


default search action
20th AISTATS 2017: Fort Lauderdale, FL, USA
- Aarti Singh, Xiaojin (Jerry) Zhu:

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Proceedings of Machine Learning Research 54, PMLR 2017 - Tianyang Li, Xinyang Yi, Constantine Caramanis, Pradeep Ravikumar:

Minimax Gaussian Classification & Clustering. 1-9 - Mark Rowland, Aldo Pacchiano, Adrian Weller:

Conditions beyond treewidth for tightness of higher-order LP relaxations. 10-18 - Catalin Ionescu, Alin-Ionut Popa, Cristian Sminchisescu:

Large-Scale Data-Dependent Kernel Approximation. 19-27 - Yale Chang, Junxiang Chen, Michael H. Cho, Peter J. Castaldi, Edwin K. Silverman, Jennifer G. Dy:

Clustering from Multiple Uncertain Experts. 28-36 - Renbo Zhao, Vincent Yan Fu Tan, Huan Xu:

Online Nonnegative Matrix Factorization with General Divergences. 37-45 - Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:

ASAGA: Asynchronous Parallel SAGA. 46-54 - Jonathan Scarlett, Volkan Cevher

:
Lower Bounds on Active Learning for Graphical Model Selection. 55-64 - Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, Sujay Sanghavi:

Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach. 65-74 - Pierre Gaillard, Olivier Wintenberger:

Sparse Accelerated Exponential Weights. 75-82 - Yuchen Zhang, Jason D. Lee, Martin J. Wainwright, Michael I. Jordan:

On the Learnability of Fully-Connected Neural Networks. 83-91 - Ibrahim M. Alabdulmohsin:

An Information-Theoretic Route from Generalization in Expectation to Generalization in Probability. 92-100 - Lijie Chen, Jian Li, Mingda Qiao:

Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection. 101-110 - Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause:

Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains. 111-120 - Andrew Stevens, Yunchen Pu, Yannan Sun, Gregory Spell, Lawrence Carin:

Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis. 121-129 - Satoshi Hara, Takayuki Katsuki, Hiroki Yanagisawa, Takafumi Ono, Ryo Okamoto, Shigeki Takeuchi:

Consistent and Efficient Nonparametric Different-Feature Selection. 130-138 - Francois Fagan, Jalaj Bhandari, John P. Cunningham:

Annular Augmentation Sampling. 139-147 - Lihua Lei, Michael I. Jordan:

Less than a Single Pass: Stochastically Controlled Stochastic Gradient. 148-156 - Roy J. Adams, Benjamin M. Marlin:

Learning Time Series Detection Models from Temporally Imprecise Labels. 157-165 - Himabindu Lakkaraju, Cynthia Rudin:

Learning Cost-Effective and Interpretable Treatment Regimes. 166-175 - Marc Abeille, Alessandro Lazaric:

Linear Thompson Sampling Revisited. 176-184 - James Newling, François Fleuret:

A Sub-Quadratic Exact Medoid Algorithm. 185-193 - Daniel McDonald:

Minimax Density Estimation for Growing Dimension. 194-203 - Hiroaki Sasaki, Takafumi Kanamori, Masashi Sugiyama:

Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios. 204-212 - Alexander Zimin, Christoph H. Lampert:

Learning Theory for Conditional Risk Minimization. 213-222 - Yuxin Chen, Seyed Hamed Hassani, Andreas Krause:

Near-optimal Bayesian Active Learning with Correlated and Noisy Tests. 223-231 - Julien Pérolat, Florian Strub, Bilal Piot, Olivier Pietquin:

Learning Nash Equilibrium for General-Sum Markov Games from Batch Data. 232-241 - Benjamin Cowley, João D. Semedo, Amin Zandvakili, Matthew A. Smith, Adam Kohn, Byron M. Yu:

Distance Covariance Analysis. 242-251 - Sohail Bahmani

, Justin Romberg:
Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation. 252-260 - Pierre Alquier, The Tien Mai, Massimiliano Pontil:

Regret Bounds for Lifelong Learning. 261-269 - Seth R. Flaxman, Yee Whye Teh, Dino Sejdinovic:

Poisson intensity estimation with reproducing kernels. 270-279 - Alnur Ali, Kshitij Khare, Sang-Yun Oh

, Bala Rajaratnam:
Generalized Pseudolikelihood Methods for Inverse Covariance Estimation. 280-288 - Ian Fellows, Mark Handcock:

Removing Phase Transitions from Gibbs Measures. 289-297 - Rebecca C. Steorts, Matt Barnes, Willie Neiswanger:

Performance Bounds for Graphical Record Linkage. 298-306 - Alistair Shilton

, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Transfer Learning in Bayesian Optimisation. 307-315 - Tianyi Zhou, Hua Ouyang, Jeff A. Bilmes, Yi Chang, Carlos Guestrin:

Scaling Submodular Maximization via Pruned Submodularity Graphs. 316-324 - Makoto Yamada, Koh Takeuchi, Tomoharu Iwata, John Shawe-Taylor, Samuel Kaski:

Localized Lasso for High-Dimensional Regression. 325-333 - Pedro M. Esperança, Louis J. M. Aslett, Chris C. Holmes:

Encrypted Accelerated Least Squares Regression. 334-343 - Daniel L. Pimentel-Alarcón, Robert D. Nowak:

Random Consensus Robust PCA. 344-352 - Pietro Galliani, Amir Dezfouli, Edwin V. Bonilla, Novi Quadrianto:

Gray-box Inference for Structured Gaussian Process Models. 353-361 - Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien:

Frank-Wolfe Algorithms for Saddle Point Problems. 362-371 - Nathan Kallus:

A Framework for Optimal Matching for Causal Inference. 372-381 - Jonathan Huggins, James Zou:

Quantifying the accuracy of approximate diffusions and Markov chains. 382-391 - Sumeet Katariya, Branislav Kveton, Csaba Szepesvári, Claire Vernade, Zheng Wen:

Stochastic Rank-1 Bandits. 392-401 - Géraud Le Falher, Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale:

On the Troll-Trust Model for Edge Sign Prediction in Social Networks. 402-411 - Vincent Cohen-Addad, Varun Kanade:

Online Optimization of Smoothed Piecewise Constant Functions. 412-420 - Ke Jiang, Suvrit Sra, Brian Kulis:

Combinatorial Topic Models using Small-Variance Asymptotics. 421-429 - Le Hou, Dimitris Samaras, Tahsin M. Kurç, Yi Gao, Joel H. Saltz:

ConvNets with Smooth Adaptive Activation Functions for Regression. 430-439 - Sejun Park, Yunhun Jang, Andreas Galanis, Jinwoo Shin, Daniel Stefankovic, Eric Vigoda:

Rapid Mixing Swendsen-Wang Sampler for Stochastic Partitioned Attractive Models. 440-449 - Pan Li, Arya Mazumdar, Olgica Milenkovic:

Efficient Rank Aggregation via Lehmer Codes. 450-459 - Aapo Hyvärinen, Hiroshi Morioka:

Nonlinear ICA of Temporally Dependent Stationary Sources. 460-469 - Atsushi Nitanda, Taiji Suzuki:

Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines. 470-478 - Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli:

Global Convergence of Non-Convex Gradient Descent for Computing Matrix Squareroot. 479-488 - Christian A. Naesseth, Francisco J. R. Ruiz, Scott W. Linderman, David M. Blei:

Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms. 489-498 - Matthew M. Graham, Amos J. Storkey:

Asymptotically exact inference in differentiable generative models. 499-508 - Paul Vanhaesebrouck, Aurélien Bellet, Marc Tommasi:

Decentralized Collaborative Learning of Personalized Models over Networks. 509-517 - Rajat Sen, Karthikeyan Shanmugam

, Murat Kocaoglu, Alexandros G. Dimakis, Sanjay Shakkottai:
Contextual Bandits with Latent Confounders: An NMF Approach. 518-527 - Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, Frank Hutter:

Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. 528-536 - Mina Ashizawa, Hiroaki Sasaki, Tomoya Sakai, Masashi Sugiyama:

Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds. 537-546 - Marina Vinyes, Guillaume Obozinski:

Fast column generation for atomic norm regularization. 547-556 - Thomas Brouwer, Pietro Liò:

Bayesian Hybrid Matrix Factorisation for Data Integration. 557-566 - Youssef Mroueh, Etienne Marcheret, Vaibhava Goel:

Co-Occurring Directions Sketching for Approximate Matrix Multiply. 567-575 - Ronan Fruit, Alessandro Lazaric:

Exploration-Exploitation in MDPs with Options. 576-584 - Gedas Bertasius, Qiang Liu, Lorenzo Torresani, Jianbo Shi:

Local Perturb-and-MAP for Structured Prediction. 585-594 - Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell:

Gradient Boosting on Stochastic Data Streams. 595-603 - Joon Kwon, Vianney Perchet:

Online Learning and Blackwell Approachability with Partial Monitoring: Optimal Convergence Rates. 604-613 - Miaoyan Wang, Yun S. Song:

Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD). 614-622 - Meelis Kull, Telmo de Menezes e Silva Filho, Peter A. Flach:

Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. 623-631 - Feras Saad, Vikash Mansinghka:

Detecting Dependencies in Sparse, Multivariate Databases Using Probabilistic Programming and Non-parametric Bayes. 632-641 - Dezhi Hong, Quanquan Gu, Kamin Whitehouse:

High-dimensional Time Series Clustering via Cross-Predictability. 642-651 - Alexey Zaytsev, Evgeny Burnaev:

Minimax Approach to Variable Fidelity Data Interpolation. 652-661 - Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Nina Balcan, Alexander J. Smola:

Data Driven Resource Allocation for Distributed Learning. 662-671 - Yuancheng Zhu, Zhe Liu, Siqi Sun:

Learning Nonparametric Forest Graphical Models with Prior Information. 672-680 - Kaushik Sinha, Omid Keivani:

Sparse Randomized Partition Trees for Nearest Neighbor Search. 681-689 - Sharan Vaswani, Mark Schmidt, Laks V. S. Lakshmanan:

Horde of Bandits using Gaussian Markov Random Fields. 690-699 - Francois Belletti, Evan Randall Sparks, Alexandre M. Bayen, Joseph Gonzalez:

Random projection design for scalable implicit smoothing of randomly observed stochastic processes. 700-708 - Akram Erraqabi, Alessandro Lazaric, Michal Valko, Emma Brunskill, Yun-En Liu:

Trading off Rewards and Errors in Multi-Armed Bandits. 709-717 - Zheng Xu, Mário A. T. Figueiredo, Tom Goldstein:

Adaptive ADMM with Spectral Penalty Parameter Selection. 718-727 - Tor Lattimore, Csaba Szepesvári:

The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits. 728-737 - Ghassen Jerfel, Mehmet Emin Basbug, Barbara E. Engelhardt:

Dynamic Collaborative Filtering With Compound Poisson Factorization. 738-747 - Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon:

Rank Aggregation and Prediction with Item Features. 748-756 - Chengming Jiang, Huiqing Xie, Zhaojun Bai:

Robust and Efficient Computation of Eigenvectors in a Generalized Spectral Method for Constrained Clustering. 757-766 - Asish Ghoshal, Jean Honorio

:
Information-theoretic limits of Bayesian network structure learning. 767-775 - Colin Wei, Iain Murray:

Markov Chain Truncation for Doubly-Intractable Inference. 776-784 - Yi Hong, Xiao Yang, Roland Kwitt, Martin Styner, Marc Niethammer:

Regression Uncertainty on the Grassmannian. 785-793 - Ziqi Liu, Alexander J. Smola, Kyle Soska, Yu-Xiang Wang, Qinghua Zheng:

Attributing Hacks. 794-802 - Manjesh Kumar Hanawal, Csaba Szepesvári, Venkatesh Saligrama:

Unsupervised Sequential Sensor Acquisition. 803-811 - Songtao Lu, Mingyi Hong, Zhengdao Wang:

A Stochastic Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization. 812-821 - Byung-Jun Lee, Jongmin Lee, Kee-Eung Kim:

Hierarchically-partitioned Gaussian Process Approximation. 822-831 - Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, Gal Elidan:

Scalable Learning of Non-Decomposable Objectives. 832-840 - Tianfan Fu, Zhihua Zhang:

CPSG-MCMC: Clustering-Based Preprocessing method for Stochastic Gradient MCMC. 841-850 - Siavash Haghiri, Debarghya Ghoshdastidar, Ulrike von Luxburg:

Comparison-Based Nearest Neighbor Search. 851-859 - Francesco Locatello, Rajiv Khanna, Michael Tschannen, Martin Jaggi:

A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe. 860-868 - Dmytro Perekrestenko, Volkan Cevher

, Martin Jaggi:
Faster Coordinate Descent via Adaptive Importance Sampling. 869-877 - Mohammad Emtiyaz Khan, Wu Lin:

Conjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models. 878-887 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek:

Hit-and-Run for Sampling and Planning in Non-Convex Spaces. 888-895 - Mijung Park, James R. Foulds, Kamalika Choudhary, Max Welling:

DP-EM: Differentially Private Expectation Maximization. 896-904 - Juho Piironen

, Aki Vehtari:
On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior. 905-913 - Scott W. Linderman, Matthew J. Johnson, Andrew C. Miller, Ryan P. Adams, David M. Blei, Liam Paninski:

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. 914-922 - Pan Xu, Tingting Zhang

, Quanquan Gu:
Efficient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent. 923-932 - Amit Moscovich, Ariel Jaffe, Boaz Nadler:

Minimax-optimal semi-supervised regression on unknown manifolds. 933-942 - Kwang-Sung Jun, Francesco Orabona, Stephen J. Wright, Rebecca Willett:

Improved Strongly Adaptive Online Learning using Coin Betting. 943-951 - Qiang Liu, Jason D. Lee:

Black-box Importance Sampling. 952-961 - Muhammad Bilal Zafar, Isabel Valera

, Manuel Gomez-Rodriguez, Krishna P. Gummadi
:
Fairness Constraints: Mechanisms for Fair Classification. 962-970 - Avradeep Bhowmik, Joydeep Ghosh, Oluwasanmi Koyejo:

Frequency Domain Predictive Modelling with Aggregated Data. 971-980 - Lingxiao Wang, Xiao Zhang, Quanquan Gu:

A Unified Computational and Statistical Framework for Nonconvex Low-rank Matrix Estimation. 981-990 - Ryan Rogers, Daniel Kifer:

A New Class of Private Chi-Square Hypothesis Tests. 991-1000 - Anna Korba, Stéphan Clémençon, Eric Sibony:

A Learning Theory of Ranking Aggregation. 1001-1010 - Albert Thomas, Stéphan Clémençon, Alexandre Gramfort, Anne Sabourin:

Anomaly Detection in Extreme Regions via Empirical MV-sets on the Sphere. 1011-1019 - Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois Fagan, Cédric Gouy-Pailler, Anne Morvan, Nourhan Sakr, Tamás Sarlós, Jamal Atif:

Structured adaptive and random spinners for fast machine learning computations. 1020-1029 - Aleksandar Botev, Bowen Zheng, David Barber:

Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification. 1030-1038 - Jonas Mueller, David Reshef, George Du, Tommi S. Jaakkola:

Learning Optimal Interventions. 1039-1047 - Nicholas Ruozzi:

A Lower Bound on the Partition Function of Attractive Graphical Models in the Continuous Case. 1048-1056 - Ruoxi Sun, Evan Archer, Liam Paninski:

Scalable Variational Inference for Super Resolution Microscopy. 1057-1065 - Donald Goldfarb, Garud Iyengar, Chaoxu Zhou:

Linear Convergence of Stochastic Frank Wolfe Variants. 1066-1074 - Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté:

Sequential Graph Matching with Sequential Monte Carlo. 1075-1084 - Nishant A. Mehta:

Fast rates with high probability in exp-concave statistical learning. 1085-1093 - Jure Sokolic, Raja Giryes, Guillermo Sapiro, Miguel R. D. Rodrigues:

Generalization Error of Invariant Classifiers. 1094-1103 - Stefanos Poulis, Sanjoy Dasgupta:

Learning with Feature Feedback: from Theory to Practice. 1104-1113 - Ciara Pike-Burke, Steffen Grünewälder:

Optimistic Planning for the Stochastic Knapsack Problem. 1114-1122 - Raman Sankaran, Francis R. Bach, Chiranjib Bhattacharyya:

Identifying Groups of Strongly Correlated Variables through Smoothed Ordered Weighted L1-norms. 1123-1131 - Shaofei Wang, Steffen Wolf, Charless C. Fowlkes, Julian Yarkony:

Tracking Objects with Higher Order Interactions via Delayed Column Generation. 1132-1140 - Wei Ping, Alexander Ihler:

Belief Propagation in Conditional RBMs for Structured Prediction. 1141-1149 - Jialei Wang, Jason D. Lee, Mehrdad Mahdavi, Mladen Kolar, Nati Srebro:

Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data. 1150-1158 - Xiangru Lian, Mengdi Wang

, Ji Liu:
Finite-sum Composition Optimization via Variance Reduced Gradient Descent. 1159-1167 - Beilun Wang, Ji Gao, Yanjun Qi:

A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models. 1168-1177 - Lu Tian, Quanquan Gu:

Communication-efficient Distributed Sparse Linear Discriminant Analysis. 1178-1187 - Alp Yurtsever, Madeleine Udell, Joel A. Tropp, Volkan Cevher

:
Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage. 1188-1196 - Heinrich Jiang, Samory Kpotufe:

Modal-set estimation with an application to clustering. 1197-1206 - Martin Slawski:

Compressed Least Squares Regression revisited. 1207-1215 - Bo Xie, Yingyu Liang, Le Song:

Diverse Neural Network Learns True Target Functions. 1216-1224 - Anant Raj, Abhishek Kumar, Youssef Mroueh, Tom Fletcher, Bernhard Schölkopf:

Local Group Invariant Representations via Orbit Embeddings. 1225-1235 - Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, Sebastian J. Vollmer:

Relativistic Monte Carlo. 1236-1245 - Marc Abeille, Alessandro Lazaric:

Thompson Sampling for Linear-Quadratic Control Problems. 1246-1254 - Kai Zhong, Ruiqi Guo, Sanjiv Kumar, Bowei Yan, David Simcha, Inderjit S. Dhillon:

Fast Classification with Binary Prototypes. 1255-1263 - Johan Wågberg, Dave Zachariah, Thomas B. Schön, Petre Stoica:

Prediction Performance After Learning in Gaussian Process Regression. 1264-1272 - Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas:

Communication-Efficient Learning of Deep Networks from Decentralized Data. 1273-1282 - Shengyang Sun, Changyou Chen, Lawrence Carin:

Learning Structured Weight Uncertainty in Bayesian Neural Networks. 1283-1292 - David A. Moore, Stuart Russell:

Signal-based Bayesian Seismic Monitoring. 1293-1301 - Youngsuk Park, David Hallac, Stephen P. Boyd, Jure Leskovec:

Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields. 1302-1310 - Jacob R. Gardner, Chuan Guo, Kilian Q. Weinberger, Roman Garnett, Roger B. Grosse:

Discovering and Exploiting Additive Structure for Bayesian Optimization. 1311-1319 - Samory Kpotufe:

Lipschitz Density-Ratios, Structured Data, and Data-driven Tuning. 1320-1328 - Philipp Thomann, Ingrid Blaschzyk, Mona Meister, Ingo Steinwart:

Spatial Decompositions for Large Scale SVMs. 1329-1337 - Tuan Anh Le, Atilim Gunes Baydin, Frank D. Wood:

Inference Compilation and Universal Probabilistic Programming. 1338-1348 - Aniruddha Bhargava, Ravi Ganti, Robert D. Nowak:

Active Positive Semidefinite Matrix Completion: Algorithms, Theory and Applications. 1349-1357 - Rajiv Khanna, Joydeep Ghosh, Russell A. Poldrack, Oluwasanmi Koyejo:

Information Projection and Approximate Inference for Structured Sparse Variables. 1358-1366 - Yihan Gao, Aditya G. Parameswaran

, Jian Peng:
On the Interpretability of Conditional Probability Estimates in the Agnostic Setting. 1367-1374 - Yichen Wang, Xiaojing Ye, Haomin Zhou, Hongyuan Zha, Le Song:

Linking Micro Event History to Macro Prediction in Point Process Models. 1375-1384 - Da Tang, Tony Jebara:

Initialization and Coordinate Optimization for Multi-way Matching. 1385-1393 - Vivek F. Farias, Andrew A. Li:

Optimal Recovery of Tensor Slices. 1394-1402 - Alexander Rakhlin, Karthik Sridharan:

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses. 1403-1411 - Justin Bewsher, Alessandra Tosi, Michael A. Osborne

, Stephen J. Roberts:
Distribution of Gaussian Process Arc Lengths. 1412-1420 - Daniele Calandriello, Alessandro Lazaric, Michal Valko:

Distributed Adaptive Sampling for Kernel Matrix Approximation. 1421-1429 - Ping Li:

Binary and Multi-Bit Coding for Stable Random Projections. 1430-1438 - Forough Arabshahi, Anima Anandkumar:

Spectral Methods for Correlated Topic Models. 1439-1447 - Alexandru Niculescu-Mizil, Ehsan Abbasnejad:

Label Filters for Large Scale Multilabel Classification. 1448-1457 - Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song:

Learning from Conditional Distributions via Dual Embeddings. 1458-1467 - Alan Malek, Sumeet Katariya, Yinlam Chow, Mohammad Ghavamzadeh:

Sequential Multiple Hypothesis Testing with Type I Error Control. 1468-1476 - Ariadna Quattoni, Xavier Carreras, Matthias Gallé:

A Maximum Matching Algorithm for Basis Selection in Spectral Learning. 1477-1485 - Amir Massoud Farahmand, André Barreto, Daniel Nikovski:

Value-Aware Loss Function for Model-based Reinforcement Learning. 1486-1494 - Cheng Tang, Claire Monteleoni:

Convergence Rate of Stochastic k-means. 1495-1503 - Soham De, Abhay Kumar Yadav, David W. Jacobs, Tom Goldstein:

Automated Inference with Adaptive Batches. 1504-1513 - Jiong Zhang, Ian En-Hsu Yen, Pradeep Ravikumar, Inderjit S. Dhillon:

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. 1514-1522 - Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:

Robust Causal Estimation in the Large-Sample Limit without Strict Faithfulness. 1523-1531 - Asish Ghoshal, Jean Honorio

:
Learning Graphical Games from Behavioral Data: Sufficient and Necessary Conditions. 1532-1540 - Ankit Anand, Ritesh Noothigattu, Parag Singla, Mausam:

Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models. 1541-1549 - Xiangru Huang, Ian En-Hsu Yen, Ruohan Zhang, Qixing Huang, Pradeep Ravikumar, Inderjit S. Dhillon:

Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. 1550-1559 - Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Sahand N. Negahban, Joydeep Ghosh:

Scalable Greedy Feature Selection via Weak Submodularity. 1560-1568

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














