default search action
Daniel Cremers
Person information
- affiliation: Technical University Munich, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j93]Dekai Zhu, Qadeer Khan, Daniel Cremers:
Multi-vehicle trajectory prediction and control at intersections using state and intention information. Neurocomputing 574: 127220 (2024) - [c358]Adrian Hayler, Felix Wimbauer, Dominik Muhle, Christian Rupprecht, Daniel Cremers:
S4C: Self-Supervised Semantic Scene Completion With Neural Fields. 3DV 2024: 409-420 - [c357]Simon Klenk, Marvin Motzet, Lukas Koestler, Daniel Cremers:
Deep Event Visual Odometry. 3DV 2024: 739-749 - [c356]Viktoria Ehm, Paul Roetzer, Marvin Eisenberger, Maolin Gao, Florian Bernard, Daniel Cremers:
Geometrically Consistent Partial Shape Matching. 3DV 2024: 914-922 - [c355]Christian Tomani, David Vilar, Markus Freitag, Colin Cherry, Subhajit Naskar, Mara Finkelstein, Xavier Garcia, Daniel Cremers:
Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model. ACL (1) 2024: 15660-15679 - [c354]Zhenzhang Ye, Gabriel Peyré, Daniel Cremers, Pierre Ablin:
Enhancing Hypergradients Estimation: A Study of Preconditioning and Reparameterization. AISTATS 2024: 955-963 - [c353]Moritz Zaiss, Junaid R. Rajput, Hoai Nam Dang, Vladimir Golkov, Daniel Cremers, Florian Knoll, Andreas K. Maier:
Exploring GPT-4 as MR Sequence and Reconstruction Programming Assistant - GPT4MR. Bildverarbeitung für die Medizin 2024: 94-99 - [c352]Christian Koke, Daniel Cremers:
HoloNets: Spectral Convolutions do extend to Directed Graphs. ICLR 2024 - [c351]Sergei Solonets, Daniil Sinitsyn, Lukas von Stumberg, Nikita Araslanov, Daniel Cremers:
An Analytical Solution to Gauss-Newton Loss for Direct Image Alignment. ICLR 2024 - [c350]Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, Thomas Möllenhoff:
Variational Learning is Effective for Large Deep Networks. ICML 2024 - [c349]Dominik Rößle, Jeremias Gerner, Klaus Bogenberger, Daniel Cremers, Stefanie Schmidtner, Torsten Schön:
Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction. IV 2024: 2220-2225 - [c348]Simon Klenk, David Bonello, Lukas Koestler, Nikita Araslanov, Daniel Cremers:
Masked Event Modeling: Self-Supervised Pretraining for Event Cameras. WACV 2024: 2367-2377 - [c347]Tarun Yenamandra, Ayush Tewari, Nan Yang, Florian Bernard, Christian Theobalt, Daniel Cremers:
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions. WACV 2024: 3065-3075 - [c346]Mohammed Brahimi, Bjoern Haefner, Tarun Yenamandra, Bastian Goldluecke, Daniel Cremers:
SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse Volume Rendering. WACV 2024: 3127-3137 - [c345]Ugur Sahin, Hang Li, Qadeer Khan, Daniel Cremers, Volker Tresp:
Enhancing Multimodal Compositional Reasoning of Visual Language Models with Generative Negative Mining. WACV 2024: 5551-5561 - [i227]Dominik Rößle, Jeremias Gerner, Klaus Bogenberger, Daniel Cremers, Stefanie Schmidtner, Torsten Schön:
Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction. CoRR abs/2401.14325 (2024) - [i226]Zhenzhang Ye, Gabriel Peyré, Daniel Cremers, Pierre Ablin:
Enhancing Hypergradients Estimation: A Study of Preconditioning and Reparameterization. CoRR abs/2402.16748 (2024) - [i225]Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, Thomas Möllenhoff:
