


Остановите войну!
for scientists:


default search action
David Brooks 0001
David M. Brooks
Person information

- affiliation: Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA
Other persons with the same name
- David Brooks — disambiguation page
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j59]Jeffrey S. Vetter
, Prasanna Date, Farah Fahim, Shruti R. Kulkarni, Petro Maksymovych, A. Alec Talin, Marc González Tallada, Pruek Vanna-Iampikul, Aaron R. Young, David Brooks, Yu Cao, Gu-Yeon Wei, Sung Kyu Lim, Frank Liu, Matthew J. Marinella, Bobby G. Sumpter, Narasinga Rao Miniskar:
Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials. Int. J. High Perform. Comput. Appl. 37(3-4): 351-379 (2023) - [j58]Thierry Tambe
, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper
, Marco Donato
, Paul N. Whatmough
, Alexander M. Rush, David Brooks
, Gu-Yeon Wei:
A 16-nm SoC for Noise-Robust Speech and NLP Edge AI Inference With Bayesian Sound Source Separation and Attention-Based DNNs. IEEE J. Solid State Circuits 58(2): 569-581 (2023) - [j57]Udit Gupta
, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu
:
Architectural CO2 Footprint Tool: Designing Sustainable Computer Systems With an Architectural Carbon Modeling Tool. IEEE Micro 43(4): 107-117 (2023) - [j56]Iulian Brumar
, Georgios Zacharopoulos
, Yuan Yao
, Saketh Rama
, David Brooks
, Gu-Yeon Wei
:
Early DSE and Automatic Generation of Coarse-grained Merged Accelerators. ACM Trans. Embed. Comput. Syst. 22(2): 32:1-32:29 (2023) - [j55]Georgios Zacharopoulos
, Adel Ejjeh
, Ying Jing
, En-Yu Yang
, Tianyu Jia
, Iulian Brumar
, Jeremy Intan
, Muhammad Huzaifa
, Sarita V. Adve
, Vikram S. Adve
, Gu-Yeon Wei
, David Brooks
:
Trireme: Exploration of Hierarchical Multi-level Parallelism for Hardware Acceleration. ACM Trans. Embed. Comput. Syst. 22(3): 53:1-53:23 (2023) - [j54]Siming Ma
, David Brooks, Gu-Yeon Wei:
A Binary-Activation, Multi-Level Weight RNN and Training Algorithm for ADC-/DAC-Free and Noise-Resilient Processing-in-Memory Inference With eNVM. IEEE Trans. Emerg. Top. Comput. 11(2): 292-302 (2023) - [c153]Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta
, Manoj Chakkaravarthy, David Brooks, Carole-Jean Wu:
Carbon Explorer: A Holistic Framework for Designing Carbon Aware Datacenters. ASPLOS (2) 2023: 118-132 - [c152]Samuel Hsia, Udit Gupta, Bilge Acun, Newsha Ardalani, Pan Zhong, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
MP-Rec: Hardware-Software Co-design to Enable Multi-path Recommendation. ASPLOS (3) 2023: 449-465 - [c151]Yu-Shun Hsiao, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman Mahmoud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, Vijay Janapa Reddi:
MAVFI: An End-to-End Fault Analysis Framework with Anomaly Detection and Recovery for Micro Aerial Vehicles. DATE 2023: 1-6 - [c150]Mariam Elgamal
, Doug Carmean
, Elnaz Ansari
, Okay Zed
, Ramesh Peri
, Srilatha Manne
, Udit Gupta
, Gu-Yeon Wei
, David Brooks
, Gage Hills
, Carole-Jean Wu
:
Carbon-Efficient Design Optimization for Computing Systems. HotCarbon 2023: 16:1-16:7 - [c149]Alexander Hankin, Lillian Pentecost, Dongmoon Min, David Brooks, Gu-Yeon Wei:
Is the Future Cold or Tall? Design Space Exploration of Cryogenic and 3D Embedded Cache Memory. ISPASS 2023: 134-144 - [c148]Matthew Joseph Adiletta, Jesmin Jahan Tithi, Emmanouil-Ioannis Farsarakis, Gerasimos Gerogiannis, Robert Adolf, Robert Benke, Sidharth Kashyap, Samuel Hsia, Kartik Lakhotia, Fabrizio Petrini, Gu-Yeon Wei, David Brooks:
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA. ISPASS 2023: 168-177 - [c147]Thierry Tambe, Jeff Zhang, Coleman Hooper, Tianyu Jia, Paul N. Whatmough, Joseph Zuckerman, Maico Cassel dos Santos, Erik Jens Loscalzo, Davide Giri, Kenneth L. Shepard, Luca P. Carloni, Alexander M. Rush, David Brooks, Gu-Yeon Wei:
A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-Based Early Exit, Mixed-Precision Predication and Fine-Grained Power Management. ISSCC 2023: 342-343 - [i40]Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit Gupta, Minsoo Rhu, Hsien-Hsin S. Lee, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks, G. Edward Suh:
GPU-based Private Information Retrieval for On-Device Machine Learning Inference. CoRR abs/2301.10904 (2023) - [i39]Yuji Chai, Devashree Tripathy, Chuteng Zhou, Dibakar Gope, Igor Fedorov, Ramon Matas Navarro, David Brooks, Gu-Yeon Wei, Paul N. Whatmough:
PerfSAGE: Generalized Inference Performance Predictor for Arbitrary Deep Learning Models on Edge Devices. CoRR abs/2301.10999 (2023) - [i38]Samuel Hsia, Udit Gupta, Bilge Acun, Newsha Ardalani, Pan Zhong, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
MP-Rec: Hardware-Software Co-Design to Enable Multi-Path Recommendation. CoRR abs/2302.10872 (2023) - [i37]Young Geun Kim, Udit Gupta, Andrew McCrabb, Yonglak Son, Valeria Bertacco, David Brooks, Carole-Jean Wu:
GreenScale: Carbon-Aware Systems for Edge Computing. CoRR abs/2304.00404 (2023) - [i36]Mariam Elgamal, Doug Carmean, Elnaz Ansari, Okay Zed, Ramesh Peri, Srilatha Manne, Udit Gupta, Gu-Yeon Wei, David Brooks, Gage Hills, Carole-Jean Wu:
Design Space Exploration and Optimization for Carbon-Efficient Extended Reality Systems. CoRR abs/2305.01831 (2023) - [i35]Sai Qian Zhang, Thierry Tambe, Nestor Cuevas, Gu-Yeon Wei, David Brooks:
CAMEL: Co-Designing AI Models and Embedded DRAMs for Efficient On-Device Learning. CoRR abs/2305.03148 (2023) - [i34]Yunho Jin, Chun-Feng Wu, David Brooks, Gu-Yeon Wei:
S3: Increasing GPU Utilization during Generative Inference for Higher Throughput. CoRR abs/2306.06000 (2023) - [i33]Yuji Chai, John Gkountouras, Glenn G. Ko, David Brooks, Gu-Yeon Wei:
INT2.1: Towards Fine-Tunable Quantized Large Language Models with Error Correction through Low-Rank Adaptation. CoRR abs/2306.08162 (2023) - 2022
- [j53]Sae Kyu Lee
, Paul N. Whatmough
, Marco Donato
, Glenn G. Ko, David Brooks
, Gu-Yeon Wei:
SMIV: A 16-nm 25-mm² SoC for IoT With Arm Cortex-A53, eFPGA, and Coherent Accelerators. IEEE J. Solid State Circuits 57(2): 639-650 (2022) - [j52]Udit Gupta
, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
Chasing Carbon: The Elusive Environmental Footprint of Computing. IEEE Micro 42(4): 37-47 (2022) - [j51]Nicolas Bohm Agostini
, Serena Curzel
, Jeff Jun Zhang, Ankur Limaye
, Cheng Tan, Vinay Amatya, Marco Minutoli
, Vito Giovanni Castellana, Joseph B. Manzano
, David Brooks, Gu-Yeon Wei, Antonino Tumeo
:
Bridging Python to Silicon: The SODA Toolchain. IEEE Micro 42(5): 78-88 (2022) - [j50]Serena Curzel
, Nicolas Bohm Agostini
, Vito Giovanni Castellana, Marco Minutoli
, Ankur Limaye
, Joseph B. Manzano
, Jeff Zhang, David Brooks, Gu-Yeon Wei, Fabrizio Ferrandi
, Antonino Tumeo
:
End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators. IEEE Trans. Computers 71(12): 3074-3087 (2022) - [c146]Chun-Feng Wu
, Carole-Jean Wu, Gu-Yeon Wei, David Brooks:
A joint management middleware to improve training performance of deep recommendation systems with SSDs. DAC 2022: 157-162 - [c145]Tianyu Jia, En-Yu Yang, Yu-Shun Hsiao, Jonathan J. Cruz, David Brooks, Gu-Yeon Wei, Vijay Janapa Reddi:
OMU: A Probabilistic 3D Occupancy Mapping Accelerator for Real-time OctoMap at the Edge. DATE 2022: 909-914 - [c144]Abdulrahman Mahmoud, Thierry Tambe, Tarek Aloui, David Brooks, Gu-Yeon Wei:
GoldenEye: A Platform for Evaluating Emerging Numerical Data Formats in DNN Accelerators. DSN 2022: 206-214 - [c143]Tianyu Jia, Paolo Mantovani, Maico Cassel dos Santos, Davide Giri, Joseph Zuckerman, Erik Jens Loscalzo, Martin Cochet, Karthik Swaminathan, Gabriele Tombesi, Jeff Jun Zhang, Nandhini Chandramoorthy, John-David Wellman, Kevin Tien, Luca P. Carloni, Kenneth L. Shepard, David Brooks, Gu-Yeon Wei, Pradip Bose:
A 12nm Agile-Designed SoC for Swarm-Based Perception with Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy, and an 800MHz Multi-Plane NoC. ESSCIRC 2022: 269-272 - [c142]Serena Curzel
, Nicolas Bohm Agostini, Reece Neff, Ankur Limaye
, Jeff Jun Zhang, Vinay Amatya, Marco Minutoli
, Vito Giovanni Castellana, Joseph B. Manzano
, David Brooks, Gu-Yeon Wei, Fabrizio Ferrandi
, Antonino Tumeo:
From High-Level Frameworks to custom Silicon with SODA. HCS 2022: 1-13 - [c141]Yuji Chai, Glenn G. Ko, Wei-Te Mark Ting, Luke Bailey, David Brooks, Gu-Yeon Wei:
CoopMC: Algorithm-Architecture Co-Optimization for Markov Chain Monte Carlo Accelerators. HPCA 2022: 38-52 - [c140]Lillian Pentecost
, Alexander Hankin, Marco Donato, Mark Hempstead, Gu-Yeon Wei, David Brooks:
NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories. HPCA 2022: 938-956 - [c139]Maico Cassel dos Santos, Tianyu Jia, Martin Cochet, Karthik Swaminathan, Joseph Zuckerman, Paolo Mantovani, Davide Giri, Jeff Jun Zhang, Erik Jens Loscalzo, Gabriele Tombesi, Kevin Tien, Nandhini Chandramoorthy, John-David Wellman, David Brooks, Gu-Yeon Wei, Kenneth L. Shepard, Luca P. Carloni, Pradip Bose:
A Scalable Methodology for Agile Chip Development with Open-Source Hardware Components. ICCAD 2022: 20:1-20:9 - [c138]Cheng Tan, Thierry Tambe, Jeff Jun Zhang, Bo Fang, Tong Geng, Gu-Yeon Wei, David Brooks, Antonino Tumeo, Ganesh Gopalakrishnan, Ang Li:
ASAP: automatic synthesis of area-efficient and precision-aware CGRAs. ICS 2022: 4:1-4:13 - [c137]Udit Gupta
, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu:
ACT: designing sustainable computer systems with an architectural carbon modeling tool. ISCA 2022: 784-799 - [c136]Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul N. Whatmough, Aleksandra Faust, Sabrina M. Neuman, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi:
Automatic Domain-Specific SoC Design for Autonomous Unmanned Aerial Vehicles. MICRO 2022: 300-317 - [c135]Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, Jinshi Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim M. Hazelwood:
Sustainable AI: Environmental Implications, Challenges and Opportunities. MLSys 2022 - [i32]Georgios Zacharopoulos, Adel Ejjeh, Ying Jing, En-Yu Yang, Tianyu Jia, Iulian Brumar, Jeremy Intan, Muhammad Huzaifa, Sarita V. Adve, Vikram S. Adve, Gu-Yeon Wei, David Brooks:
Trireme: Exploring Hierarchical Multi-Level Parallelism for Domain Specific Hardware Acceleration. CoRR abs/2201.08603 (2022) - [i31]Bilge Acun, Benjamin Lee, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu:
A Holistic Approach for Designing Carbon Aware Datacenters. CoRR abs/2201.10036 (2022) - [i30]Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks:
Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference. CoRR abs/2203.02833 (2022) - [i29]Tianyu Jia, En-Yu Yang, Yu-Shun Hsiao, Jonathan J. Cruz, David Brooks, Gu-Yeon Wei, Vijay Janapa Reddi:
OMU: A Probabilistic 3D Occupancy Mapping Accelerator for Real-time OctoMap at the Edge. CoRR abs/2205.03325 (2022) - [i28]Wooseok Choi, Brandon Reagen, Gu-Yeon Wei, David Brooks:
Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference. CoRR abs/2205.06437 (2022) - [i27]Matthew Adiletta, David Brooks, Gu-Yeon Wei:
Architectural Implications of Embedding Dimension during GCN on CPU and GPU. CoRR abs/2212.00827 (2022) - 2021
- [j49]Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim M. Hazelwood, David Brooks:
Exploiting Parallelism Opportunities with Deep Learning Frameworks. ACM Trans. Archit. Code Optim. 18(1): 9:1-9:23 (2021) - [c134]Jeff Jun Zhang, Nicolas Bohm Agostini
, Shihao Song, Cheng Tan
, Ankur Limaye
, Vinay Amatya, Joseph B. Manzano
, Marco Minutoli
, Vito Giovanni Castellana, Antonino Tumeo, Gu-Yeon Wei, David Brooks:
Towards Automatic and Agile AI/ML Accelerator Design with End-to-End Synthesis. ASAP 2021: 218-225 - [c133]En-Yu Yang, Tianyu Jia, David Brooks, Gu-Yeon Wei:
FlexACC: A Programmable Accelerator with Application-Specific ISA for Flexible Deep Neural Network Inference. ASAP 2021: 266-273 - [c132]Mark Wilkening, Udit Gupta
, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks, Gu-Yeon Wei:
RecSSD: near data processing for solid state drive based recommendation inference. ASPLOS 2021: 717-729 - [c131]Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco Donato, Paul N. Whatmough, Alexander M. Rush
, David Brooks, Gu-Yeon Wei:
SM6: A 16nm System-on-Chip for Accurate and Noise-Robust Attention-Based NLP Applications : The 33rd Hot Chips Symposium - August 22-24, 2021. HCS 2021: 1-13 - [c130]Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent T. Lee, Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks:
Cheetah: Optimizing and Accelerating Homomorphic Encryption for Private Inference. HPCA 2021: 26-39 - [c129]Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
Chasing Carbon: The Elusive Environmental Footprint of Computing. HPCA 2021: 854-867 - [c128]Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, Michael Mitzenmacher:
Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix. ICML 2021: 5959-5968 - [c127]Mohammad Mehdi Sharifi
, Lillian Pentecost
, Ramin Rajaei, Arman Kazemi, Qiuwen Lou, Gu-Yeon Wei, David M. Brooks, Kai Ni, X. Sharon Hu
, Michael T. Niemier, Marco Donato:
Application-driven Design Exploration for Dense Ferroelectric Embedded Non-volatile Memories. ISLPED 2021: 1-6 - [c126]Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco Donato, Paul N. Whatmough, Alexander M. Rush
, David Brooks, Gu-Yeon Wei:
9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET. ISSCC 2021: 158-160 - [c125]Thierry Tambe, Coleman Hooper, Lillian Pentecost
, Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh, Paul N. Whatmough, Alexander M. Rush
, David Brooks, Gu-Yeon Wei:
EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference. MICRO 2021: 830-844 - [c124]Udit Gupta
