sorting. IEEE Trans. Inf. Theory 50(7): 1551-1561 (2004) - [j38]Aleksandar Jovicic, Pramod Viswanath, Sanjeev R. Kulkarni:
Upper bounds to transport capacity of wireless networks. IEEE Trans. Inf. Theory 50(11): 2555-2565 (2004) - [j37]Alex Reznik, Sanjeev R. Kulkarni, Sergio Verdú:
Degraded Gaussian multirelay channel: capacity and optimal power allocation. IEEE Trans. Inf. Theory 50(12): 3037-3046 (2004) - [c22]Joel B. Predd, Sanjeev R. Kulkarni, Harold Vincent Poor:
Consistency in Models for Communication Constrained Distributed Learning. COLT 2004: 442-456 - [c21]Alex Reznik, Sanjeev R. Kulkarni, Sergio Verdú:
Scaling laws in random heterogeneous networks. ISIT 2004: 369 - [c20]Aurélie C. Lozano, Sanjeev R. Kulkarni, Pramod Viswanath:
Throughput scaling in wireless networks with restricted mobility. ISIT 2004: 437 - [c19]Joel B. Predd, Sanjeev R. Kulkarni, H. Vincent Poor:
Consistency in a model for distributed learning with specialists. ISIT 2004: 465 - 2003
- [j36]Sanjeev R. Kulkarni, Alex Reznik, Sergio Verdú:
A "Small World" Approach to Heterogeneous Networks. Commun. Inf. Syst. 3(4): 325-348 (2003) - [j35]Richard J. Radke, Peter J. Ramadge, Sanjeev R. Kulkarni, Tomio Echigo:
Efficiently synthesizing virtual video. IEEE Trans. Circuits Syst. Video Technol. 13(4): 325-337 (2003) - 2002
- [j34]Michelle Effros, Karthik Visweswariah, Sanjeev R. Kulkarni, Sergio Verdú:
Universal lossless source coding with the Burrows Wheeler Transform. IEEE Trans. Inf. Theory 48(5): 1061-1081 (2002) - [j33]Sanjeev R. Kulkarni, S. E. Posner, Sathyakama Sandilya:
Data-dependent kn-NN and kernel estimators consistent for arbitrary processes. IEEE Trans. Inf. Theory 48(10): 2785-2788 (2002) - [j32]Sathyakama Sandilya, Sanjeev R. Kulkarni:
Principal curves with bounded turn. IEEE Trans. Inf. Theory 48(10): 2789-2793 (2002) - [c18]Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor:
Bandit problems with side observations. CDC 2002: 3988-3993 - 2001
- [j31]Jean-Pierre Goux, Sanjeev Kulkarni, Michael Yoder, Jeff T. Linderoth:
Master-Worker: An Enabling Framework for Applications on the Computational Grid. Clust. Comput. 4(1): 63-70 (2001) - [j30]Sathyakama Sandilya, Sanjeev R. Kulkarni:
Nonparametric control algorithms for nonlinear fading memory systems. IEEE Trans. Autom. Control. 46(7): 1117-1121 (2001) - [j29]Karthik Visweswariah, Sanjeev R. Kulkarni, Sergio Verdú:
Universal variable-to-fixed length source codes. IEEE Trans. Inf. Theory 47(4): 1461-1472 (2001) - [c17]Richard J. Radke, Peter J. Ramadge, Sanjeev R. Kulkarni, Tomio Echigo:
Using view interpolation for low bit rate video. ICIP (1) 2001: 453-456 - [c16]Richard J. Radke, Vitali Zagorodnov, Sanjeev R. Kulkarni, Peter J. Ramadge:
Estimating Correspondence in Digital Video. ITCC 2001: 196-201 - 2000
- [j28]Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni:
Learning Changing Concepts by Exploiting the Structure of Change. Mach. Learn. 41(2): 153-174 (2000) - [j27]M. Vidyasagar, Sanjeev R. Kulkarni:
Some contributions to fixed-distribution learning theory. IEEE Trans. Autom. Control. 45(2): 217-234 (2000) - [j26]Sanjeev R. Kulkarni, Gábor Lugosi:
Finite-time lower bounds for the two-armed bandit problem. IEEE Trans. Autom. Control. 45(4): 711-714 (2000) - [j25]Yap-Peng Tan, Drew D. Saur, Sanjeev R. Kulkarni, Peter J. Ramadge:
Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Trans. Circuits Syst. Video Technol. 10(1): 133-146 (2000) - [j24]Karthik Visweswariah, Sanjeev R. Kulkarni, Sergio Verdú:
Universal coding of nonstationary sources. IEEE Trans. Inf. Theory 46(4): 1633-1637 (2000) - [j23]Karthik Visweswariah, Sanjeev R. Kulkarni, Sergio Verdú:
Separation of random number generation and resolvability. IEEE Trans. Inf. Theory 46(6): 2237-2241 (2000) - [c15]Jean-Pierre Goux, Sanjeev Kulkarni, Jeff T. Linderoth, Michael Yoder:
An Enabling Framework for Master-Worker Applications on the Computational Grid. HPDC 2000: 43-50 - [c14]Richard J. Radke, Peter J. Ramadge, Sanjeev R. Kulkarni, Tomio Echigo, Shun-ichi Iisaku:
Recursive Propagation of Correspondences with Applications to the Creation of Virtual Video. ICIP 2000: 250-253
1990 – 1999
- 1999
- [j22]Sanjeev R. Kulkarni, S. E. Posner:
Nonparametric output prediction for nonlinear fading memory systems. IEEE Trans. Autom. Control. 44(1): 29-37 (1999) - [j21]Edwin K. P. Chong, I-Jeng Wang, Sanjeev R. Kulkarni:
Noise Conditions for Prespecified Convergence Rates of Stochastic Approximation Algorithms. IEEE Trans. Inf. Theory 45(2): 810-814 (1999) - [c13]Yap-Peng Tan, Sanjeev R. Kulkarni, Peter J. Ramadge:
A Framework for Measuring Video Similarity and Its Application to Video Query by Example. ICIP (2) 1999: 106-110 - 1998
- [j20]Stefano Di Gennaro, C. Horn, Sanjeev R. Kulkarni, Peter J. Ramadge:
Reduction of Timed Hybrid Systems. Discret. Event Dyn. Syst. 8(4): 343-351 (1998) - [j19]Haim Schweitzer, Sanjeev R. Kulkarni:
Computational limitations of model-based recognition. Int. J. Intell. Syst. 13(5): 431-443 (1998) - [j18]Judith Hocherman-Frommer, Sanjeev R. Kulkarni, Peter J. Ramadge:
Controller switching based on output prediction errors. IEEE Trans. Autom. Control. 43(5): 596-607 (1998) - [j17]Karthik Visweswariah, Sanjeev R. Kulkarni, Sergio Verdú:
Source Codes as Random Number Generators. IEEE Trans. Inf. Theory 44(2): 462-471 (1998) - [j16]Andrew B. Nobel, Gusztáv Morvai, Sanjeev R. Kulkarni:
Density Estimation from an Individual Numerical Sequence. IEEE Trans. Inf. Theory 44(2): 537-541 (1998) - [j15]Sanjeev R. Kulkarni, Gábor Lugosi, Santosh S. Venkatesh:
Learning Pattern Classification - A Survey. IEEE Trans. Inf. Theory 44(6): 2178-2206 (1998) - 1997
- [j14]I-Jeng Wang, Edwin K. P. Chong, Sanjeev R. Kulkarni:
Weighted averaging and stochastic approximation. Math. Control. Signals Syst. 10(1): 41-60 (1997) - [j13]Sanjeev R. Kulkarni, M. Vidyasagar:
Learning decision rules for pattern classification under a family of probability measures. IEEE Trans. Inf. Theory 43(1): 154-166 (1997) - [j12]Peter L. Bartlett, Sanjeev R. Kulkarni, S. E. Posner:
Covering numbers for real-valued function classes. IEEE Trans. Inf. Theory 43(5): 1721-1724 (1997) - [c12]Drew D. Saur, Yap-Peng Tan, Sanjeev R. Kulkarni, Peter J. Ramadge:
Automated Analysis and Annotation of Basketball Video. Storage and Retrieval for Image and Video Databases (SPIE) 1997: 176-187 - 1996
- [j11]William Clement Karl, Sanjeev R. Kulkarni, George C. Verghese, Alan S. Willsky:
Local tests for consistency of support hyperplane data. J. Math. Imaging Vis. 6(2-3): 249-267 (1996) - [j10]Sanjeev R. Kulkarni, C. Horn:
An alternative proof for convergence of stochastic approximation algorithms. IEEE Trans. Autom. Control. 41(3): 419-424 (1996) - [j9]Sanjeev R. Kulkarni, Peter J. Ramadge:
Model and controller selection policies based on output prediction errors. IEEE Trans. Autom. Control. 41(11): 1594-1604 (1996) - [j8]Song Wang, Bede Liu, Sanjeev R. Kulkarni:
Model-based reconstruction of multiple circular and elliptical objects from a limited number of projections. IEEE Trans. Image Process. 5(9): 1386-1390 (1996) - [j7]Wai-Man Lam, Sanjeev R. Kulkarni:
Extended synchronizing codewords for binary prefix codes. IEEE Trans. Inf. Theory 42(3): 984-987 (1996) - [c11]Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni:
Learning Changing Concepts by Exploiting the Structure of Change. COLT 1996: 131-139 - [c10]Yap-Peng Tan, Sanjeev R. Kulkarni, Peter J. Ramadge:
Extracting good features for motion estimation. ICIP (1) 1996: 117-120 - 1995
- [j6]Sanjeev R. Kulkarni, S. E. Posner:
Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inf. Theory 41(4): 1028-1039 (1995) - [c9]J. S. Lerman, Sanjeev R. Kulkarni:
Convex shape reconstruction from noisy ray probe measurements. ICIP 1995: 254-257 - [c8]Yap-Peng Tan, Sanjeev R. Kulkarni, Peter J. Ramadge:
A new method for camera motion parameter estimation. ICIP 1995: 406-409 - 1994
- [j5]Sanjeev R. Kulkarni, Sanjoy K. Mitter, T. J. Richardson, John N. Tsitsiklis:
Local Versus Nonlocal Computation of Length of Digitized Curves. IEEE Trans. Pattern Anal. Mach. Intell. 16(7): 711-718 (1994) - [j4]Sanjeev R. Kulkarni, David N. C. Tse:
A paradigm for class identification problems. IEEE Trans. Inf. Theory 40(3): 696-705 (1994) - [j3]Richard M. Dudley, Sanjeev R. Kulkarni, T. J. Richardson, Ofer Zeitouni:
A metric entropy bound is not sufficient for learnability. IEEE Trans. Inf. Theory 40(3): 883-885 (1994) - [c7]Shinichi Kozu, Sanjeev R. Kulkarni:
A new technique for block-based motion compensation. ICASSP (5) 1994: 217-220 - [c6]J. S. Lerman, Sanjeev R. Kulkarni, Jack Koplowitz:
Multiresolution Chain Coding of Contours. ICIP (2) 1994: 615-619 - [c5]Song Wang, Bede Liu, Sanjeev R. Kulkarni:
Image Reconstruction from a Limited Number of Projections: Detection/Estimation of Multiple Discs with Unknown RadII. ICIP (2) 1994: 854-858 - 1993
- [j2]Sanjeev R. Kulkarni, Sanjoy K. Mitter, John N. Tsitsiklis:
Active Learning Using Arbitrary Binary Valued Queries. Mach. Learn. 11: 23-35 (1993) - [j1]Sanjeev R. Kulkarni, Sanjoy K. Mitter, John N. Tsitsiklis, Ofer Zeitouni:
PAC Learning with Generalized Samples and an Applicaiton to Stochastic Geometry. IEEE Trans. Pattern Anal. Mach. Intell. 15(9): 933-942 (1993) - [c4]Sanjeev R. Kulkarni, Ofer Zeitouni:
On Probably Correct Classification of Concepts. COLT 1993: 111-116 - [c3]S. E. Posner, Sanjeev R. Kulkarni:
On-Line Learning of Functions of Bounded Variation under Various Sampling Schemes. COLT 1993: 439-445 - [c2]Sanjeev R. Kulkarni, Sanjoy K. Mitter, T. J. Richardson, John N. Tsitsiklis:
Local Versus Non-local Computation of Length of Digitized Curves. FSTTCS 1993: 94-103 - 1992
- [c1]Sanjeev R. Kulkarni, John N. Tsitsiklis, Sanjoy K. Mitter, Ofer Zeitouni:
PAC Learning With Generalized Samples and an Application to Stochastic Geometry. COLT 1992: 172-179 - 1991
- [b1]Sanjeev R. Kulkarni:
Problems of computational and informational complexity in machine vision and learning. Massachusetts Institute of Technology, Cambridge, MA, USA, 1991
Coauthor Index
aka: Paul Cuff
aka: Harold Vincent Poor
aka: Fatos Tünay Yarman Vural
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-08 21:27 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint