default search action
Alejandro Ribeiro
Person information
- affiliation: University of Pennsylvania, Department of Electrical and Systems Engineering, Philadelphia, PA, USA
- affiliation (PhD 2007): University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, MN, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j157]Sourajit Das, Navid Naderializadeh, Alejandro Ribeiro:
Learning State-Augmented Policies for Information Routing in Communication Networks. IEEE Trans. Signal Process. 73: 204-218 (2025) - 2024
- [j156]Gabriel Egan, Mark Eisen, Alejandro Ribeiro, Santiago Segarra:
A reply to Pervez Rizvi's letter. Digit. Scholarsh. Humanit. 39(1): 3-4 (2024) - [j155]Miguel Calvo-Fullana, Santiago Paternain, Luiz F. O. Chamon, Alejandro Ribeiro:
State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning With Rewards. IEEE Trans. Autom. Control. 69(7): 4275-4290 (2024) - [j154]Miguel Calvo-Fullana, Mikhail Gerasimenko, Daniel Mox, Leopoldo Agorio, Mariana del Castillo, Vijay Kumar, Alejandro Ribeiro, Juan Andrés Bazerque:
A Networked Multiagent System for Mobile Wireless Infrastructure on Demand. IEEE Trans. Robotics 40: 4598-4614 (2024) - [j153]Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro:
Tangent Bundle Convolutional Learning: From Manifolds to Cellular Sheaves and Back. IEEE Trans. Signal Process. 72: 1892-1909 (2024) - [j152]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Stability to Deformations of Manifold Filters and Manifold Neural Networks. IEEE Trans. Signal Process. 72: 2130-2146 (2024) - [j151]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-Offs. IEEE Trans. Signal Process. 72: 2244-2259 (2024) - [j150]Harshat Kumar, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Lie Group Algebra Convolutional Filters. IEEE Trans. Signal Process. 72: 2842-2857 (2024) - [j149]Samar Hadou, Navid Naderializadeh, Alejandro Ribeiro:
Robust Stochastically-Descending Unrolled Networks. IEEE Trans. Signal Process. 72: 5484-5499 (2024) - [c313]Dongsheng Ding, Zhengyan Huan, Alejandro Ribeiro:
Resilient Constrained Reinforcement Learning. AISTATS 2024: 3412-3420 - [c312]Mariana del Castillo, Alejandro Ribeiro, Federico Larroca:
EGNN-based Topology Control in Wireless Mobile Infrastructure on Demand with Shared Access Restrictions. GNNet@CoNEXT 2024: 46-52 - [c311]Damian Owerko, Fernando Gama, Alejandro Ribeiro:
Unsupervised Optimal Power Flow Using Graph Neural Networks. ICASSP 2024: 6885-6889 - [c310]Alejandro Parada-Mayorga, Landon Butler, Alejandro Ribeiro:
Non Commutative Convolutional Signal Models in Neural Networks: Stability to Small Deformations. ICASSP 2024: 7305-7309 - [c309]Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Graph Neural Networks are More Powerful than We Think. ICASSP 2024: 7550-7554 - [c308]Sourajit Das, Navid Naderializadeh, Alejandro Ribeiro:
State-Augmented Information Routing In Communication Systems With Graph Neural Networks. ICASSP 2024: 9181-9185 - [c307]Juan Elenter, Luiz F. O. Chamon, Alejandro Ribeiro:
Near-Optimal Solutions of Constrained Learning Problems. ICLR 2024 - [c306]Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Counting Graph Substructures with Graph Neural Networks. ICLR 2024 - [c305]Ignacio Hounie, Javier Porras-Valenzuela, Alejandro Ribeiro:
Loss Shaping Constraints for Long-Term Time Series Forecasting. ICML 2024 - [c304]Shervin Khalafi, Saurabh Sihag, Alejandro Ribeiro:
Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks. ICML 2024 - [c303]Daniel Mox, Kashish Garg, Alejandro Ribeiro, Vijay Kumar:
Opportunistic Communication in Robot Teams. ICRA 2024: 12090-12096 - [i228]Saurav Agarwal, Ramya Muthukrishnan, Walker Gosrich, Vijay Kumar, Alejandro Ribeiro:
LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control. CoRR abs/2401.04855 (2024) - [i227]Alejandro Parada-Mayorga, Alejandro Ribeiro:
Sampling and Uniqueness Sets in Graphon Signal Processing. CoRR abs/2401.06279 (2024) - [i226]Saurabh Sihag, Gonzalo Mateos, Alejandro Ribeiro:
Towards a Foundation Model for Brain Age Prediction using coVariance Neural Networks. CoRR abs/2402.07684 (2024) - [i225]Ignacio Hounie, Javier Porras-Valenzuela, Alejandro Ribeiro:
Loss Shaping Constraints for Long-Term Time Series Forecasting. CoRR abs/2402.09373 (2024) - [i224]Juan Elenter, Luiz F. O. Chamon, Alejandro Ribeiro:
Near-Optimal Solutions of Constrained Learning Problems. CoRR abs/2403.11844 (2024) - [i223]Xingran Chen, Navid Naderializadeh, Alejandro Ribeiro, Shirin Saeedi Bidokhti:
Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks. CoRR abs/2404.03227 (2024) - [i222]Yigit Berkay Uslu, Roya Doostnejad, Alejandro Ribeiro, Navid Naderializadeh:
Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach. CoRR abs/2405.05748 (2024) - [i221]Zhiyang Wang, Juan Cerviño, Alejandro Ribeiro:
A Manifold Perspective on the Statistical Generalization of Graph Neural Networks. CoRR abs/2406.05225 (2024) - [i220]Juan Cerviño, Md Asadullah Turja, Hesham Mostafa, Nageen Himayat, Alejandro Ribeiro:
Distributed Training of Large Graph Neural Networks with Variable Communication Rates. CoRR abs/2406.17611 (2024) - [i219]Sergio Rozada, Dongsheng Ding, Antonio G. Marques, Alejandro Ribeiro:
Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs. CoRR abs/2408.10015 (2024) - [i218]Zhiyang Wang, Juan Cerviño, Alejandro Ribeiro:
Generalization of Graph Neural Networks is Robust to Model Mismatch. CoRR abs/2408.13878 (2024) - [i217]Shervin Khalafi, Dongsheng Ding, Alejandro Ribeiro:
Constrained Diffusion Models via Dual Training. CoRR abs/2408.15094 (2024) - [i216]Zhiyang Wang, Juan Cerviño, Alejandro Ribeiro:
Generalization of Geometric Graph Neural Networks. CoRR abs/2409.05191 (2024) - [i215]Juan Cerviño, Saurav Agarwal, Vijay Kumar, Alejandro Ribeiro:
Constrained Learning for Decentralized Multi-Objective Coverage Control. CoRR abs/2409.11311 (2024) - [i214]Shreyas Muthusamy, Damian Owerko, Charilaos I. Kanatsoulis, Saurav Agarwal, Alejandro Ribeiro:
Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning. CoRR abs/2409.19829 (2024) - [i213]Liangzu Peng, Juan Elenter, Joshua Agterberg, Alejandro Ribeiro, René Vidal:
ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models. CoRR abs/2410.00645 (2024) - [i212]Chen Liu, Danqi Liao, Alejandro Parada-Mayorga, Alejandro Ribeiro, Marcello DiStasio, Smita Krishnaswamy:
DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images. CoRR abs/2410.03058 (2024) - [i211]Ignacio Hounie, Charilaos I. Kanatsoulis, Arnuv Tandon, Alejandro Ribeiro:
LoRTA: Low Rank Tensor Adaptation of Large Language Models. CoRR abs/2410.04060 (2024) - [i210]Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, Alejandro Ribeiro:
GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation. CoRR abs/2410.08475 (2024) - [i209]Alejandro Parada-Mayorga, Leopoldo Agorio, Alejandro Ribeiro, Juan Andrés Bazerque:
Convolutional Filtering with RKHS Algebras. CoRR abs/2411.01341 (2024) - 2023
- [j148]Gabriel Egan, Mark Eisen, Alejandro Ribeiro, Santiago Segarra:
"I would I had that corporal soundness": Pervez Rizvi's Analysis of the Word Adjacency Network Method of Authorship Attribution. Digit. Scholarsh. Humanit. 38(4): 1494-1507 (2023) - [j147]Harshat Kumar, Alec Koppel, Alejandro Ribeiro:
On the sample complexity of actor-critic method for reinforcement learning with function approximation. Mach. Learn. 112(7): 2433-2467 (2023) - [j146]Santiago Paternain, Miguel Calvo-Fullana, Luiz F. O. Chamon, Alejandro Ribeiro:
Safe Policies for Reinforcement Learning via Primal-Dual Methods. IEEE Trans. Autom. Control. 68(3): 1321-1336 (2023) - [j145]Luiz F. O. Chamon, Santiago Paternain, Miguel Calvo-Fullana, Alejandro Ribeiro:
Constrained Learning With Non-Convex Losses. IEEE Trans. Inf. Theory 69(3): 1739-1760 (2023) - [j144]Max Wasserman, Saurabh Sihag, Gonzalo Mateos, Alejandro Ribeiro:
Learning Graph Structure from Convolutional Mixtures. Trans. Mach. Learn. Res. 2023 (2023) - [j143]Alejandro Parada-Mayorga, Zhiyang Wang, Fernando Gama, Alejandro Ribeiro:
Stability of Aggregation Graph Neural Networks. IEEE Trans. Signal Inf. Process. over Networks 9: 850-864 (2023) - [j142]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro:
Learning by Transference: Training Graph Neural Networks on Growing Graphs. IEEE Trans. Signal Process. 71: 233-247 (2023) - [j141]Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Convolutional Learning on Multigraphs. IEEE Trans. Signal Process. 71: 933-946 (2023) - [j140]Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro:
Learning Resilient Radio Resource Management Policies With Graph Neural Networks. IEEE Trans. Signal Process. 71: 995-1009 (2023) - [j139]Alejandro Parada-Mayorga, Landon Butler, Alejandro Ribeiro:
Convolutional Filters and Neural Networks With Noncommutative Algebras. IEEE Trans. Signal Process. 71: 2683-2698 (2023) - [j138]Luana Ruiz, Luiz F. O. Chamon, Alejandro Ribeiro:
Transferability Properties of Graph Neural Networks. IEEE Trans. Signal Process. 71: 3474-3489 (2023) - [j137]Alejandro Parada-Mayorga, Zhiyang Wang, Alejandro Ribeiro:
Graphon Pooling for Reducing Dimensionality of Signals and Convolutional Operators on Graphs. IEEE Trans. Signal Process. 71: 3577-3591 (2023) - [c302]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Convergence of Graph Neural Networks on Relatively Sparse Graphs. ACSSC 2023: 566-572 - [c301]Damian Owerko, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Solving Large-Scale Spatial Problems with Convolutional Neural Networks. ACSSC 2023: 1064-1069 - [c300]Damian Owerko, Charilaos I. Kanatsoulis, Jennifer Bondarchuk, Donald J. Bucci, Alejandro Ribeiro:
Multi-Target Tracking with Transferable Convolutional Neural Networks. CAMSAP 2023: 56-60 - [c299]Ignacio Boero, Igor Spasojevic, Mariana del Castillo, George J. Pappas, Vijay Kumar, Alejandro Ribeiro:
Navigation with Shadow Prices to Optimize Multi-Commodity Flow Rates. CDC 2023: 253-258 - [c298]Claudio Battiloro, Paolo Di Lorenzo, Alejandro Ribeiro:
Parametric Dictionary Learning for Topological Signal Representation. EUSIPCO 2023: 1958-1962 - [c297]Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro:
Tangent Bundle Filters and Neural Networks: From Manifolds to Cellular Sheaves and Back. ICASSP 2023: 1-5 - [c296]Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Learning with Multigraph Convolutional Filters. ICASSP 2023: 1-5 - [c295]Juan Cerviño, Juan Andrés Bazerque, Miguel Calvo-Fullana, Alejandro Ribeiro:
Multi-Task Bias-Variance Trade-Off Through Functional Constraints. ICASSP 2023: 1-5 - [c294]Juan Cerviño, Luana Ruiz, Alejandro Ribeiro:
Training Graph Neural Networks on Growing Stochastic Graphs. ICASSP 2023: 1-5 - [c293]Samar Hadou, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Space-Time Graph Neural Networks with Stochastic Graph Perturbations. ICASSP 2023: 1-5 - [c292]Ignacio Hounie, Juan Elenter, Alejandro Ribeiro:
Neural Networks with Quantization Constraints. ICASSP 2023: 1-5 - [c291]Harshat Kumar, Alejandro Parada-Mayorga, Alejandro Ribeiro:
Algebraic Convolutional Filters on Lie Group Algebras. ICASSP 2023: 1-5 - [c290]Saurabh Sihag, Gonzalo Mateos, Corey McMillan, Alejandro Ribeiro:
Predicting Brain Age Using Transferable Covariance Neural Networks. ICASSP 2023: 1-5 - [c289]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Convolutional Filtering on Sampled Manifolds. ICASSP 2023: 1-5 - [c288]Juan Cerviño, Luiz F. O. Chamon, Benjamin David Haeffele, René Vidal, Alejandro Ribeiro:
Learning Globally Smooth Functions on Manifolds. ICML 2023: 3815-3854 - [c287]Ignacio Hounie, Luiz F. O. Chamon, Alejandro Ribeiro:
Automatic Data Augmentation via Invariance-Constrained Learning. ICML 2023: 13410-13433 - [c286]Igor Spasojevic, Xu Liu, Ankit Prabhu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Robust Localization of Aerial Vehicles via Active Control of Identical Ground Vehicles. IROS 2023: 3048-3055 - [c285]Mikhail Hayhoe, Hans Riess, Michael M. Zavlanos, Victor M. Preciado, Alejandro Ribeiro:
Transferable Hypergraph Neural Networks via Spectral Similarity. LoG 2023: 18 - [c284]Shubhankar Prashant Patankar, Mathieu Ouellet, Juan Cerviño, Alejandro Ribeiro, Kieran A. Murphy, Danielle S. Bassett:
Intrinsically Motivated Graph Exploration Using Network Theories of Human Curiosity. LoG 2023: 23 - [c283]Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, Alejandro Ribeiro:
Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs. NeurIPS 2023 - [c282]Ignacio Hounie, Alejandro Ribeiro, Luiz F. O. Chamon:
Resilient Constrained Learning. NeurIPS 2023 - [c281]Saurabh Sihag, Gonzalo Mateos, Corey McMillan, Alejandro Ribeiro:
Explainable Brain Age Prediction using coVariance Neural Networks. NeurIPS 2023 - [c280]Igor Spasojevic, Xu Liu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Active Collaborative Localization in Heterogeneous Robot Teams. Robotics: Science and Systems 2023 - [i208]Elijah S. Lee, Lifeng Zhou, Alejandro Ribeiro, Vijay Kumar:
Graph Neural Networks for Decentralized Multi-Agent Perimeter Defense. CoRR abs/2301.09689 (2023) - [i207]Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro:
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back. CoRR abs/2303.11323 (2023) - [i206]Saurabh Sihag, Gonzalo Mateos, Corey T. McMillan, Alejandro Ribeiro:
Transferability of coVariance Neural Networks and Application to Interpretable Brain Age Prediction using Anatomical Features. CoRR abs/2305.01807 (2023) - [i205]Samar Hadou, Navid Naderializadeh, Alejandro Ribeiro:
Stochastic Unrolled Federated Learning. CoRR abs/2305.15371 (2023) - [i204]Igor Spasojevic, Xu Liu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Active Collaborative Localization in Heterogeneous Robot Teams. CoRR abs/2305.18193 (2023) - [i203]Saurabh Sihag, Gonzalo Mateos, Corey T. McMillan, Alejandro Ribeiro:
Explainable Brain Age Prediction using coVariance Neural Networks. CoRR abs/2305.18370 (2023) - [i202]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs. CoRR abs/2305.18467 (2023) - [i201]Ignacio Hounie, Alejandro Ribeiro, Luiz F. O. Chamon:
Resilient Constrained Learning. CoRR abs/2306.02426 (2023) - [i200]Damian Owerko, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Solving Large-scale Spatial Problems with Convolutional Neural Networks. CoRR abs/2306.08191 (2023) - [i199]Miguel Calvo-Fullana, Mikhail Gerasimenko, Daniel Mox, Leopoldo Agorio, Mariana del Castillo, Vijay Kumar, Alejandro Ribeiro, Juan Andrés Bazerque:
A Networked Multi-Agent System for Mobile Wireless Infrastructure on Demand. CoRR abs/2306.08737 (2023) - [i198]Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, Alejandro Ribeiro:
Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs. CoRR abs/2306.11700 (2023) - [i197]Shubhankar P. Patankar, Mathieu Ouellet, Juan Cerviño, Alejandro Ribeiro, Kieran A. Murphy, Dani S. Bassett:
Intrinsically motivated graph exploration using network theories of human curiosity. CoRR abs/2307.04962 (2023) - [i196]Damian Owerko, Charilaos I. Kanatsoulis, Jennifer Bondarchuk, Donald J. Bucci Jr., Alejandro Ribeiro:
Transferability of Convolutional Neural Networks in Stationary Learning Tasks. CoRR abs/2307.11588 (2023) - [i195]Igor Spasojevic, Xu Liu, Ankit Prabhu, Alejandro Ribeiro, George J. Pappas, Vijay Kumar:
Robust Localization of Aerial Vehicles via Active Control of Identical Ground Vehicles. CoRR abs/2308.06658 (2023) - [i194]Saurav Agarwal, Alejandro Ribeiro, Vijay Kumar:
Asynchronous Perception-Action-Communication with Graph Neural Networks. CoRR abs/2309.10164 (2023) - [i193]Ignacio Boero, Igor Spasojevic, Mariana del Castillo, George J. Pappas, Vijay Kumar, Alejandro Ribeiro:
Navigation with shadow prices to optimize multi-commodity flow rates. CoRR abs/2309.14284 (2023) - [i192]Juan Elenter, Navid Naderializadeh, Tara Javidi, Alejandro Ribeiro:
Primal-Dual Continual Learning: Stability and Plasticity through Lagrange Multipliers. CoRR abs/2310.00154 (2023) - [i191]Sourajit Das, Navid Naderializadeh, Alejandro Ribeiro:
Learning State-Augmented Policies for Information Routing in Communication Networks. CoRR abs/2310.00248 (2023) - [i190]Jiashu He, Charilaos I. Kanatsoulis, Alejandro Ribeiro:
Network Alignment with Transferable Graph Autoencoders. CoRR abs/2310.03272 (2023) - [i189]Alejandro Parada-Mayorga, Landon Butler, Alejandro Ribeiro:
Non Commutative Convolutional Signal Models in Neural Networks: Stability to Small Deformations. CoRR abs/2310.03879 (2023) - [i188]Shervin Khalafi, Saurabh Sihag, Alejandro Ribeiro:
Neural Tangent Kernels Motivate Graph Neural Networks with Cross-Covariance Graphs. CoRR abs/2310.10791 (2023) - [i187]Hesham Mostafa, Adam Grabowski, Md Asadullah Turja, Juan Cerviño, Alejandro Ribeiro, Nageen Himayat:
FastSample: Accelerating Distributed Graph Neural Network Training for Billion-Scale Graphs. CoRR abs/2311.17847 (2023) - [i186]Samar Hadou, Navid Naderializadeh, Alejandro Ribeiro:
Robust Stochastically-Descending Unrolled Networks. CoRR abs/2312.15788 (2023) - [i185]Dongsheng Ding, Zhengyan Huan, Alejandro Ribeiro:
Resilient Constrained Reinforcement Learning. CoRR abs/2312.17194 (2023) - 2022
- [j136]Harshat Kumar, Santiago Paternain, Alejandro Ribeiro:
Navigation of a quadratic potential with ellipsoidal obstacles. Autom. 146: 110643 (2022) - [j135]Paul Brown, Mark Eisen, Santiago Segarra, Alejandro Ribeiro, Gabriel Egan:
How the Word Adjacency Network (WAN) works. Digit. Scholarsh. Humanit. 37(2): 321-335 (2022) - [j134]Elvin Isufi, Fernando Gama, Alejandro Ribeiro:
EdgeNets: Edge Varying Graph Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 7457-7473 (2022) - [j133]Daniel Mox, Vijay Kumar, Alejandro Ribeiro:
Learning Connectivity-Maximizing Network Configurations. IEEE Robotics Autom. Lett. 7(2): 5552-5559 (2022) - [j132]Zhan Gao, Fernando Gama, Alejandro Ribeiro:
Spherical convolutional neural networks: Stability to perturbations in SO(3). Signal Process. 196: 108529 (2022) - [j131]Vinícius Lima, Mark Eisen, Konstantinos Gatsis, Alejandro Ribeiro:
Model-Free design of control systems over wireless fading channels. Signal Process. 197: 108540 (2022) - [j130]Luiz F. O. Chamon, Alexandre Amice, Alejandro Ribeiro:
Approximately Supermodular Scheduling Subject to Matroid Constraints. IEEE Trans. Autom. Control. 67(3): 1384-1396 (2022) - [j129]Santiago Paternain, Juan Andrés Bazerque, Alejandro Ribeiro:
Policy Gradient for Continuing Tasks in Discounted Markov Decision Processes. IEEE Trans. Autom. Control. 67(9): 4467-4482 (2022) - [j128]Zhan Gao, Mark Eisen, Alejandro Ribeiro:
Resource Allocation via Model-Free Deep Learning in Free Space Optical Communications. IEEE Trans. Commun. 70(2): 920-934 (2022) - [j127]Ting-Kuei Hu, Fernando Gama, Tianlong Chen, Wenqing Zheng, Zhangyang Wang, Alejandro Ribeiro, Brian M. Sadler:
Scalable Perception-Action-Communication Loops With Convolutional and Graph Neural Networks. IEEE Trans. Signal Inf. Process. over Networks 8: 12-24 (2022) - [j126]Zhiyang Wang, Mark Eisen, Alejandro Ribeiro:
Learning Decentralized Wireless Resource Allocations With Graph Neural Networks. IEEE Trans. Signal Process. 70: 1850-1863 (2022) - [j125]Fernando Gama, Qingbiao Li, Ekaterina I. Tolstaya, Amanda Prorok, Alejandro Ribeiro:
Synthesizing Decentralized Controllers With Graph Neural Networks and Imitation Learning. IEEE Trans. Signal Process. 70: 1932-1946 (2022) - [j124]Zhan Gao, Alec Koppel, Alejandro Ribeiro:
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems. IEEE Trans. Signal Process. 70: 3693-3708 (2022) - [j123]Zhan Gao, Fernando Gama, Alejandro Ribeiro:
Wide and Deep Graph Neural Network With Distributed Online Learning. IEEE Trans. Signal Process. 70: 3862-3877 (2022) - [j122]Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro:
State-Augmented Learnable Algorithms for Resource Management in Wireless Networks. IEEE Trans. Signal Process. 70: 5898-5912 (2022) - [c279]Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro:
Convolutional Neural Networks on Manifolds: From Graphs and Back.