


Остановите войну!
for scientists:


default search action
Martin Takác 0001
Person information

- affiliation: Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
- affiliation (former): Lehigh University, Bethlehem, PA, USA
Other persons with the same name
- Martin Takác 0002 — Comenius University, Bratislava, Slovak Republic (and 1 more)
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j30]Zangir Iklassov
, Ikboljon Sobirov
, Ruben Solozabal, Martin Takác
:
Reinforcement Learning Approach to Stochastic Vehicle Routing Problem With Correlated Demands. IEEE Access 11: 87958-87969 (2023) - [j29]Zheng Shi, Abdurakhmon Sadiev, Nicolas Loizou, Peter Richtárik, Martin Takác:
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods. Trans. Mach. Learn. Res. 2023 (2023) - [c32]Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:
Algorithm for Constrained Markov Decision Process with Linear Convergence. AISTATS 2023: 11506-11533 - [c31]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2 : A Second Order Stochastic Polyak Method. ICLR 2023 - [c30]Nicolas M. Cuadrado, Roberto Alejandro Gutiérrez Guillén, Martin Takác:
FRESCO: Federated Reinforcement Energy System for Cooperative Optimization. Tiny Papers @ ICLR 2023 - [c29]Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa de Retana, Martin Takác:
On the Study of Curriculum Learning for Inferring Dispatching Policies on the Job Shop Scheduling. IJCAI 2023: 5350-5358 - [c28]Talal Algumaei, Ruben Solozabal, Réda Alami, Hakim Hacid, Mérouane Debbah, Martin Takác:
Regularization of the Policy Updates for Stabilizing Mean Field Games. PAKDD (2) 2023: 361-372 - [i74]Asma Ahmed Hashmi, Artem Agafonov, Aigerim Zhumabayeva, Mohammad Yaqub, Martin Takác:
In Quest of Ground Truth: Learning Confident Models and Estimating Uncertainty in the Presence of Annotator Noise. CoRR abs/2301.00524 (2023) - [i73]Nicolas M. Cuadrado, Roberto A. Gutiérrez, Yongli Zhu, Martin Takác:
MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids. CoRR abs/2303.08447 (2023) - [i72]Talal Algumaei, Ruben Solozabal, Réda Alami, Hakim Hacid, Mérouane Debbah, Martin Takác:
Regularization of the policy updates for stabilizing Mean Field Games. CoRR abs/2304.01547 (2023) - [i71]Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, Martin Takác:
Stochastic Gradient Descent with Preconditioned Polyak Step-size. CoRR abs/2310.02093 (2023) - [i70]Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takác, Karthik Nandakumar, Samuel Horváth, Eduard Gorbunov:
Byzantine-Tolerant Methods for Distributed Variational Inequalities. CoRR abs/2311.04611 (2023) - [i69]Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, Martin Takác:
Reinforcement Learning for Solving Stochastic Vehicle Routing Problem. CoRR abs/2311.07708 (2023) - 2022
- [j28]Abdurakhmon Sadiev, Ekaterina Borodich, Aleksandr Beznosikov, Darina Dvinskikh
, Saveliy Chezhegov, Rachael Tappenden, Martin Takác
, Alexander V. Gasnikov:
Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes. EURO J. Comput. Optim. 10: 100041 (2022) - [j27]Yicheng Chen
, Rick S. Blum
, Martin Takác
, Brian M. Sadler
:
Distributed Learning With Sparsified Gradient Differences. IEEE J. Sel. Top. Signal Process. 16(3): 585-600 (2022) - [j26]Afshin Oroojlooyjadid
, MohammadReza Nazari
, Lawrence V. Snyder
, Martin Takác
:
A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization. Manuf. Serv. Oper. Manag. 24(1): 285-304 (2022) - [j25]Albert S. Berahas
, Majid Jahani
, Peter Richtárik
, Martin Takác
:
Quasi-Newton methods for machine learning: forget the past, just sample. Optim. Methods Softw. 37(5): 1668-1704 (2022) - [c27]Zhengqing Gao, Huimin Wu, Martin Takác, Bin Gu:
Towards Practical Large Scale Non-Linear Semi-Supervised Learning with Balancing Constraints. CIKM 2022: 3072-3081 - [c26]Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W. Mahoney, Martin Takác:
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information. ICLR 2022 - [c25]Alexander V. Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr Beznosikov, Martin Takác, Pavel E. Dvurechensky, Bin Gu:
The power of first-order smooth optimization for black-box non-smooth problems. ICML 2022: 7241-7265 - [c24]Naif Alkhunaizi
, Dmitry Kamzolov
, Martin Takác
, Karthik Nandakumar
:
Suppressing Poisoning Attacks on Federated Learning for Medical Imaging. MICCAI (8) 2022: 673-683 - [c23]Slavomír Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander V. Gasnikov, Peter Richtárik, Martin Takác:
A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate. NeurIPS 2022 - [i68]Yicheng Chen, Rick S. Blum, Martin Takác, Brian M. Sadler:
Distributed Learning With Sparsified Gradient Differences. CoRR abs/2202.02491 (2022) - [i67]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Robustness Analysis of Classification Using Recurrent Neural Networks with Perturbed Sequential Input. CoRR abs/2203.05403 (2022) - [i66]Abdurakhmon Sadiev, Aleksandr Beznosikov
, Abdulla Jasem Almansoori, Dmitry Kamzolov
, Rachael Tappenden, Martin Takác:
Stochastic Gradient Methods with Preconditioned Updates. CoRR abs/2206.00285 (2022) - [i65]Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:
Algorithm for Constrained Markov Decision Process with Linear Convergence. CoRR abs/2206.01666 (2022) - [i64]Yuzhen Han, Ruben Solozabal, Jing Dong, Xingyu Zhou, Martin Takác, Bin Gu:
Learning to Control under Time-Varying Environment. CoRR abs/2206.02507 (2022) - [i63]Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal, Martin Takác:
Learning to generalize Dispatching rules on the Job Shop Scheduling. CoRR abs/2206.04423 (2022) - [i62]Aleksandr Beznosikov
, Aibek Alanov, Dmitry Kovalev, Martin Takác, Alexander V. Gasnikov:
On Scaled Methods for Saddle Point Problems. CoRR abs/2206.08303 (2022) - [i61]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2: A Second Order Stochastic Polyak Method. CoRR abs/2207.08171 (2022) - [i60]Naif Alkhunaizi, Dmitry Kamzolov
, Martin Takác, Karthik Nandakumar:
Suppressing Poisoning Attacks on Federated Learning for Medical Imaging. CoRR abs/2207.10804 (2022) - [i59]Artem Agafonov, Brahim Erraji, Martin Takác:
FLECS-CGD: A Federated Learning Second-Order Framework via Compression and Sketching with Compressed Gradient Differences. CoRR abs/2210.09626 (2022) - [i58]Rachael Tappenden, Martin Takác:
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points. CoRR abs/2211.00866 (2022) - [i57]Jie Liu, Antonio Bellon, Andrea Simonetto, Martin Takác, Jakub Marecek
:
Optimal Power Flow Pursuit in the Alternating Current Model. CoRR abs/2211.02939 (2022) - [i56]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
Partial Disentanglement with Partially-Federated GANs (PaDPaF). CoRR abs/2212.03836 (2022) - 2021
- [j24]Krishnan Kumaran, Dimitri J. Papageorgiou, Martin Takác
, Laurens Lueg, Nicolas V. Sahinidis:
Active metric learning for supervised classification. Comput. Chem. Eng. 144: 107132 (2021) - [j23]Majid Jahani, Naga Venkata C. Gudapati, Chenxin Ma, Rachael Tappenden
, Martin Takác
:
Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences. Comput. Optim. Appl. 79(2): 369-404 (2021) - [j22]Chenxin Ma
, Martin Jaggi
, Frank E. Curtis
, Nathan Srebro
, Martin Takác
:
An accelerated communication-efficient primal-dual optimization framework for structured machine learning. Optim. Methods Softw. 36(1): 20-44 (2021) - [j21]Lam M. Nguyen
, Katya Scheinberg
, Martin Takác
:
Inexact SARAH algorithm for stochastic optimization. Optim. Methods Softw. 36(1): 237-258 (2021) - [c22]Majid Jahani, MohammadReza Nazari, Rachael Tappenden, Albert S. Berahas, Martin Takác:
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm. AISTATS 2021: 487-495 - [c21]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. BMVC 2021: 154 - [c20]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Classification-Aware Path Planning of Network of Robots. DARS 2021: 294-305 - [i55]Zheng Shi, Nicolas Loizou, Peter Richtárik
, Martin Takác:
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods. CoRR abs/2102.09700 (2021) - [i54]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. CoRR abs/2107.02423 (2021) - [i53]Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik
, Michael W. Mahoney, Martin Takác:
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information. CoRR abs/2109.05198 (2021) - [i52]Aleksandr Beznosikov, Martin Takác:
Random-reshuffled SARAH does not need a full gradient computations. CoRR abs/2111.13322 (2021) - 2020
- [j20]Nur Sila Gulgec, Martin Takác
, Shamim N. Pakzad:
Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment. Comput. Aided Civ. Infrastructure Eng. 35(12): 1349-1364 (2020) - [j19]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác
:
Applying deep learning to the newsvendor problem. IISE Trans. 52(4): 444-463 (2020) - [j18]Aryan Mokhtari, Alec Koppel, Martin Takác, Alejandro Ribeiro:
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning. J. Mach. Learn. Res. 21: 120:1-120:51 (2020) - [j17]Albert S. Berahas
, Martin Takác
:
A robust multi-batch L-BFGS method for machine learning. Optim. Methods Softw. 35(1): 191-219 (2020) - [j16]Peter Richtárik
, Martin Takác
:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. SIAM J. Matrix Anal. Appl. 41(2): 487-524 (2020) - [c19]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. AISTATS 2020: 2634-2644 - [c18]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad, Martin Takác
:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. ICMLA 2020: 130-135 - [c17]Majid Jahani, MohammadReza Nazari, Sergey Rusakov, Albert S. Berahas, Martin Takác
:
Scaling Up Quasi-newton Algorithms: Communication Efficient Distributed SR1. LOD (1) 2020: 41-54 - [i51]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad, Martin Takác:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. CoRR abs/2006.01892 (2020) - [i50]Ruben Solozabal, Josu Ceberio, Martin Takác:
Constrained Combinatorial Optimization with Reinforcement Learning. CoRR abs/2006.11984 (2020) - [i49]Soheil Sadeghi Eshkevari, Martin Takác, Shamim N. Pakzad, Majid Jahani:
DynNet: Physics-based neural architecture design for linear and nonlinear structural response modeling and prediction. CoRR abs/2007.01814 (2020) - [i48]Guangyi Liu, Arash Amini, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
Reinforcement Learning based Multi-Robot Classification via Scalable Communication Structure. CoRR abs/2012.10480 (2020)
2010 – 2019
- 2019
- [j15]Nur Sila Gulgec, Martin Takác
, Shamim N. Pakzad:
Convolutional Neural Network Approach for Robust Structural Damage Detection and Localization. J. Comput. Civ. Eng. 33(3) (2019) - [j14]Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg
, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. J. Mach. Learn. Res. 20: 176:1-176:49 (2019) - [c16]Mikhail Krechetov, Jakub Marecek
, Yury Maximov, Martin Takác
:
Entropy-Penalized Semidefinite Programming. IJCAI 2019: 1123-1129 - [c15]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác
, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. IROS 2019: 5020-5027 - [i47]Konstantin Mishchenko
, Eduard Gorbunov
, Martin Takác, Peter Richtárik
:
Distributed Learning with Compressed Gradient Differences. CoRR abs/1901.09269 (2019) - [i46]Albert S. Berahas, Majid Jahani, Martin Takác:
Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample. CoRR abs/1901.09997 (2019) - [i45]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. CoRR abs/1905.04835 (2019) - [i44]MohammadReza Nazari, Majid Jahani, Lawrence V. Snyder, Martin Takác:
Don't Forget Your Teacher: A Corrective Reinforcement Learning Framework. CoRR abs/1905.13562 (2019) - [i43]Hossein K. Mousavi, Guangyi Liu, Weihang Yuan, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
A Layered Architecture for Active Perception: Image Classification using Deep Reinforcement Learning. CoRR abs/1909.09705 (2019) - [i42]Nur Sila Gulgec, Zheng Shi, Neil Deshmukh, Shamim N. Pakzad, Martin Takác:
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods. CoRR abs/1910.12680 (2019) - [i41]Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, Martin Takác:
Distributed Fixed Point Methods with Compressed Iterates. CoRR abs/1912.09925 (2019) - 2018
- [j13]Xi He, Rachael Tappenden, Martin Takác
:
Dual Free Adaptive Minibatch SDCA for Empirical Risk Minimization. Frontiers Appl. Math. Stat. 4: 33 (2018) - [j12]Rachael Tappenden, Martin Takác
, Peter Richtárik:
On the complexity of parallel coordinate descent. Optim. Methods Softw. 33(2): 372-395 (2018) - [c14]Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg
, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. ICML 2018: 3747-3755 - [c13]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Reinforcement Learning for Solving the Vehicle Routing Problem. NeurIPS 2018: 9861-9871 - [c12]Jakub Marecek
, Peter Richtárik
, Martin Takác
:
Matrix Completion Under Interval Uncertainty: Highlights. ECML/PKDD (3) 2018: 621-625 - [i40]Lam M. Nguyen
, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik
, Katya Scheinberg, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. CoRR abs/1802.03801 (2018) - [i39]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Deep Reinforcement Learning for Solving the Vehicle Routing Problem. CoRR abs/1802.04240 (2018) - [i38]Krishnan Kumaran, Dimitri J. Papageorgiou, Yutong Chang, Minhan Li, Martin Takác:
Active Metric Learning for Supervised Classification. CoRR abs/1803.10647 (2018) - [i37]Jie Liu, Yu Rong, Martin Takác, Junzhou Huang:
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches. CoRR abs/1807.05328 (2018) - [i36]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. CoRR abs/1810.11507 (2018) - [i35]Lam M. Nguyen
, Katya Scheinberg, Martin Takác:
Inexact SARAH Algorithm for Stochastic Optimization. CoRR abs/1811.10105 (2018) - [i34]Lam M. Nguyen