, Samuel Hsia, Jeff Zhang, Mark Wilkening, Javin Pombra, Hsien-Hsin Sean Lee, Gu-Yeon Wei, Carole-Jean Wu, David Brooks:
RecPipe: Co-designing Models and Hardware to Jointly Optimize Recommendation Quality and Performance. MICRO 2021: 870-884 - [i26]Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks, Gu-Yeon Wei:
RecSSD: Near Data Processing for Solid State Drive Based Recommendation Inference. CoRR abs/2102.00075 (2021) - [i25]Srivatsan Krishnan, Zishen Wan
, Kshitij Bhardwaj, Paul N. Whatmough, Aleksandra Faust, Sabrina M. Neuman, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi:
Machine Learning-Based Automated Design Space Exploration for Autonomous Aerial Robots. CoRR abs/2102.02988 (2021) - [i24]Udit Gupta, Samuel Hsia, Jeff Jun Zhang, Mark Wilkening, Javin Pombra, Hsien-Hsin S. Lee, Gu-Yeon Wei, Carole-Jean Wu, David Brooks:
RecPipe: Co-designing Models and Hardware to Jointly Optimize Recommendation Quality and Performance. CoRR abs/2105.08820 (2021) - [i23]Yu-Shun Hsiao, Zishen Wan
, Tianyu Jia, Radhika Ghosal, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, Vijay Janapa Reddi:
MAVFI: An End-to-End Fault Analysis Framework with Anomaly Detection and Recovery for Micro Aerial Vehicles. CoRR abs/2105.12882 (2021) - [i22]Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, Michael Mitzenmacher:
Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix. CoRR abs/2106.06089 (2021) - [i21]Mohammad Mehdi Sharifi, Lillian Pentecost, Ramin Rajaei, Arman Kazemi, Qiuwen Lou, Gu-Yeon Wei, David Brooks, Kai Ni, X. Sharon Hu, Michael T. Niemier, Marco Donato:
Application-driven Design Exploration for Dense Ferroelectric Embedded Non-volatile Memories. CoRR abs/2106.11757 (2021) - [i20]Lillian Pentecost, Alexander Hankin, Marco Donato, Mark Hempstead, Gu-Yeon Wei, David Brooks:
NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories. CoRR abs/2109.01188 (2021) - [i19]Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim M. Hazelwood:
Sustainable AI: Environmental Implications, Challenges and Opportunities. CoRR abs/2111.00364 (2021) - [i18]Iulian Brumar, Georgios Zacharopoulos, Yuan Yao, Saketh Rama, Gu-Yeon Wei, David Brooks:
Early DSE and Automatic Generation of Coarse Grained Merged Accelerators. CoRR abs/2111.09222 (2021) - 2020
- [j48]Srivatsan Krishnan
, Zishen Wan
, Kshitij Bhardwaj
, Paul N. Whatmough
, Aleksandra Faust
, Gu-Yeon Wei, David Brooks
, Vijay Janapa Reddi:
The Sky Is Not the Limit: A Visual Performance Model for Cyber-Physical Co-Design in Autonomous Machines. IEEE Comput. Archit. Lett. 19(1): 38-42 (2020) - [j47]Paul N. Whatmough, Marco Donato, Glenn G. Ko, Sae Kyu Lee, David Brooks, Gu-Yeon Wei:
CHIPKIT: An Agile, Reusable Open-Source Framework for Rapid Test Chip Development. IEEE Micro 40(4): 32-40 (2020) - [j46]Sam Likun Xi, Yuan Yao, Kshitij Bhardwaj, Paul N. Whatmough, Gu-Yeon Wei, David Brooks:
SMAUG: End-to-End Full-Stack Simulation Infrastructure for Deep Learning Workloads. ACM Trans. Archit. Code Optim. 17(4): 39:1-39:26 (2020) - [c123]Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander M. Rush
, David Brooks, Gu-Yeon Wei:
Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient Deep Learning Inference. DAC 2020: 1-6 - [c122]Antonino Tumeo, Marco Minutoli
, Vito Giovanni Castellana, Joseph B. Manzano
, Vinay Amatya, David Brooks, Gu-Yeon Wei:
Invited: Software Defined Accelerators From Learning Tools Environment. DAC 2020: 1-6 - [c121]David Brooks, Martin M. Frank, Tayfun Gokmen, Udit Gupta, Xiaobo Sharon Hu
, Shubham Jain, Ann Franchesca Laguna, Michael T. Niemier, Ian O'Connor
, Anand Raghunathan
, Ashish Ranjan
, Dayane Reis
, Jacob R. Stevens, Carole-Jean Wu, Xunzhao Yin:
Emerging Neural Workloads and Their Impact on Hardware. DATE 2020: 1462-1471 - [c120]Glenn G. Ko, Yuji Chai, Marco Donato, Paul N. Whatmough, Thierry Tambe, Rob A. Rutenbar, Gu-Yeon Wei, David Brooks:
A Scalable Bayesian Inference Accelerator for Unsupervised Learning. Hot Chips Symposium 2020: 1-27 - [c119]Udit Gupta
, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David Brooks, Bradford Cottel, Kim M. Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang
:
The Architectural Implications of Facebook's DNN-Based Personalized Recommendation. HPCA 2020: 488-501 - [c118]Marco Minutoli
, Vito Giovanni Castellana, Cheng Tan
, Joseph B. Manzano
, Vinay Amatya, Antonino Tumeo, David Brooks, Gu-Yeon Wei:
SODA: a New Synthesis Infrastructure for Agile Hardware Design of Machine Learning Accelerators. ICCAD 2020: 98:1-98:7 - [c117]Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean Wu, Gu-Yeon Wei, David Brooks:
Cross-Stack Workload Characterization of Deep Recommendation Systems. IISWC 2020: 157-168 - [c116]Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang
:
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing. ISCA 2020: 790-803 - [c115]Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu:
DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference. ISCA 2020: 982-995 - [c114]Kshitij Bhardwaj, Marton Havasi, Yuan Yao, David M. Brooks, José Miguel Hernández-Lobato, Gu-Yeon Wei:
A comprehensive methodology to determine optimal coherence interfaces for many-accelerator SoCs. ISLPED 2020: 145-150 - [c113]Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman, Paulius Micikevicius, David A. Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim M. Hazelwood, Andy Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff Young, Matei Zaharia:
MLPerf Training Benchmark. MLSys 2020 - [c112]Yu Wang, Gu-Yeon Wei, David Brooks:
A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms. MLSys 2020 - [c111]Glenn G. Ko, Yuji Chai, Marco Donato, Paul N. Whatmough, Thierry Tambe, Rob A. Rutenbar, David Brooks, Gu-Yeon Wei:
A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm. VLSI Circuits 2020: 1-2 - [i17]Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu:
DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference. CoRR abs/2001.02772 (2020) - [i16]Paul N. Whatmough, Marco Donato, Glenn G. Ko, David Brooks, Gu-Yeon Wei:
CHIPKIT: An agile, reusable open-source framework for rapid test chip development. CoRR abs/2001.04504 (2020) - [i15]Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent T. Lee, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks:
Cheetah: Optimizations and Methods for PrivacyPreserving Inference via Homomorphic Encryption. CoRR abs/2006.00505 (2020) - [i14]Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean Wu, Gu-Yeon Wei, David Brooks:
Cross-Stack Workload Characterization of Deep Recommendation Systems. CoRR abs/2010.05037 (2020) - [i13]Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
Chasing Carbon: The Elusive Environmental Footprint of Computing. CoRR abs/2011.02839 (2020) - [i12]Thierry Tambe, Coleman Hooper, Lillian Pentecost, En-Yu Yang, Marco Donato, Victor Sanh, Alexander M. Rush, David Brooks, Gu-Yeon Wei:
EdgeBERT: Optimizing On-Chip Inference for Multi-Task NLP. CoRR abs/2011.14203 (2020)
2010 – 2019
- 2019
- [j45]Kshitij Bhardwaj
, Marton Havasi, Yuan Yao
, David M. Brooks
, José Miguel Hernández-Lobato, Gu-Yeon Wei:
Determining Optimal Coherency Interface for Many-Accelerator SoCs Using Bayesian Optimization. IEEE Comput. Archit. Lett. 18(2): 119-123 (2019) - [j44]Sae Kyu Lee
, Paul N. Whatmough
, David Brooks, Gu-Yeon Wei:
A 16-nm Always-On DNN Processor With Adaptive Clocking and Multi-Cycle Banked SRAMs. IEEE J. Solid State Circuits 54(7): 1982-1992 (2019) - [j43]Marco Donato, Lillian Pentecost
, David Brooks, Gu-Yeon Wei:
MEMTI: Optimizing On-Chip Nonvolatile Storage for Visual Multitask Inference at the Edge. IEEE Micro 39(6): 73-81 (2019) - [j42]Yu Wang, Victor Lee, Gu-Yeon Wei, David M. Brooks:
Predicting New Workload or CPU Performance by Analyzing Public Datasets. ACM Trans. Archit. Code Optim. 15(4): 53:1-53:21 (2019) - [c110]Udit Gupta
, Brandon Reagen, Lillian Pentecost
, Marco Donato, Thierry Tambe, Alexander M. Rush
, Gu-Yeon Wei, David Brooks:
MASR: A Modular Accelerator for Sparse RNNs. PACT 2019: 1-14 - [c109]Glenn G. Ko, Yuji Chai, Rob A. Rutenbar, David Brooks, Gu-Yeon Wei:
FlexGibbs: Reconfigurable Parallel Gibbs Sampling Accelerator for Structured Graphs. FCCM 2019: 334 - [c108]Glenn G. Ko, Yuji Chai, Rob A. Rutenbar, David Brooks, Gu-Yeon Wei:
Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling. FPL 2019: 159-165 - [c107]Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim M. Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, Peizhao Zhang:
Machine Learning at Facebook: Understanding Inference at the Edge. HPCA 2019: 331-344 - [c106]Brian Plancher
, Camelia D. Brumar, Iulian Brumar, Lillian Pentecost
, Saketh Rama, David Brooks:
Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM. HPEC 2019: 1-7 - [c105]Yu Emma Wang, Yuhao Zhu, Glenn G. Ko, Brandon Reagen, Gu-Yeon Wei, David Brooks:
Demystifying Bayesian Inference Workloads. ISPASS 2019: 177-189 - [c104]Lillian Pentecost
, Marco Donato, Brandon Reagen, Udit Gupta
, Siming Ma, Gu-Yeon Wei, David Brooks:
MaxNVM: Maximizing DNN Storage Density and Inference Efficiency with Sparse Encoding and Error Mitigation. MICRO 2019: 769-781 - [c103]Lillian Pentecost
, Udit Gupta, Elisa Ngan, Johanna Beyer, Gu-Yeon Wei, David Brooks, Michael Behrisch:
CHAMPVis: Comparative Hierarchical Analysis of Microarchitectural Performance. ProTools@SC 2019: 55-61 - [c102]Paul N. Whatmough, Sae Kyu Lee, Marco Donato, Hsea-Ching Hsueh, Sam Likun Xi, Udit Gupta
, Lillian Pentecost
, Glenn G. Ko, David M. Brooks, Gu-Yeon Wei:
A 16nm 25mm2 SoC with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm Cortex-A53 to eFPGA and Cache-Coherent Accelerators. VLSI Circuits 2019: 34- - [i11]Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen, David Brooks, Bradford Cottel, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang:
The Architectural Implications of Facebook's DNN-based Personalized Recommendation. CoRR abs/1906.03109 (2019) - [i10]Yu Wang, Gu-Yeon Wei, David Brooks:
Benchmarking TPU, GPU, and CPU Platforms for Deep Learning. CoRR abs/1907.10701 (2019) - [i9]Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim M. Hazelwood, David Brooks:
Exploiting Parallelism Opportunities with Deep Learning Frameworks. CoRR abs/1908.04705 (2019)