


default search action
Journal of Machine Learning Research, Volume 20
Volume 20, 2019
- Corinna Cortes, Mehryar Mohri, Andrés Muñoz Medina:

Adaptation Based on Generalized Discrepancy. 1:1-1:30 - Sho Sonoda, Noboru Murata:

Transport Analysis of Infinitely Deep Neural Network. 2:1-2:52 - Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro:

Parsimonious Online Learning with Kernels via Sparse Projections in Function Space. 3:1-3:44 - Clément Bouttier, Ioana Gavra:

Convergence Rate of a Simulated Annealing Algorithm with Noisy Observations. 4:1-4:45 - Han Chen, Garvesh Raskutti, Ming Yuan:

Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression. 5:1-5:37 - Piotr Szymanski, Tomasz Kajdanowicz:

scikit-multilearn: A Python library for Multi-Label Classification. 6:1-6:22 - Murat A. Erdogdu, Mohsen Bayati, Lee H. Dicker:

Scalable Approximations for Generalized Linear Problems. 7:1-7:45 - Giorgos Borboudakis, Ioannis Tsamardinos:

Forward-Backward Selection with Early Dropping. 8:1-8:39 - Adel Javanmard, Hamid Nazerzadeh:

Dynamic Pricing in High-dimensions. 9:1-9:49 - Salar Fattahi, Somayeh Sojoudi:

Graphical Lasso and Thresholding: Equivalence and Closed-form Solutions. 10:1-10:44 - Mehmet Eren Ahsen, Mathukumalli Vidyasagar:

An Approach to One-Bit Compressed Sensing Based on Probably Approximately Correct Learning Theory. 11:1-11:23 - Shusen Wang, Alex Gittens, Michael W. Mahoney:

Scalable Kernel K-Means Clustering with Nystr\"om Approximation: Relative-Error Bounds. 12:1-12:49 - Ofer Meshi, Ben London, Adrian Weller, David A. Sontag:

Train and Test Tightness of LP Relaxations in Structured Prediction. 13:1-13:34 - Steffen Grünewälder, Azadeh Khaleghi:

Approximations of the Restless Bandit Problem. 14:1-14:37 - Trevor Campbell, Tamara Broderick:

Automated Scalable Bayesian Inference via Hilbert Coresets. 15:1-15:38 - Ben Dai, Junhui Wang, Xiaotong Shen, Annie Qu:

Smooth neighborhood recommender systems. 16:1-16:24 - Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour:

Delay and Cooperation in Nonstochastic Bandits. 17:1-17:38 - María Luz Gámiz, María Dolores Martínez Miranda, Jens Perch Nielsen:

Multiplicative local linear hazard estimation and best one-sided cross-validation. 18:1-18:29 - Enrique González Rodrigo, Juan A. Aledo, José A. Gámez:

spark-crowd: A Spark Package for Learning from Crowdsourced Big Data. 19:1-19:5 - HanQin Cai, Jian-Feng Cai, Ke Wei:

Accelerated Alternating Projections for Robust Principal Component Analysis. 20:1-20:33 - Ashish Khetan, Sewoong Oh:

Spectrum Estimation from a Few Entries. 21:1-21:55 - Yanning Shen, Tianyi Chen, Georgios B. Giannakis:

Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics. 22:1-22:36 - Chengchun Shi, Wenbin Lu, Rui Song:

Determining the Number of Latent Factors in Statistical Multi-Relational Learning. 23:1-23:38 - Luciana Ferrer, Mitchell McLaren:

Joint PLDA for Simultaneous Modeling of Two Factors. 24:1-24:29 - Alberto Bietti, Julien Mairal:

Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations. 25:1-25:49 - Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Maja Pantic:

TensorLy: Tensor Learning in Python. 26:1-26:6 - Veit Elser, Dan Schmidt, Jonathan S. Yedidia:

Monotone Learning with Rectified Wire Networks. 27:1-27:42 - Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, Noah D. Goodman:

Pyro: Deep Universal Probabilistic Programming. 28:1-28:6 - Bernard Chazelle, Chu Wang:

Iterated Learning in Dynamic Social Networks. 29:1-29:28 - Aleksis Pirinen, Brendan P. W. Ames

:
Exact Clustering of Weighted Graphs via Semidefinite Programming. 30:1-30:34 - Franz J. Király, Harald Oberhauser:

Kernels for Sequentially Ordered Data. 31:1-31:45 - Jan Kralj, Marko Robnik-Sikonja, Nada Lavrac:

NetSDM: Semantic Data Mining with Network Analysis. 32:1-32:50 - Roei Gelbhart, Ran El-Yaniv:

The Relationship Between Agnostic Selective Classification, Active Learning and the Disagreement Coefficient. 33:1-33:38 - Zahra S. Razaee, Arash A. Amini, Jingyi Jessica Li

:
Matched Bipartite Block Model with Covariates. 34:1-34:44 - Christopher R. Dance, Tomi Silander:

Optimal Policies for Observing Time Series and Related Restless Bandit Problems. 35:1-35:93 - Patrick Rebeschini, Sekhar Tatikonda:

A New Approach to Laplacian Solvers and Flow Problems. 36:1-36:37 - Tyler Maunu, Teng Zhang, Gilad Lerman:

A Well-Tempered Landscape for Non-convex Robust Subspace Recovery. 37:1-37:59 - Yichen Chen, Yinyu Ye, Mengdi Wang:

Approximation Hardness for A Class of Sparse Optimization Problems. 38:1-38:27 - Miles E. Lopes, Shusen Wang, Michael W. Mahoney:

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication. 39:1-39:40 - Qianxiao Li, Cheng Tai, Weinan E:

Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations. 40:1-40:47 - Julian Katz-Samuels, Gilles Blanchard, Clayton Scott:

Decontamination of Mutual Contamination Models. 41:1-41:57 - Jialei Wang, Tong Zhang:

Utilizing Second Order Information in Minibatch Stochastic Variance Reduced Proximal Iterations. 42:1-42:56 - Lin Xiao, Adams Wei Yu, Qihang Lin, Weizhu Chen:

DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization. 43:1-43:58 - Jason Ge, Xingguo Li, Haoming Jiang, Han Liu, Tong Zhang, Mengdi Wang

, Tuo Zhao:
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python. 44:1-44:5 - Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, Tong Zhang:

Robust Frequent Directions with Application in Online Learning. 45:1-45:41 - Shao-Bo Lin, Yunwen Lei, Ding-Xuan Zhou:

Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping. 46:1-46:36 - Zhixin Zhou, Arash A. Amini:

Analysis of spectral clustering algorithms for community detection: the general bipartite setting. 47:1-47:47 - Ying-Qi Zhao, Eric B. Laber, Yang Ning, Sumona Saha, Bruce E. Sands:

Efficient augmentation and relaxation learning for individualized treatment rules using observational data. 48:1-48:23 - Akshara Rai, Rika Antonova, Franziska Meier, Christopher G. Atkeson:

Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots. 49:1-49:24 - Felix Berkenkamp, Angela P. Schoellig, Andreas Krause

:
No-Regret Bayesian Optimization with Unknown Hyperparameters. 50:1-50:24 - Gregor Pirs, Erik Strumbelj:

Bayesian Combination of Probabilistic Classifiers using Multivariate Normal Mixtures. 51:1-51:18 - Sondre Glimsdal, Ole-Christoffer Granmo:

Thompson Sampling Guided Stochastic Searching on the Line for Deceptive Environments with Applications to Root-Finding Problems. 52:1-52:24 - Philipp Probst, Anne-Laure Boulesteix, Bernd Bischl:

Tunability: Importance of Hyperparameters of Machine Learning Algorithms. 53:1-53:32 - Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:

Deep Reinforcement Learning for Swarm Systems. 54:1-54:31 - Thomas Elsken, Jan Hendrik Metzen, Frank Hutter:

Neural Architecture Search: A Survey. 55:1-55:21 - Zengfeng Huang

:
Near Optimal Frequent Directions for Sketching Dense and Sparse Matrices. 56:1-56:23 - Joey Tianyi Zhou, Ivor W. Tsang

, Sinno Jialin Pan, Mingkui Tan:
Multi-class Heterogeneous Domain Adaptation. 57:1-57:31 - Po-Wei Wang, Ching-Pei Lee, Chih-Jen Lin:

The Common-directions Method for Regularized Empirical Risk Minimization. 58:1-58:49 - Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, Fei Sha:

Kernel Approximation Methods for Speech Recognition. 59:1-59:36 - Wenwu Wang, Ping Yu, Lu Lin, Tiejun Tong:

Robust Estimation of Derivatives Using Locally Weighted Least Absolute Deviation Regression. 60:1-60:49 - Dong Xia, Fan Zhou:

The Sup-norm Perturbation of HOSVD and Low Rank Tensor Denoising. 61:1-61:42 - Sébastien Bubeck, Nikhil R. Devanur, Zhiyi Huang, Rad Niazadeh:

Multi-scale Online Learning: Theory and Applications to Online Auctions and Pricing. 62:1-62:37 - Peter L. Bartlett, Nick Harvey, Christopher Liaw, Abbas Mehrabian:

Nearly-tight VC-dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks. 63:1-63:17 - Bastian Bohn, Christian Rieger, Michael Griebel:

A Representer Theorem for Deep Kernel Learning. 64:1-64:32 - Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, John Langford:

Active Learning for Cost-Sensitive Classification. 65:1-65:50 - Kevin L. Keys, Hua Zhou, Kenneth Lange:

Proximal Distance Algorithms: Theory and Practice. 66:1-66:38 - Hubie Chen, Matthew Valeriote:

Learnability of Solutions to Conjunctive Queries. 67:1-67:28 - John C. Duchi, Hongseok Namkoong:

Variance-based Regularization with Convex Objectives. 68:1-68:55 - Vince Lyzinski, Keith D. Levin, Carey E. Priebe:

On Consistent Vertex Nomination Schemes. 69:1-69:39 - Tomoyuki Obuchi, Yoshiyuki Kabashima:

Semi-Analytic Resampling in Lasso. 70:1-70:33 - Gábor Braun, Sebastian Pokutta, Daniel Zink:

Lazifying Conditional Gradient Algorithms. 71:1-71:42 - Can Karakus, Yifan Sun, Suhas N. Diggavi, Wotao Yin:

Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning. 72:1-72:47 - Alain Durmus, Szymon Majewski, Blazej Miasojedow

:
Analysis of Langevin Monte Carlo via Convex Optimization. 73:1-73:46 - Sebastian Becker, Patrick Cheridito, Arnulf Jentzen:

Deep Optimal Stopping. 74:1-74:25 - Muhammad Bilal Zafar, Isabel Valera

, Manuel Gomez-Rodriguez, Krishna P. Gummadi
:
Fairness Constraints: A Flexible Approach for Fair Classification. 75:1-75:42 - Shiqing Yu, Mathias Drton, Ali Shojaie:

Generalized Score Matching for Non-Negative Data. 76:1-76:70 - Yingying Fan, Emre Demirkaya, Jinchi Lv:

Nonuniformity of P-values Can Occur Early in Diverging Dimensions. 77:1-77:33 - Anindya Bhadra, Jyotishka Datta, Yunfan Li, Nicholas G. Polson, Brandon T. Willard:

Prediction Risk for the Horseshoe Regression. 78:1-78:39 - Afonso Fernandes Vaz, Rafael Izbicki, Rafael Bassi Stern:

Quantification Under Prior Probability Shift: the Ratio Estimator and its Extensions. 79:1-79:33 - Ruilin Li, Xiaojing Ye, Haomin Zhou, Hongyuan Zha:

Learning to Match via Inverse Optimal Transport. 80:1-80:37 - Mónika Csikós

, Nabil H. Mustafa, Andrey Kupavskii:
Tight Lower Bounds on the VC-dimension of Geometric Set Systems. 81:1-81:8 - Rob Chew, Michael Wenger, Caroline Kery, Jason Nance, Keith Richards, Emily Hadley, Peter Baumgartner:

SMART: An Open Source Data Labeling Platform for Supervised Learning. 82:1-82:5 - Jaouad Mourtada

, Stéphane Gaïffas:
On the optimality of the Hedge algorithm in the stochastic regime. 83:1-83:28 - Alistair Letcher, David Balduzzi, Sébastien Racanière, James Martens, Jakob N. Foerster, Karl Tuyls, Thore Graepel:

Differentiable Game Mechanics. 84:1-84:40 - Leonardo Vilela Teixeira, Renato M. Assunção, Rosangela Helena Loschi:

Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. 85:1-85:35 - Armin Eftekhari, Gregory Ongie, Laura Balzano, Michael B. Wakin

:
Streaming Principal Component Analysis From Incomplete Data. 86:1-86:62 - Botond Szabó, Harry van Zanten:

An asymptotic analysis of distributed nonparametric methods. 87:1-87:30 - Merlin Mpoudeu, Bertrand S. Clarke:

Model Selection via the VC Dimension. 88:1-88:26 - Anqi Wu, Oluwasanmi Koyejo, Jonathan W. Pillow

:
Dependent relevance determination for smooth and structured sparse regression. 89:1-89:43 - Muhammad A. Masood, Finale Doshi-Velez:

A Particle-Based Variational Approach to Bayesian Non-negative Matrix Factorization. 90:1-90:56 - Jason M. Altschuler, Victor-Emmanuel Brunel, Alan Malek:

Best Arm Identification for Contaminated Bandits. 91:1-91:39 - Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, Saif M. Mohammad:

AffectiveTweets: a Weka Package for Analyzing Affect in Tweets. 92:1-92:6 - Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, Pieter-Jan Kindermans:

iNNvestigate Neural Networks! 93:1-93:8 - Mark Bun, Kobbi Nissim, Uri Stemmer:

Simultaneous Private Learning of Multiple Concepts. 94:1-94:34 - Gunwoong Park, Sion Park:

High-Dimensional Poisson Structural Equation Model Learning via $\ell_1$-Regularized Regression. 95:1-95:41 - Yue Zhao, Zain Nasrullah, Zheng Li:

PyOD: A Python Toolbox for Scalable Outlier Detection. 96:1-96:7 - Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:

Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion. 97:1-97:22 - Wenjing Liao, Mauro Maggioni:

Adaptive Geometric Multiscale Approximations for Intrinsically Low-dimensional Data. 98:1-98:63 - William Herlands, Daniel B. Neill, Hannes Nickisch, Andrew Gordon Wilson:

Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction. 99:1-99:51 - Khue-Dung Dang, Matias Quiroz, Robert Kohn, Minh-Ngoc Tran, Mattias Villani:

Hamiltonian Monte Carlo with Energy Conserving Subsampling. 100:1-100:31 - Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:

Low Permutation-rank Matrices: Structural Properties and Noisy Completion. 101:1-101:43 - Maria-Florina Balcan, Yingyu Liang, Zhao Song, David P. Woodruff, Hongyang Zhang:

Non-Convex Matrix Completion and Related Problems via Strong Duality. 102:1-102:56 - Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, Peyman Mohajerin Esfahani:

Regularization via Mass Transportation. 103:1-103:68 - Salvatore Ruggieri:

Complete Search for Feature Selection in Decision Trees. 104:1-104:34 - Max Sommerfeld, Jörn Schrieber, Yoav Zemel, Axel Munk:

Optimal Transport: Fast Probabilistic Approximation with Exact Solvers. 105:1-105:23 - Ziyan Luo, Defeng Sun, Kim-Chuan Toh, Naihua Xiu:

Solving the OSCAR and SLOPE Models Using a Semismooth Newton-Based Augmented Lagrangian Method. 106:1-106:25 - Zemin Zheng, Mohammad Taha Bahadori, Yan Liu, Jinchi Lv:

Scalable Interpretable Multi-Response Regression via SEED. 107:1-107:34 - Omer Weissbrod, Shachar Kaufman, David Golan, Saharon Rosset:

Maximum Likelihood for Gaussian Process Classification and Generalized Linear Mixed Models under Case-Control Sampling. 108:1-108:30 - De Wen Soh, Sekhar Tatikonda:

Learning Unfaithful $K$-separable Gaussian Graphical Models. 109:1-109:30 - Michael Unser:

A Representer Theorem for Deep Neural Networks. 110:1-110:30 - Abhishek Kaul, Venkata K. Jandhyala, Stergios B. Fotopoulos:

An Efficient Two Step Algorithm for High Dimensional Change Point Regression Models Without Grid Search. 111:1-111:40 - Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein, Roy Frostig, George E. Dahl:

Measuring the Effects of Data Parallelism on Neural Network Training. 112:1-112:49 - Xiaozhou Wang, Zhuoyi Yang, Xi Chen, Weidong Liu:

Distributed Inference for Linear Support Vector Machine. 113:1-113:41 - Richard Y. Zhang, Somayeh Sojoudi, Javad Lavaei:

Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery. 114:1-114:34 - Yuqi Gu

, Gongjun Xu:
Learning Attribute Patterns in High-Dimensional Structured Latent Attribute Models. 115:1-115:58 - Andreas Loukas:

Graph Reduction with Spectral and Cut Guarantees. 116:1-116:42 - Edwin V. Bonilla, Karl Krauth, Amir Dezfouli:

Generic Inference in Latent Gaussian Process Models. 117:1-117:63 - Mokhtar Z. Alaya

, Simon Bussy, Stéphane Gaïffas, Agathe Guilloux:
Binarsity: a penalization for one-hot encoded features in linear supervised learning. 118:1-118:34 - Kean Ming Tan, Junwei Lu, Tong Zhang, Han Liu:

Layer-Wise Learning Strategy for Nonparametric Tensor Product Smoothing Spline Regression and Graphical Models. 119:1-119:38 - Stephen Page, Steffen Grünewälder:

Ivanov-Regularised Least-Squares Estimators over Large RKHSs and Their Interpolation Spaces. 120:1-120:49 - Bin Hong, Weizhong Zhang, Wei Liu, Jieping Ye, Deng Cai, Xiaofei He, Jie Wang:

Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction. 121:1-121:39 - Dmitri S. Pavlichin, Jiantao Jiao, Tsachy Weissman:

Approximate Profile Maximum Likelihood. 122:1-122:55 - Setareh Ariafar, Jaume Coll-Font, Dana H. Brooks, Jennifer G. Dy:

ADMMBO: Bayesian Optimization with Unknown Constraints using ADMM. 123:1-123:26 - Ian Osband, Benjamin Van Roy, Daniel J. Russo, Zheng Wen:

Deep Exploration via Randomized Value Functions. 124:1-124:62 - Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, María Pérez-Ortiz:

ORCA: A Matlab/Octave Toolbox for Ordinal Regression. 125:1-125:5 - Christoph D. Hofer, Roland Kwitt, Marc Niethammer:

Learning Representations of Persistence Barcodes. 126:1-126:45 - Steven M. Hill, Chris J. Oates, Duncan A. J. Blythe, Sach Mukherjee:

Causal Learning via Manifold Regularization. 127:1-127:32 - Edward Barker, Charl J. Ras:

Unsupervised Basis Function Adaptation for Reinforcement Learning. 128:1-128:73 - Håvard Kvamme, Ørnulf Borgan, Ida Scheel:

Time-to-Event Prediction with Neural Networks and Cox Regression. 129:1-129:30 - Ashwin Srinivasan, Lovekesh Vig, Michael Bain:

Logical Explanations for Deep Relational Machines Using Relevance Information. 130:1-130:47 - Sophie Burkhardt, Stefan Kramer:

Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model. 131:1-131:27 - HaiYing Wang

:
More Efficient Estimation for Logistic Regression with Optimal Subsamples. 132:1-132:59 - Luca Venturi, Afonso S. Bandeira, Joan Bruna:

Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes. 133:1-133:34 - Dongruo Zhou, Pan Xu, Quanquan Gu:

Stochastic Variance-Reduced Cubic Regularization Methods. 134:1-134:47 - Christian Agrell:

Gaussian Processes with Linear Operator Inequality Constraints. 135:1-135:36 - Nicolás García Trillos, Daniel Sanz-Alonso, Ruiyi Yang:

Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis. 136:1-136:37 - Mohammad J. Saberian, Nuno Vasconcelos:

Multiclass Boosting: Margins, Codewords, Losses, and Algorithms. 137:1-137:68 - Tobias Sutter, David Sutter

, Peyman Mohajerin Esfahani, John Lygeros:
Generalized Maximum Entropy Estimation. 138:1-138:29 - Amir Daneshmand, Ying Sun, Gesualdo Scutari, Francisco Facchinei, Brian M. Sadler:

Decentralized Dictionary Learning Over Time-Varying Digraphs. 139:1-139:62 - Zuofeng Shang, Botao Hao, Guang Cheng:

Nonparametric Bayesian Aggregation for Massive Data. 140:1-140:81 - Thanh Van Nguyen, Raymond K. W. Wong, Chinmay Hegde:

Provably Accurate Double-Sparse Coding. 141:1-141:43 - Ji Chen, Xiaodong Li:

Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA. 142:1-142:39 - Zhenyue Zhang, Yuqing Xia:

Minimal Sample Subspace Learning: Theory and Algorithms. 143:1-143:57 - Bin Li

, Yik-Chung Wu:
Convergence of Gaussian Belief Propagation Under General Pairwise Factorization: Connecting Gaussian MRF with Pairwise Linear Gaussian Model. 144:1-144:30 - Benjamin Letham, Eytan Bakshy:

Bayesian Optimization for Policy Search via Online-Offline Experimentation. 145:1-145:30 - Amos Beimel, Kobbi Nissim, Uri Stemmer:

Characterizing the Sample Complexity of Pure Private Learners. 146:1-146:33 - Niklas Pfister, Sebastian Weichwald, Peter Bühlmann, Bernhard Schölkopf:

Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise. 147:1-147:50 - Mokhtar Z. Alaya

, Olga Klopp:
Collective Matrix Completion. 148:1-148:43 - Daniil Ryabko:

On Asymptotic and Finite-Time Optimality of Bayesian Predictors. 149:1-149:24 - Berk Ustun

, Cynthia Rudin:
Learning Optimized Risk Scores. 150:1-150:75 - Vasileios Maroulas, Joshua L. Mike, Christopher Oballe:

Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams. 151:1-151:49 - Sen Na, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:

High-dimensional Varying Index Coefficient Models via Stein's Identity. 152:1-152:44 - David G. Harris, Shi Li, Thomas W. Pensyl, Aravind Srinivasan, Khoa Trinh:

Approximation Algorithms for Stochastic Clustering. 153:1-153:33 - Koulik Khamaru, Martin J. Wainwright:

Convergence Guarantees for a Class of Non-convex and Non-smooth Optimization Problems. 154:1-154:52 - Theodore Vasiloudis, Gianmarco De Francisci Morales, Henrik Boström:

Quantifying Uncertainty in Online Regression Forests. 155:1-155:35 - Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi Jiang, Naiyan Wang, Zhaoxiang Zhang:

SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition. 156:1-156:8 - Ali Ahmed, Alireza Aghasi, Paul Hand:

Simultaneous Phase Retrieval and Blind Deconvolution via Convex Programming. 157:1-157:28 - Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm, Joshua T. Vogelstein:

GraSPy: Graph Statistics in Python. 158:1-158:7 - Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié:

Optimal Convergence Rates for Convex Distributed Optimization in Networks. 159:1-159:31 - Mauro Maggioni, James M. Murphy:

Learning by Unsupervised Nonlinear Diffusion. 160:1-160:56 - Lei Shi, Xiaolin Huang, Yunlong Feng, Johan A. K. Suykens:

Sparse Kernel Regression with Coefficient-based $\ell_q-$regularization. 161:1-161:44 - Sylvain Arlot, Alain Celisse, Zaïd Harchaoui:

A Kernel Multiple Change-point Algorithm via Model Selection. 162:1-162:56 - Jie Wang, Zhanqiu Zhang, Jieping Ye:

Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets. 163:1-163:42 - Arjun Sondhi, Ali Shojaie:

The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks. 164:1-164:31 - Francois Kamper, Sarel Steel, Johan A. du Preez:

On the Convergence of Gaussian Belief Propagation with Nodes of Arbitrary Size. 165:1-165:37 - Mehmet Eren Ahsen, Robert M. Vogel, Gustavo A. Stolovitzky:

Unsupervised Evaluation and Weighted Aggregation of Ranked Classification Predictions. 166:1-166:40 - Chao Gao, Dan Garber, Nathan Srebro, Jialei Wang, Weiran Wang:

Stochastic Canonical Correlation Analysis. 167:1-167:46 - Nicolas Tremblay, Simon Barthelmé, Pierre-Olivier Amblard:

Determinantal Point Processes for Coresets. 168:1-168:70 - Michael Minyi Zhang, Sinead A. Williamson:

Embarrassingly Parallel Inference for Gaussian Processes. 169:1-169:26 - Daren Wang, Xinyang Lu, Alessandro Rinaldo:

DBSCAN: Optimal Rates For Density-Based Cluster Estimation. 170:1-170:50 - Alexander M. Franks, Peter Hoff:

Shared Subspace Models for Multi-Group Covariance Estimation. 171:1-171:37 - Andrew Cotter, Heinrich Jiang, Maya R. Gupta, Serena Lutong Wang, Taman Narayan, Seungil You, Karthik Sridharan:

Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals. 172:1-172:59 - Yousra El-Bachir, Anthony C. Davison:

Fast Automatic Smoothing for Generalized Additive Models. 173:1-173:27 - Jesse A. Livezey, Alejandro F. Bujan, Friedrich T. Sommer:

Learning Overcomplete, Low Coherence Dictionaries with Linear Inference. 174:1-174:42 - Felix Bießmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov, Dustin Lange, David Salinas:

DataWig: Missing Value Imputation for Tables. 175:1-175:6 - Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg

, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. 176:1-176:49 - Aaron Fisher, Cynthia Rudin, Francesca Dominici:

All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously. 177:1-177:81 - Daniel Coelho de Castro, Jeremy Tan, Bernhard Kainz, Ender Konukoglu, Ben Glocker:

Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning. 178:1-178:29 - Lyudmila Grigoryeva, Juan-Pablo Ortega:

Differentiable reservoir computing. 179:1-179:62 - Guillaume Gautier, Guillermo Polito, Rémi Bardenet, Michal Valko:

DPPy: DPP Sampling with Python. 180:1-180:7 - Saeed Saremi, Aapo Hyvärinen:

Neural Empirical Bayes. 181:1-181:23 - Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:

Model Selection in Bayesian Neural Networks via Horseshoe Priors. 182:1-182:46 - Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, Bin Yu:

Log-concave sampling: Metropolis-Hastings algorithms are fast. 183:1-183:42 - Aharon Azulay, Yair Weiss:

Why do deep convolutional networks generalize so poorly to small image transformations? 184:1-184:25

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














