


Остановите войну!
for scientists:


default search action
Tucker R. Balch
Tucker Balch – Tucker Hybinette Balch
Person information

- affiliation: Georgia Institute of Technology, Atlanta, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j36]Sahar Mazloom, Benjamin E. Diamond, Antigoni Polychroniadou, Tucker Balch:
An Efficient Data-Independent Priority Queue and its Application to Dark Pools. Proc. Priv. Enhancing Technol. 2023(2): 5-22 (2023) - [i34]Andrea Coletta, Svitlana Vyetrenko, Tucker Balch:
K-SHAP: Policy Clustering Algorithm for Anonymous State-Action Pairs. CoRR abs/2302.11996 (2023) - [i33]Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Saba Rahimi, Tucker Balch, Manuela Veloso:
Financial Time Series Forecasting using CNN and Transformer. CoRR abs/2304.04912 (2023) - [i32]Antigoni Polychroniadou, Gilad Asharov, Benjamin E. Diamond, Tucker Balch, Hans Buehler, Richard Hua, Suwen Gu, Greg Gimler, Manuela Veloso:
Prime Match: A Privacy-Preserving Inventory Matching System. IACR Cryptol. ePrint Arch. 2023: 400 (2023) - 2022
- [c93]David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, Tucker Balch:
Collusion Resistant Federated Learning with Oblivious Distributed Differential Privacy. ICAIF 2022: 114-122 - [c92]Sahar Mazloom, Antigoni Polychroniadou, Tucker Balch:
Addressing Extreme Market Responses Using Secure Aggregation. ICAIF 2022: 192-198 - [c91]Kshama Dwarakanath, Svitlana Vyetrenko, Tucker Balch:
Equitable Marketplace Mechanism Design. ICAIF 2022: 232-239 - [c90]Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, Tucker Balch:
Learning to simulate realistic limit order book markets from data as a World Agent. ICAIF 2022: 428-436 - [c89]Yuanlu Bai, Henry Lam, Tucker Balch, Svitlana Vyetrenko:
Efficient Calibration of Multi-Agent Simulation Models from Output Series with Bayesian Optimization. ICAIF 2022: 437-445 - [c88]Kshama Dwarakanath, Danial Dervovic, Peyman Tavallali, Svitlana Vyetrenko, Tucker Balch:
Optimal Stopping with Gaussian Processes. ICAIF 2022: 497-505 - [c87]Mohsen Ghassemi, Niccolò Dalmasso, Simran Lamba, Vamsi K. Potluru, Tucker Balch, Sameena Shah, Manuela Veloso:
Online Learning for Mixture of Multivariate Hawkes Processes. ICAIF 2022: 506-513 - [e5]Daniele Magazzeni, Senthil Kumar, Rahul Savani, Renyuan Xu, Carmine Ventre, Blanka Horvath, Ruimeng Hu, Tucker Balch, Francesca Toni:
3rd ACM International Conference on AI in Finance, ICAIF 2022, New York, NY, USA, November 2-4, 2022. ACM 2022, ISBN 978-1-4503-9376-8 [contents] - [i31]Selim Amrouni, Aymeric Moulin, Tucker Balch:
CTMSTOU driven markets: simulated environment for regime-awareness in trading policies. CoRR abs/2202.00941 (2022) - [i30]David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, Tucker Hybinette Balch:
Collusion Resistant Federated Learning with Oblivious Distributed Differential Privacy. CoRR abs/2202.09897 (2022) - [i29]Mohsen Ghassemi, Eleonora Kreacic, Niccolò Dalmasso, Vamsi K. Potluru, Tucker Balch, Manuela Veloso:
Differentially Private Learning of Hawkes Processes. CoRR abs/2207.13741 (2022) - [i28]Mohsen Ghassemi, Niccolò Dalmasso, Simran Lamba, Vamsi K. Potluru, Sameena Shah, Tucker Balch, Manuela Veloso:
Online Learning for Mixture of Multivariate Hawkes Processes. CoRR abs/2208.07961 (2022) - [i27]Kshama Dwarakanath, Danial Dervovic, Peyman Tavallali, Svitlana S. Vyetrenko, Tucker Balch:
Optimal Stopping with Gaussian Processes. CoRR abs/2209.14738 (2022) - [i26]Kshama Dwarakanath, Svitlana S. Vyetrenko, Tucker Balch:
Equitable Marketplace Mechanism Design. CoRR abs/2209.15418 (2022) - [i25]Nelson Vadori, Leo Ardon, Sumitra Ganesh, Thomas Spooner, Selim Amrouni, Jared Vann, Mengda Xu, Zeyu Zheng, Tucker Balch, Manuela Veloso:
Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations. CoRR abs/2210.07184 (2022) - [i24]Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, Tucker Balch:
Learning to simulate realistic limit order book markets from data as a World Agent. CoRR abs/2210.09897 (2022) - [i23]Renbo Zhao, Niccolò Dalmasso, Mohsen Ghassemi, Vamsi K. Potluru, Tucker Balch, Manuela Veloso:
Fast Learning of Multidimensional Hawkes Processes via Frank-Wolfe. CoRR abs/2212.06081 (2022) - [i22]Yue Guo, Antigoni Polychroniadou, Elaine Shi, David Byrd, Tucker Balch:
MicroFedML: Privacy Preserving Federated Learning for Small Weights. IACR Cryptol. ePrint Arch. 2022: 714 (2022) - 2021
- [c86]Kshama Dwarakanath, Svitlana S. Vyetrenko, Tucker Balch:
Profit equitably: an investigation of market maker's impact on equitable outcomes. ICAIF 2021: 4:1-4:8 - [c85]Mahmoud Mahfouz, Tucker Balch, Manuela Veloso, Danilo P. Mandic:
Learning to classify and imitate trading agents in continuous double auction markets. ICAIF 2021: 21:1-21:8 - [c84]Srijan Sood, Zhen Zeng, Naftali Cohen, Tucker Balch, Manuela Veloso:
Visual time series forecasting: an image-driven approach. ICAIF 2021: 22:1-22:9 - [c83]Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana Vyetrenko, Tucker Balch, Manuela Veloso:
ABIDES-gym: gym environments for multi-agent discrete event simulation and application to financial markets. ICAIF 2021: 30:1-30:9 - [c82]Gilad Asharov, Tucker Balch, Antigoni Polychroniadou:
Privacy-preserving portfolio pricing. ICAIF 2021: 35:1-35:8 - [c81]Zhen Zeng, Tucker Balch, Manuela Veloso:
Deep video prediction for time series forecasting. ICAIF 2021: 39:1-39:7 - [c80]Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini, Aymeric Moulin, Svitlana Vyetrenko, Tucker Balch:
Towards realistic market simulations: a generative adversarial networks approach. ICAIF 2021: 46:1-46:9 - [c79]Megan Shearer, David Byrd, Tucker Hybinette Balch, Michael P. Wellman:
Stability effects of arbitrage in exchange traded funds: an agent-based model. ICAIF 2021: 49:1-49:9 - [i21]Zhen Zeng, Tucker Balch, Manuela Veloso:
Deep Video Prediction for Time Series Forecasting. CoRR abs/2102.12061 (2021) - [i20]Yuanlu Bai, Tucker Balch, Haoxian Chen, Danial Dervovic, Henry Lam, Svitlana Vyetrenko:
Calibrating Over-Parametrized Simulation Models: A Framework via Eligibility Set. CoRR abs/2105.12893 (2021) - [i19]Naftali Cohen, Srijan Sood, Zhen Zeng, Tucker Balch, Manuela Veloso:
Visual Time Series Forecasting: An Image-driven Approach. CoRR abs/2107.01273 (2021) - [i18]Victor Storchan, Svitlana Vyetrenko, Tucker Balch:
Learning who is in the market from time series: market participant discovery through adversarial calibration of multi-agent simulators. CoRR abs/2108.00664 (2021) - [i17]Mahmoud Mahfouz, Tucker Balch, Manuela Veloso, Danilo P. Mandic:
Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets. CoRR abs/2110.01325 (2021) - [i16]Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini, Aymeric Moulin, Svitlana Vyetrenko, Tucker Balch:
Towards Realistic Market Simulations: a Generative Adversarial Networks Approach. CoRR abs/2110.13287 (2021) - [i15]Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana Vyetrenko, Tucker Balch, Manuela Veloso:
ABIDES-Gym: Gym Environments for Multi-Agent Discrete Event Simulation and Application to Financial Markets. CoRR abs/2110.14771 (2021) - [i14]Kshama Dwarakanath, Svitlana S. Vyetrenko, Tucker Balch:
Profit equitably: An investigation of market maker's impact on equitable outcomes. CoRR abs/2111.00094 (2021) - [i13]Yuanlu Bai, Henry Lam, Svitlana Vyetrenko, Tucker Balch:
Efficient Calibration of Multi-Agent Market Simulators from Time Series with Bayesian Optimization. CoRR abs/2112.03874 (2021) - 2020
- [c78]Gilad Asharov, Tucker Hybinette Balch, Antigoni Polychroniadou, Manuela Veloso:
Privacy-Preserving Dark Pools. AAMAS 2020: 1747-1749 - [c77]Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela Veloso, Tucker Balch:
Get real: realism metrics for robust limit order book market simulations. ICAIF 2020: 2:1-2:8 - [c76]Tucker Balch, Benjamin E. Diamond, Antigoni Polychroniadou:
SecretMatch: inventory matching from fully homomorphic encryption. ICAIF 2020: 15:1-15:7 - [c75]Joshua Lockhart, Samuel Assefa, Ayham Alajdad, Andrew Alexander, Tucker Balch, Manuela Veloso:
SURF: improving classifiers in production by learning from busy and noisy end users. ICAIF 2020: 37:1-37:8 - [c74]Naftali Cohen, Tucker Balch, Manuela Veloso:
Trading via image classification. ICAIF 2020: 53:1-53:6 - [c73]David Byrd, Maria Hybinette, Tucker Hybinette Balch:
ABIDES: Towards High-Fidelity Multi-Agent Market Simulation. SIGSIM-PADS 2020: 11-22 - [e4]Tucker Balch:
ICAIF '20: The First ACM International Conference on AI in Finance, New York, NY, USA, October 15-16, 2020. ACM 2020, ISBN 978-1-4503-7584-9 [contents] - [i12]Micah Goldblum, Avi Schwarzschild, Naftali Cohen, Tucker Balch, Ankit B. Patel, Tom Goldstein:
Adversarial Attacks on Machine Learning Systems for High-Frequency Trading. CoRR abs/2002.09565 (2020) - [i11]Joshua Lockhart, Samuel Assefa, Tucker Balch, Manuela Veloso:
Some people aren't worth listening to: periodically retraining classifiers with feedback from a team of end users. CoRR abs/2004.13152 (2020) - [i10]Joshua Lockhart, Samuel Assefa, Ayham Alajdad, Andrew Alexander, Tucker Balch, Manuela Veloso:
SURF: Improving classifiers in production by learning from busy and noisy end users. CoRR abs/2010.05852 (2020) - [i9]Naftali Cohen, Srijan Sood, Zhen Zeng, Tucker Balch, Manuela Veloso:
Visual Forecasting of Time Series with Image-to-Image Regression. CoRR abs/2011.09052 (2020)
2010 – 2019
- 2019
- [i8]David Byrd, Maria Hybinette, Tucker Hybinette Balch:
ABIDES: Towards High-Fidelity Market Simulation for AI Research. CoRR abs/1904.12066 (2019) - [i7]Tucker Hybinette Balch, Mahmoud Mahfouz, Joshua Lockhart, Maria Hybinette, David Byrd:
How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation? CoRR abs/1906.12010 (2019) - [i6]Naftali Cohen, Tucker Balch, Manuela Veloso:
The Effect of Visual Design in Image Classification. CoRR abs/1907.09567 (2019) - [i5]Naftali Cohen, Tucker Balch, Manuela Veloso:
Trading via Image Classification. CoRR abs/1907.10046 (2019) - [i4]David Byrd, Tucker Hybinette Balch:
Intra-day Equity Price Prediction using Deep Learning as a Measure of Market Efficiency. CoRR abs/1908.08168 (2019) - [i3]Nick Petosa, Tucker Balch:
Multiplayer AlphaZero. CoRR abs/1910.13012 (2019) - [i2]Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela Veloso, Tucker Hybinette Balch:
Get Real: Realism Metrics for Robust Limit Order Book Market Simulations. CoRR abs/1912.04941 (2019) - 2018
- [c72]Brian Hrolenok, Tucker Balch, David Byrd, Rebecca Roberts, Chanho Kim, James M. Rehg
, Scott Gilliland, Kim Wallen:
Use of position tracking to infer social structure in rhesus macaques. ACI 2018: 15:1-15:5 - 2017
- [c71]Brian Hrolenok, Byron Boots, Tucker Hybinette Balch:
Sampling Beats Fixed Estimate Predictors for Cloning Stochastic Behavior in Multiagent Systems. AAAI 2017: 2022-2028 - [c70]Jianling Wang, Vivek George, Tucker Balch, Maria Hybinette:
Stockyard: A discrete event-based stock market exchange simulator. WSC 2017: 1193-1203 - 2016
- [j35]Alexander Moreno, Tucker Balch:
Improving financial computation speed with full and subproblem memoization. Concurr. Comput. Pract. Exp. 28(3): 905-915 (2016) - 2014
- [j34]Michael Misha Novitzky, Charles Pippin, Thomas R. Collins, Tucker R. Balch, Michael E. West:
AUV behavior recognition using behavior histograms, HMMs, and CRFs. Robotica 32(2): 291-304 (2014) - [c69]Brian Hrolenok, Hanuma Teja Maddali, Michael Misha Novitzky, Tucker Balch:
Inferring Social Structure of Animal Groups from Tracking Data. ALIFE 2014: 336-343 - [c68]Brian Hrolenok, Tucker R. Balch:
Assessing learned models of fish schooling behavior. AAMAS 2014: 1435-1436 - [c67]Alexander Moreno, Tucker Balch:
Speeding up large-scale financial recomputation with memoization. WHPCF@SC 2014: 17-22 - [c66]Terrance Medina, Maria Hybinette, Tucker R. Balch:
Behavior-based code generation for robots and autonomous agents. SimuTools 2014: 172-177 - [i1]Hanuma Teja Maddali, Michael Misha Novitzky, Brian Hrolenok, Daniel Walker, Tucker R. Balch, Kim Wallen:
Inferring Social Structure and Dominance Relationships Between Rhesus macaques using RFID Tracking Data. CoRR abs/1407.0330 (2014) - 2013
- [c65]Brian Hrolenok, Tucker R. Balch:
Learning Schooling Behavior from Observation. ECAL 2013: 686-691 - 2012
- [j33]Adam Feldman, Maria Hybinette, Tucker R. Balch:
The multi-iterative closest point tracker: An online algorithm for tracking multiple interacting targets. J. Field Robotics 29(2): 258-276 (2012) - [c64]Michael Misha Novitzky, Charles Pippin, Thomas R. Collins, Tucker R. Balch, Michael E. West:
Conditional Random Fields for Behavior Recognition of Autonomous Underwater Vehicles. DARS 2012: 409-421 - [c63]Yu-Ting Yang, Andrew Quitmeyer, Brian Hrolenok, Harry Shang, Dinh Bao Nguyen, Tucker R. Balch, Terrance Medina, Cole Sherer, Maria Hybinette:
Ant Hunt: Towards a Validated Model of Live Ant Hunting Behavior. FLAIRS 2012 - [c62]Pipei Huang, Rahul Sawhney, Daniel Walker, Kim Wallen, Aaron F. Bobick, Shiyin Qin, Tucker R. Balch:
Learning a projective mapping to locate animals in video using RFID. IROS 2012: 3830-3836 - [c61]Michael Misha Novitzky, Charles Pippin, Thomas R. Collins, Tucker R. Balch, Michael E. West:
Bio-inspired multi-robot communication through behavior recognition. ROBIO 2012: 771-776 - 2011
- [j32]Rick Cavallaro, Maria Hybinette, Marvin White, Tucker R. Balch:
Augmenting Live Broadcast Sports with 3D Tracking Information. IEEE Multim. 18(4): 38-47 (2011) - [j31]Sanem Sariel Talay
, Tucker R. Balch, Nadia Erdogan
:
A Generic Framework for Distributed Multirobot Cooperation. J. Intell. Robotic Syst. 63(2): 323-358 (2011) - 2010
- [c60]Matthew Powers, Tucker R. Balch:
Incremental adaptive integration of layers of a hybrid control architecture. IROS 2010: 2012-2017
2000 – 2009
- 2009
- [j30]Richard Roberts, Charles Pippin, Tucker R. Balch:
Learning outdoor mobile robot behaviors by example. J. Field Robotics 26(2): 176-195 (2009) - [j29]Xu Chu Ding, Matthew Powers, Magnus Egerstedt, Shih-Yih Young, Tucker R. Balch:
Executive decision support. IEEE Robotics Autom. Mag. 16(2): 73-81 (2009) - [c59]Jinhan Lee, Roozbeh Mottaghi, Charles Pippin, Tucker R. Balch:
Graph-based planning using local information for unknown outdoor environments. ICRA 2009: 1455-1460 - [c58]Matthew Powers, Tucker R. Balch:
A learning approach to integration of layers of a hybrid control architecture. IROS 2009: 893-898 - [c57]Jay Summet, Deepak Kumar, Keith J. O'Hara, Daniel Walker, Lijun Ni, Douglas S. Blank, Tucker R. Balch:
Personalizing CS1 with robots. SIGCSE 2009: 433-437 - 2008
- [j28]Sang Min Oh, James M. Rehg, Tucker R. Balch, Frank Dellaert:
Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems. Int. J. Comput. Vis. 77(1-3): 103-124 (2008) - [j27]Tucker R. Balch, Jay Summet, Douglas S. Blank
, Deepak Kumar, Mark Guzdial
, Keith J. O'Hara, Daniel Walker, Monica Sweat, Gaurav Gupta, Stewart Tansley
, Jared Jackson, Mansi Gupta, Marwa Nur Muhammad, Shikha Prashad
, Natasha Eilbert, Ashley Gavin:
Designing Personal Robots for Education: Hardware, Software, and Curriculum. IEEE Pervasive Comput. 7(2): 5-9 (2008) - [j26]Sanem Sariel
, Tucker R. Balch, Nadia Erdogan
:
Naval Mine Countermeasure Missions. IEEE Robotics Autom. Mag. 15(1): 45-52 (2008) - [j25]Keith J. O'Hara, Daniel B. Walker, Tucker R. Balch:
Physical Path Planning Using a Pervasive Embedded Network. IEEE Trans. Robotics 24(3): 741-746 (2008) - [c56]Deepak Kumar, Douglas S. Blank, Tucker R. Balch, Keith J. O'Hara, Mark Guzdial, Stewart Tansley:
Engaging Computing Students with AI and Robotics. AAAI Spring Symposium: Using AI to Motivate Greater Participation in Computer Science 2008: 55-60 - [c55]Richard Roberts, Hai Nguyen, Niyant Krishnamurthi, Tucker R. Balch:
Memory-based learning for visual odometry. ICRA 2008: 47-52 - [c54]Jinhan Lee, Charles Pippin, Tucker R. Balch:
Cost based planning with RRT in outdoor environments. IROS 2008: 684-689 - 2007
- [j24]David Wooden, Matthew Powers, Magnus Egerstedt, Henrik I. Christensen
, Tucker R. Balch:
A Modular, Hybrid System Architecture for Autonomous, Urban Driving. J. Aerosp. Comput. Inf. Commun. 4(12): 1047-1058 (2007) - [c53]Adam Feldman, Summer Adams, Maria Hybinette, Tucker R. Balch:
A Tracker for Multiple Dynamic Targets Using Multiple Sensors. ICRA 2007: 3140-3141 - [c52]Sanem Sariel
, Tucker R. Balch, Nadia Erdogan
:
Incremental multi-robot task selection for resource constrained and interrelated tasks. IROS 2007: 2314-2319 - [c51]David Wooden, Matthew Powers, Douglas C. MacKenzie, Tucker R. Balch, Magnus Egerstedt:
Control-driven mapping and planning. IROS 2007: 3056-3061 - 2006
- [j23]Jie Sun, Tejas R. Mehta, David Wooden, Matthew Powers, James M. Rehg
, Tucker R. Balch, Magnus Egerstedt:
Learning from examples in unstructured, outdoor environments. J. Field Robotics 23(11-12): 1019-1036 (2006) - [j22]Zia Khan, Tucker R. Balch, Frank Dellaert:
MCMC Data Association and Sparse Factorization Updating for Real Time Multitarget Tracking with Merged and Multiple Measurements. IEEE Trans. Pattern Anal. Mach. Intell. 28(12): 1960-1972 (2006) - [j21]Tucker R. Balch, Frank Dellaert, Adam Feldman, Andrew Guillory, Charles Lee Isbell Jr., Zia Khan, Stephen C. Pratt, Andrew N. Stein, Hank Wilde:
How Multirobot Systems Research will Accelerate our Understanding of Social Animal Behavior. Proc. IEEE 94(7): 1445-1463 (2006) - [c50]Andrew Guillory, Hai Nguyen, Tucker R. Balch, Charles Lee Isbell Jr.:
Learning executable agent behaviors from observation. AAMAS 2006: 795-797 - [c49]Sanem Sariel, Tucker Balch:
A Distributed Multi-robot Cooperation Framework for Real Time Task Achievement. DARS 2006: 187-196 - [c48]Sanem Sariel, Tucker Balch, Jason R. Stack:
Empirical Evaluation of Auction-Based Coordination of AUVs in a Realistic Simulated Mine Countermeasure Task. DARS 2006: 197-206 - [c47]Sanem Sariel, Tucker R. Balch:
Efficient Bids on Task Allocation for Multi-Robot Exploration. FLAIRS 2006: 116-121 - [c46]Sanem Sariel, Tucker R. Balch, Nadia Erdogan:
Robust multi-robot cooperation through dynamic task allocation and precaution routines. ICINCO-RA 2006: 196-201 - [c45]Keith J. O'Hara, Victor Bigio, Shaun Whitt, Daniel Walker, Tucker R. Balch:
Evaluation of a Large Scale Pervasive Embedded Network for Robot Path Planning. ICRA 2006: 2072-2077 - [c44]Keith J. O'Hara, Ripal Nathuji, Himanshu Raj, Karsten Schwan, Tucker R. Balch:
AutoPower: Toward Energy-aware Software Systems for Distributed Mobile Robots. ICRA 2006: 2757-2762 - [c43]Himanshu Raj, Balasubramanian Seshasayee, Keith J. O'Hara, Ripal Nathuji, Karsten Schwan, Tucker R. Balch:
Spirits: Using Virtualization and Pervasiveness to Manage Mobile Robot Software Systems. SelfMan 2006: 116-129 - [e3]Tamio Arai, Rolf Pfeifer, Tucker R. Balch, Hiroshi Yokoi:
Intelligent Autonomous Systems 9 - IAS-9, Proceedings of the 9th International Conference on Intelligent Autonomous Systems, University of Tokyo, Tokyo, Japan, March 7-9, 2006. IOS Press 2006, ISBN 1-58603-595-9 [contents] - 2005
- [j20]Zia Khan, Tucker R. Balch, Frank Dellaert:
MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets. IEEE Trans. Pattern Anal. Mach. Intell. 27(11): 1805-1918 (2005) - [j19]Ashley W. Stroupe, Tucker R. Balch:
Value-based action selection for observation with robot teams using probabilistic techniques. Robotics Auton. Syst. 50(2-3): 85-97 (2005) - [c42]Sang Min Oh, James M. Rehg, Tucker R. Balch, Frank Dellaert:
Data-Driven MCMC for Learning and Inference in Switching Linear Dynamic Systems. AAAI 2005: 944-949 - [c41]Zia Khan, Tucker R. Balch, Frank Dellaert:
Multitarget Tracking with Split and Merged Measurements. CVPR (1) 2005: 605-610 - [c40]Sang Min Oh, James M. Rehg
, Tucker R. Balch, Frank Dellaert:
Learning and Inference in Parametric Switching Linear Dynamical Systems. ICCV 2005: 1161-1168 - [c39]Keith J. O'Hara, Victor Bigio, Eric R. Dodson, Arya Irani, Daniel Walker, Tucker R. Balch:
Physical Path Planning Using the GNATs. ICRA 2005: 709-714 - [c38]Magnus Egerstedt, Tucker R. Balch, Frank Dellaert, Florent Delmotte, Zia Khan:
What Are the Ants Doing? Vision-Based Tracking and Reconstruction of Control Programs. ICRA 2005: 4182-4187 - 2004
- [j18]Carl Anderson, Tucker R. Balch:
Special Issue on Mathematics and Algorithms of Social Interactions. Adapt. Behav. 12(3-4): 145-146 (2004) - [j17]Patrick Ulam, Tucker R. Balch:
Using Optimal Foraging Models to Evaluate Learned Robotic Foraging Behavior. Adapt. Behav. 12(3-4): 213-222 (2004) - [j16]Adam Feldman, Tucker R. Balch:
Representing Honey Bee Behavior for Recognition Using Human Trainable Models. Adapt. Behav. 12(3-4): 241-250 (2004) - [c37]Keith J. O'Hara, Tucker R. Balch:
Distributed Path Planning for Robots in Dynamic Environments Using a Pervasive Embedded Network. AAMAS 2004: 1538-1539 - [c36]Zia Khan, Tucker R. Balch, Frank Dellaert:
A Rao-Blackwellized Particle Filter for EigenTracking. CVPR (2) 2004: 980-986 - [c35]Keith J. O'Hara, Tucker R. Balch:
Pervasive Sensor-less Networks for Cooperative Multi-robot Tasks. DARS 2004: 305-314 - [c34]