, Phuong Ha Nguyen, Peter Richtárik
, Katya Scheinberg, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. CoRR abs/1811.12403 (2018) - 2017
- [j11]Jakub Marecek
, Peter Richtárik, Martin Takác
:
Matrix completion under interval uncertainty. Eur. J. Oper. Res. 256(1): 35-43 (2017) - [j10]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. J. Mach. Learn. Res. 18: 230:1-230:49 (2017) - [j9]Chenxin Ma, Jakub Konecný, Martin Jaggi
, Virginia Smith, Michael I. Jordan
, Peter Richtárik, Martin Takác
:
Distributed optimization with arbitrary local solvers. Optim. Methods Softw. 32(4): 813-848 (2017) - [j8]Jakub Marecek
, Martin Takác
:
A low-rank coordinate-descent algorithm for semidefinite programming relaxations of optimal power flow. Optim. Methods Softw. 32(4): 849-871 (2017) - [j7]Jie Liu, Alan C. Liddell Jr., Jakub Marecek
, Martin Takác
:
Hybrid Methods in Solving Alternating-Current Optimal Power Flows. IEEE Trans. Smart Grid 8(6): 2988-2998 (2017) - [c11]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Distributed Hessian-Free Optimization for Deep Neural Network. AAAI Workshops 2017 - [c10]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Work-Balancing. AAAI Workshops 2017 - [c9]Lam M. Nguyen, Jie Liu, Katya Scheinberg
, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017: 2613-2621 - [i33]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. CoRR abs/1703.00102 (2017) - [i32]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization. CoRR abs/1705.07261 (2017) - [i31]Peter Richtárik
, Martin Takác:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. CoRR abs/1706.01108 (2017) - [i30]Albert S. Berahas, Martin Takác:
A Robust Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1707.08552 (2017) - [i29]Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence V. Snyder, Martin Takác:
A Deep Q-Network for the Beer Game with Partial Information. CoRR abs/1708.05924 (2017) - [i28]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Stock-out Prediction in Multi-echelon Networks. CoRR abs/1709.06922 (2017) - [i27]Chenxin Ma, Naga Venkata C. Gudapati, Majid Jahani, Rachael Tappenden, Martin Takác:
Underestimate Sequences via Quadratic Averaging. CoRR abs/1710.03695 (2017) - [i26]Chenxin Ma, Martin Jaggi, Frank E. Curtis, Nathan Srebro, Martin Takác:
An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning. CoRR abs/1711.05305 (2017) - 2016
- [j6]Peter Richtárik, Martin Takác:
Distributed Coordinate Descent Method for Learning with Big Data. J. Mach. Learn. Res. 17: 75:1-75:25 (2016) - [j5]Chenxin Ma, Rachael Tappenden, Martin Takác:
Linear Convergence of Randomized Feasible Descent Methods Under the Weak Strong Convexity Assumption. J. Mach. Learn. Res. 17: 230:1-230:24 (2016) - [j4]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác
:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. IEEE J. Sel. Top. Signal Process. 10(2): 242-255 (2016) - [j3]Peter Richtárik, Martin Takác
:
Parallel coordinate descent methods for big data optimization. Math. Program. 156(1-2): 433-484 (2016) - [j2]Peter Richtárik, Martin Takác
:
On optimal probabilities in stochastic coordinate descent methods. Optim. Lett. 10(6): 1233-1243 (2016) - [c8]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. ICML 2016: 783-792 - [c7]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. ICML 2016: 1823-1832 - [c6]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. NIPS 2016: 1055-1063 - [i25]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. CoRR abs/1602.05205 (2016) - [i24]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing. CoRR abs/1603.05191 (2016) - [i23]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1605.06049 (2016) - [i22]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Large Scale Distributed Hessian-Free Optimization for Deep Neural Network. CoRR abs/1606.00511 (2016) - [i21]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Applying Deep Learning to the Newsvendor Problem. CoRR abs/1607.02177 (2016) - [i20]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. CoRR abs/1611.02189 (2016) - [i19]Jie Liu, Martin Takác:
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption. CoRR abs/1612.05356 (2016) - 2015
- [c5]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. ICML 2015: 1973-1982 - [i18]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. CoRR abs/1502.02268 (2015) - [i17]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. CoRR abs/1502.03508 (2015) - [i16]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. CoRR abs/1504.04407 (2015) - [i15]