Variational Learning is Effective for Large Deep Networks. CoRR abs/2402.17641 (2024) - [i224]Dongliang Cao, Marvin Eisenberger, Nafie El Amrani, Daniel Cremers, Florian Bernard:
Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation. CoRR abs/2402.18920 (2024) - [i223]Abhishek Saroha, Mariia Gladkova, Cecilia Curreli, Tarun Yenamandra, Daniel Cremers:
Gaussian Splatting in Style. CoRR abs/2403.08498 (2024) - [i222]Yun-Jin Li, Mariia Gladkova, Yan Xia, Rui Wang, Daniel Cremers:
VXP: Voxel-Cross-Pixel Large-scale Image-LiDAR Place Recognition. CoRR abs/2403.14594 (2024) - [i221]Aysim Toker, Marvin Eisenberger, Daniel Cremers, Laura Leal-Taixé:
SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation. CoRR abs/2403.16605 (2024) - [i220]Mohammed Brahimi, Bjoern Haefner, Zhenzhang Ye, Bastian Goldluecke, Daniel Cremers:
Sparse Views, Near Light: A Practical Paradigm for Uncalibrated Point-light Photometric Stereo. CoRR abs/2404.00098 (2024) - [i219]Simon Weber, Baris Zöngür, Nikita Araslanov, Daniel Cremers:
Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincar\'e Ball. CoRR abs/2404.03778 (2024) - [i218]Simon Weber, Thomas Dagès, Maolin Gao, Daniel Cremers:
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis. CoRR abs/2404.03999 (2024) - [i217]Keonhee Han, Dominik Muhle, Felix Wimbauer, Daniel Cremers:
Boosting Self-Supervision for Single-View Scene Completion via Knowledge Distillation. CoRR abs/2404.07933 (2024) - [i216]Christian Tomani, Kamalika Chaudhuri, Ivan Evtimov, Daniel Cremers, Mark Ibrahim:
Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations. CoRR abs/2404.10960 (2024) - [i215]Viktoria Ehm, Maolin Gao, Paul Roetzer, Marvin Eisenberger, Daniel Cremers, Florian Bernard:
Partial-to-Partial Shape Matching with Geometric Consistency. CoRR abs/2404.12209 (2024) - [i214]Christoph Reich, Oliver Hahn, Daniel Cremers, Stefan Roth, Biplob Debnath:
A Perspective on Deep Vision Performance with Standard Image and Video Codecs. CoRR abs/2404.12330 (2024) - [i213]Simon Weber, Je Hyeong Hong, Daniel Cremers:
Power Variable Projection for Initialization-Free Large-Scale Bundle Adjustment. CoRR abs/2405.05079 (2024) - [i212]Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, Liang-Chieh Chen:
An Image is Worth 32 Tokens for Reconstruction and Generation. CoRR abs/2406.07550 (2024) - [i211]Gengyuan Zhang, Mang Ling Ada Fok, Yan Xia, Yansong Tang, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu:
Localizing Events in Videos with Multimodal Queries. CoRR abs/2406.10079 (2024) - [i210]Yan Xia, Ran Ding, Ziyuan Qin, Guanqi Zhan, Kaichen Zhou, Long Yang, Hao Dong, Daniel Cremers:
TARGO: Benchmarking Target-driven Object Grasping under Occlusions. CoRR abs/2407.06168 (2024) - [i209]Bangyan Liao, Zhenjun Zhao, Lu Chen, Haoang Li, Daniel Cremers, Peidong Liu:
GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation. CoRR abs/2407.13537 (2024) - [i208]Mihir Mahajan, Florian Hofherr, Daniel Cremers:
MeshFeat: Multi-Resolution Features for Neural Fields on Meshes. CoRR abs/2407.13592 (2024) - [i207]Linus Härenstam-Nielsen, Lu Sang, Abhishek Saroha, Nikita Araslanov, Daniel Cremers:
DiffCD: A Symmetric Differentiable Chamfer Distance for Neural Implicit Surface Fitting. CoRR abs/2407.17058 (2024) - [i206]Fabian Bongratz, Vladimir Golkov, Lukas Mautner, Luca Della Libera, Frederik Heetmeyer, Felix Czaja, Julian Rodemann, Daniel Cremers:
How to Choose a Reinforcement-Learning Algorithm. CoRR abs/2407.20917 (2024) - 2023
- [j92]Qadeer Khan, Idil Sülö, Melis Öcal, Daniel Cremers:
Learning vision based autonomous lateral vehicle control without supervision. Appl. Intell. 53(16): 19186-19198 (2023) - [j91]Zhenzhang Ye, Bjoern Haefner, Yvain Quéau, Thomas Möllenhoff, Daniel Cremers:
A Cutting-Plane Method for Sublabel-Accurate Relaxation of Problems with Product Label Spaces. Int. J. Comput. Vis. 131(1): 346-362 (2023) - [j90]Simon Klenk, Lukas Koestler, Davide Scaramuzza, Daniel Cremers:
E-NeRF: Neural Radiance Fields From a Moving Event Camera. IEEE Robotics Autom. Lett. 8(3): 1587-1594 (2023) - [j89]Jiaxin Pan, Changyao Zhou, Mariia Gladkova, Qadeer Khan, Daniel Cremers:
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels. IEEE Robotics Autom. Lett. 8(10): 6595-6602 (2023) - [j88]Sherwin Bahmani, Oliver Hahn, Eduard Zamfir, Nikita Araslanov, Daniel Cremers, Stefan Roth:
Semantic Self-adaptation: Enhancing Generalization with a Single Sample. Trans. Mach. Learn. Res. 2023 (2023) - [c344]Simon Weber, Nikolaus Demmel, Tin Chon Chan, Daniel Cremers:
Power Bundle Adjustment for Large-Scale 3D Reconstruction. CVPR 2023: 281-289 - [c343]Linus Härenstam-Nielsen, Niclas Zeller, Daniel Cremers:
Semidefinite Relaxations for Robust Multiview Triangulation. CVPR 2023: 749-757 - [c342]Olaf Wysocki, Yan Xia, Magdalena Wysocki, Eleonora Grilli, Ludwig Hoegner, Daniel Cremers, Uwe Stilla:
Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks. CVPR Workshops 2023: 6548-6558 - [c341]Felix Wimbauer, Nan Yang, Christian Rupprecht, Daniel Cremers:
Behind the Scenes: Density Fields for Single View Reconstruction. CVPR 2023: 9076-9086 - [c340]Dominik Muhle, Lukas Koestler, Krishna Murthy Jatavallabhula, Daniel Cremers:
Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares. CVPR 2023: 13102-13112 - [c339]Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, Daniel Cremers:
G-MSM: Unsupervised Multi-Shape Matching with Graph-Based Affinity Priors. CVPR 2023: 22762-22772 - [c338]Viktoria Ehm, Daniel Cremers, Florian Bernard:
Non-Separable Multi-Dimensional Network Flows for Visual Computing. Eurographics (Posters) 2023: 15-16 - [c337]Maolin Gao, Paul Roetzer, Marvin Eisenberger, Zorah Lähner, Michael Möller, Daniel Cremers, Florian Bernard:
ΣIGMA: Scale-Invariant Global Sparse Shape Matching. ICCV 2023: 645-654 - [c336]Yan Xia, Mariia Gladkova, Rui Wang, Qianyun Li, Uwe Stilla, João F. Henriques, Daniel Cremers:
CASSPR: Cross Attention Single Scan Place Recognition. ICCV 2023: 8427-8438 - [c335]Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, Matteo Poggi:
To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation. ICCV 2023: 16502-16513 - [c334]Haoang Li, Jinhu Dong, Binghui Wen, Ming Gao, Tianyu Huang, Yun-Hui Liu, Daniel Cremers:
DDIT: Semantic Scene Completion via Deformable Deep Implicit Templates. ICCV 2023: 21837-21847 - [c333]Dominik Schnaus, Jongseok Lee, Daniel Cremers, Rudolph Triebel:
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks. ICML 2023: 30252-30284 - [c332]Christian Tomani, Futa Kai Waseda, Yuesong Shen, Daniel Cremers:
Beyond In-Domain Scenarios: Robust Density-Aware Calibration. ICML 2023: 34344-34368 - [c331]Jeremias Gerner, Dominik Rößle, Daniel Cremers, Klaus Bogenberger, Torsten Schön, Stefanie Schmidtner:
Enhancing Realistic Floating Car Observers in Microscopic Traffic Simulation. ITSC 2023: 2396-2403 - [c330]Jonathan Schmidt, Qadeer Khan, Daniel Cremers:
LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels. ITSC 2023: 2835-2842 - [c329]Yining Ma, Qadeer Khan, Daniel Cremers:
Multi Agent Navigation in Unconstrained Environments using a Centralized Attention based Graphical Neural Network Controller. ITSC 2023: 2893-2900 - [c328]George Eskandar, Youssef Farag, Tarun Yenamandra, Daniel Cremers, Karim Guirguis, Bin Yang:
Urban-StyleGAN: Learning to Generate and Manipulate Images of Urban Scenes. IV 2023: 1-8 - [c327]Florian Hofherr, Lukas Koestler, Florian Bernard, Daniel Cremers:
Neural Implicit Representations for Physical Parameter Inference from a Single Video. WACV 2023: 2092-2102 - [c326]Lu Sang, Bjoern Haefner, Xingxing Zuo, Daniel Cremers:
High-Quality RGB-D Reconstruction via Multi-View Uncalibrated Photometric Stereo and Gradient-SDF. WACV 2023: 3105-3114 - [i205]Patrick Wenzel, Nan Yang, Rui Wang, Niclas Zeller, Daniel Cremers:
4Seasons: Benchmarking Visual SLAM and Long-Term Localization for Autonomous Driving in Challenging Conditions. CoRR abs/2301.01147 (2023) - [i204]Dekai Zhu, Qadeer Khan, Daniel Cremers:
Multi-Vehicle Trajectory Prediction at Intersections using State and Intention Information. CoRR abs/2301.02561 (2023) - [i203]Felix Wimbauer, Nan Yang, Christian Rupprecht, Daniel Cremers:
Behind the Scenes: Density Fields for Single View Reconstruction. CoRR abs/2301.07668 (2023) - [i202]Linus Härenstam-Nielsen, Niclas Zeller, Daniel Cremers:
Semidefinite Relaxations for Robust Multiview Triangulation. CoRR abs/2301.11431 (2023) - [i201]Christian Tomani, Futa Waseda, Yuesong Shen, Daniel Cremers:
Beyond In-Domain Scenarios: Robust Density-Aware Calibration. CoRR abs/2302.05118 (2023) - [i200]Thomas Wimmer, Vladimir Golkov, Hoai Nam Dang, Moritz Zaiss, Andreas Maier, Daniel Cremers:
Scale-Equivariant Deep Learning for 3D Data. CoRR abs/2304.05864 (2023) - [i199]Olaf Wysocki, Yan Xia, Magdalena Wysocki, Eleonora Grilli, Ludwig Hoegner, Daniel Cremers, Uwe Stilla:
Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks. CoRR abs/2305.06314 (2023) - [i198]Hoai Nam Dang, Vladimir Golkov, Thomas Wimmer, Daniel Cremers, Andreas K. Maier, Moritz Zaiss:
Joint MR sequence optimization beats pure neural network approaches for spin-echo MRI super-resolution. CoRR abs/2305.07524 (2023) - [i197]Viktoria Ehm, Daniel Cremers, Florian Bernard:
Non-Separable Multi-Dimensional Network Flows for Visual Computing. CoRR abs/2305.08628 (2023) - [i196]Dominik Muhle, Lukas Koestler, Krishna Murthy Jatavallabhula, Daniel Cremers:
Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares. CoRR abs/2305.09527 (2023) - [i195]George Eskandar, Youssef Farag, Tarun Yenamandra, Daniel Cremers, Karim Guirguis, Bin Yang:
Urban-StyleGAN: Learning to Generate and Manipulate Images of Urban Scenes. CoRR abs/2305.09602 (2023) - [i194]Lu Sang, Abhishek Saroha, Maolin Gao, Daniel Cremers:
Weight-Aware Implicit Geometry Reconstruction with Curvature-Guided Sampling. CoRR abs/2306.02099 (2023) - [i193]Dominik Schnaus, Jongseok Lee, Daniel Cremers, Rudolph Triebel:
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks. CoRR abs/2307.07753 (2023) - [i192]Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, Matteo Poggi:
To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation. CoRR abs/2307.15063 (2023) - [i191]Yining Ma, Qadeer Khan, Daniel Cremers:
Multi Agent Navigation in Unconstrained Environments using a Centralized Attention based Graphical Neural Network Controller. CoRR abs/2307.16727 (2023) - [i190]Jonathan Schmidt, Qadeer Khan, Daniel Cremers:
LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels. CoRR abs/2308.01424 (2023) - [i189]Jiaxin Pan, Changyao Zhou, Mariia Gladkova, Qadeer Khan, Daniel Cremers:
Robust Autonomous Vehicle Pursuit without Expert Steering Labels. CoRR abs/2308.08380 (2023) - [i188]Maolin Gao, Paul Roetzer, Marvin Eisenberger, Zorah Lähner, Michael Möller, Daniel Cremers, Florian Bernard:
SIGMA: Scale-Invariant Global Sparse Shape Matching. CoRR abs/2308.08393 (2023) - [i187]Viktoria Ehm, Paul Roetzer, Marvin Eisenberger, Maolin Gao, Florian Bernard, Daniel Cremers:
Geometrically Consistent Partial Shape Matching. CoRR abs/2309.05013 (2023) - [i186]Yiming Shan, Yan Xia, Yuhong Chen, Daniel Cremers:
SCP: Scene Completion Pre-training for 3D Object Detection. CoRR abs/2309.06199 (2023) - [i185]Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger, Daniel Cremers:
ResolvNet: A Graph Convolutional Network with multi-scale Consistency. CoRR abs/2310.00431 (2023) - [i184]Christian Koke, Daniel Cremers:
HoloNets: Spectral Convolutions do extend to Directed Graphs. CoRR abs/2310.02232 (2023) - [i183]Christian Tomani, David Vilar, Markus Freitag, Colin Cherry, Subhajit Naskar, Mara Finkelstein, Daniel Cremers:
Quality Control at Your Fingertips: Quality-Aware Translation Models. CoRR abs/2310.06707 (2023) - [i182]Adrian Hayler, Felix Wimbauer, Dominik Muhle, Christian Rupprecht, Daniel Cremers:
S4C: Self-Supervised Semantic Scene Completion with Neural Fields. CoRR abs/2310.07522 (2023) - [i181]Ugur Sahin, Hang Li, Qadeer Khan, Daniel Cremers, Volker Tresp:
Enhancing Multimodal Compositional Reasoning of Visual Language Models with Generative Negative Mining. CoRR abs/2311.03964 (2023) - [i180]Yan Xia, Letian Shi, Zifeng Ding, João F. Henriques, Daniel Cremers:
Text2Loc: 3D Point Cloud Localization from Natural Language. CoRR abs/2311.15977 (2023) - [i179]Mreenav Shyam Deka, Lu Sang, Daniel Cremers:
Erasing the Ephemeral: Joint Camera Refinement and Transient Object Removal for Street View Synthesis. CoRR abs/2311.17634 (2023) - [i178]Dávid Komorowicz, Lu Sang, Ferdinand Maiwald, Daniel Cremers:
Coloring the Past: Neural Historical Buildings Reconstruction from Archival Photography. CoRR abs/2311.17810 (2023) - [i177]Felix Wimbauer, Bichen Wu, Edgar Schönfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang, Sam S. Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, Jialiang Wang:
Cache Me if You Can: Accelerating Diffusion Models through Block Caching. CoRR abs/2312.03209 (2023) - [i176]Simon Klenk, Marvin Motzet, Lukas Koestler, Daniel Cremers:
Deep Event Visual Odometry. CoRR abs/2312.09800 (2023) - 2022
- [j87]Hamid Rezatofighi, Tianyu Zhu, Roman Kaskman, Farbod T. Motlagh, Javen Qinfeng Shi, Anton Milan, Daniel Cremers, Laura Leal-Taixé, Ian D. Reid:
Learn to Predict Sets Using Feed-Forward Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9011-9025 (2022) - [j86]Lukas von Stumberg, Daniel Cremers:
DM-VIO: Delayed Marginalization Visual-Inertial Odometry. IEEE Robotics Autom. Lett. 7(2): 1408-1415 (2022) - [j85]Hartmut Bauermeister, Emanuel Laude, Thomas Möllenhoff, Michael Möller, Daniel Cremers:
Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable Approach for Continuous Markov Random Fields. SIAM J. Imaging Sci. 15(3): 1253-1281 (2022) - [c325]Zhenzhang Ye, Tarun Yenamandra, Florian Bernard, Daniel Cremers:
Joint Deep Multi-Graph Matching and 3D Geometry Learning from Inhomogeneous 2D Image Collections. AAAI 2022: 3125-3133 - [c324]Hang Li, Qadeer Khan, Volker Tresp, Daniel Cremers:
Biologically Inspired Neural Path Finding. BI 2022: 329-342 - [c323]Atanas Mirchev, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt, Daniel Cremers, Justin Bayer:
PRISM: Probabilistic Real-Time Inference in Spatial World Models. CoRL 2022: 161-174 - [c322]Paul Roetzer, Paul Swoboda, Daniel Cremers, Florian Bernard:
A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D Shape Matching. CVPR 2022: 428-438 - [c321]Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, Florian Bernard, Daniel Cremers:
A Unified Framework for Implicit Sinkhorn Differentiation. CVPR 2022: 499-508 - [c320]Dominik Muhle, Lukas Koestler, Nikolaus Demmel, Florian Bernard, Daniel Cremers:
The Probabilistic Normal Epipolar Constraint for Frame- To-Frame Rotation Optimization under Uncertain Feature Positions. CVPR 2022: 1809-1818 - [c319]Christiane Sommer, Lu Sang, David Schubert, Daniel Cremers:
Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction. CVPR 2022: 6270-6279 - [c318]Aysim Toker, Lukas Kondmann, Mark Weber, Marvin Eisenberger, Andrés Camero, Jingliang Hu, Ariadna Pregel Hoderlein, Çaglar Senaras, Timothy Davis, Daniel Cremers, Giovanni Marchisio, Xiao Xiang Zhu, Laura Leal-Taixé:
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation. CVPR 2022: 21126-21135 - [c317]Christian Tomani, Daniel Cremers, Florian Buettner:
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration. ECCV (13) 2022: 555-569 - [c316]Lukas Koestler, Daniel Grittner, Michael Möller, Daniel Cremers, Zorah Lähner:
Intrinsic Neural Fields: Learning Functions on Manifolds. ECCV (2) 2022: 622-639 - [c315]Dominik Rößle, Daniel Cremers, Torsten Schön:
Perceiver Hopfield Pooling for Dynamic Multi-modal and Multi-instance Fusion. ICANN (1) 2022: 599-610 - [c314]Deepan Das, Qadeer Khan, Daniel Cremers:
Ventriloquist-Net: Leveraging Speech Cues for Emotive Talking Head Generation. ICIP 2022: 1716-1720 - [c313]Zhakshylyk Nurlanov, Daniel Cremers, Florian Bernard:
Efficient and Flexible Sublabel-Accurate Energy Minimization. ICPR 2022: 175-181 - [c312]Florian Müller, Qadeer Khan, Daniel Cremers:
Lateral Ego-Vehicle Control Without Supervision Using Point Clouds. ICPRAI (1) 2022: 477-488 - [c311]Qing Cheng, Niclas Zeller, Daniel Cremers:
Vision-Based Large-scale 3D Semantic Mapping for Autonomous Driving Applications. ICRA 2022: 9235-9242 - [c310]Mariia Gladkova, Nikita Korobov, Nikolaus Demmel, Aljosa Osep, Laura Leal-Taixé, Daniel Cremers:
DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and Photometric Bundle Adjustment. IROS 2022: 3777-3784 - [c309]Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, Daniel Cremers:
What Makes Graph Neural Networks Miscalibrated? NeurIPS 2022 - [c308]Yuesong Shen, Daniel Cremers:
Deep Combinatorial Aggregation. NeurIPS 2022 - [e12]