


Остановите войну!
for scientists:


default search action
Alec Koppel
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c61]Wesley A. Suttle, Alec Koppel, Ji Liu:
Information-Directed Policy Search in Sparse-Reward Settings via the Occupancy Information Ratio. CISS 2023: 1-6 - [i42]Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Mengdi Wang, Furong Huang, Dinesh Manocha:
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning. CoRR abs/2301.12038 (2023) - [i41]Wesley A. Suttle, Amrit Singh Bedi, Bhrij Patel, Brian M. Sadler, Alec Koppel, Dinesh Manocha:
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic. CoRR abs/2301.12083 (2023) - [i40]Donghao Ying, Yuhao Ding, Alec Koppel, Javad Lavaei:
Scalable Multi-Agent Reinforcement Learning with General Utilities. CoRR abs/2302.07938 (2023) - 2022
- [j27]Yagiz Savas, Erfaun Noorani, Alec Koppel, John S. Baras, Ufuk Topcu, Brian M. Sadler:
Collaborative one-shot beamforming under localization errors: A discrete optimization approach. Signal Process. 200: 108647 (2022) - [j26]Ehsan Zobeidi
, Alec Koppel
, Nikolay Atanasov
:
Dense Incremental Metric-Semantic Mapping for Multiagent Systems via Sparse Gaussian Process Regression. IEEE Trans. Robotics 38(5): 3133-3153 (2022) - [j25]Amrit Singh Bedi
, Ketan Rajawat
, Vaneet Aggarwal
, Alec Koppel
:
Escaping Saddle Points for Successive Convex Approximation. IEEE Trans. Signal Process. 70: 307-321 (2022) - [j24]Abhishek Chakraborty
, Ketan Rajawat
, Alec Koppel
:
Sparse Representations of Positive Functions via First- and Second-Order Pseudo-Mirror Descent. IEEE Trans. Signal Process. 70: 3148-3164 (2022) - [j23]Zhan Gao
, Alec Koppel
, Alejandro Ribeiro
:
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems. IEEE Trans. Signal Process. 70: 3693-3708 (2022) - [c60]Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel, Vaneet Aggarwal:
Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach. AAAI 2022: 3682-3689 - [c59]Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel:
Multi-Agent Reinforcement Learning with General Utilities via Decentralized Shadow Reward Actor-Critic. AAAI 2022: 9031-9039 - [c58]James Di, Ehsan Zobeidi, Alec Koppel, Nikolay Atanasov:
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication. ACC 2022: 4458-4464 - [c57]Alec Koppel, Amrit Singh Bedi, Bhargav Ganguly, Vaneet Aggarwal:
Convergence Rates of Average-Reward Multi-agent Reinforcement Learning via Randomized Linear Programming. CDC 2022: 4545-4552 - [c56]Wesley A. Suttle, Alec Koppel, Ji Liu:
Policy Gradient for Ratio Optimization: A Case Study. CISS 2022: 281-286 - [c55]Hrusikesha Pradhan, Alec Koppel, Ketan Rajawat:
On Submodular Set Cover Problems for Near-Optimal Online Kernel Basis Selection. ICASSP 2022: 4168-4172 - [c54]Amrit Singh Bedi, Souradip Chakraborty, Anjaly Parayil, Brian M. Sadler, Pratap Tokekar, Alec Koppel:
On the Hidden Biases of Policy Mirror Ascent in Continuous Action Spaces. ICML 2022: 1716-1731 - [c53]Qiujiang Jin, Alec Koppel, Ketan Rajawat, Aryan Mokhtari:
Sharpened Quasi-Newton Methods: Faster Superlinear Rate and Larger Local Convergence Neighborhood. ICML 2022: 10228-10250 - [c52]Yulun Tian, Amrit Singh Bedi, Alec Koppel, Miguel Calvo-Fullana, David M. Rosen, Jonathan P. How:
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation. IROS 2022: 4391-4398 - [i39]Cole Hawkins, Alec Koppel, Zheng Zhang:
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy. CoRR abs/2201.07130 (2022) - [i38]Wesley A. Suttle, Alec Koppel, Ji Liu:
Occupancy Information Ratio: Infinite-Horizon, Information-Directed, Parameterized Policy Search. CoRR abs/2201.08832 (2022) - [i37]Amrit Singh Bedi, Souradip Chakraborty, Anjaly Parayil, Brian M. Sadler, Pratap Tokekar, Alec Koppel:
On the Hidden Biases of Policy Mirror Ascent in Continuous Action Spaces. CoRR abs/2201.12332 (2022) - [i36]Yulun Tian, Amrit Singh Bedi, Alec Koppel, Miguel Calvo-Fullana, David M. Rosen, Jonathan P. How:
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation. CoRR abs/2203.00851 (2022) - [i35]Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Brian M. Sadler, Furong Huang, Pratap Tokekar, Dinesh Manocha:
Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning. CoRR abs/2206.01162 (2022) - [i34]Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Pratap Tokekar, Dinesh Manocha:
Dealing with Sparse Rewards in Continuous Control Robotics via Heavy-Tailed Policies. CoRR abs/2206.05652 (2022) - [i33]Amrit Singh Bedi, Chen Fan, Alec Koppel, Anit Kumar Sahu, Brian M. Sadler, Furong Huang, Dinesh Manocha:
FedBC: Calibrating Global and Local Models via Federated Learning Beyond Consensus. CoRR abs/2206.10815 (2022) - [i32]Muhammad Aneeq uz Zaman, Alec Koppel, Sujay Bhatt, Tamer Basar:
Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample Path. CoRR abs/2208.11639 (2022) - 2021
- [j22]Junyu Zhang, Amrit Singh Bedi
, Mengdi Wang
, Alec Koppel
:
Cautious Reinforcement Learning via Distributional Risk in the Dual Domain. IEEE J. Sel. Areas Inf. Theory 2(2): 611-626 (2021) - [j21]Alec Koppel
, Hrusikesha Pradhan, Ketan Rajawat:
Consistent online Gaussian process regression without the sample complexity bottleneck. Stat. Comput. 31(6): 76 (2021) - [j20]Alec Koppel
, Garrett Warnell
, Ethan Stump
, Peter Stone
, Alejandro Ribeiro
:
Policy Evaluation in Continuous MDPs With Efficient Kernelized Gradient Temporal Difference. IEEE Trans. Autom. Control. 66(4): 1856-1863 (2021) - [j19]Hrusikesha Pradhan
, Amrit Singh Bedi
, Alec Koppel
, Ketan Rajawat
:
Adaptive Kernel Learning in Heterogeneous Networks. IEEE Trans. Signal Inf. Process. over Networks 7: 423-437 (2021) - [j18]Amrit Singh Bedi
, Alec Koppel
, Ketan Rajawat
, Panchajanya Sanyal:
Nonparametric Compositional Stochastic Optimization for Risk-Sensitive Kernel Learning. IEEE Trans. Signal Process. 69: 428-442 (2021) - [j17]Deepak S. Kalhan, Amrit Singh Bedi
, Alec Koppel
, Ketan Rajawat
, Hamed Hassani
, Abhishek K. Gupta
, Adrish Banerjee
:
Dynamic Online Learning via Frank-Wolfe Algorithm. IEEE Trans. Signal Process. 69: 932-947 (2021) - [j16]Alec Koppel
, Amrit Singh Bedi
, Brian M. Sadler
, Víctor Elvira
:
Nearly Consistent Finite Particle Estimates in Streaming Importance Sampling. IEEE Trans. Signal Process. 69: 6401-6415 (2021) - [c51]Erfaun Noorani, Yagiz Savas, Alec Koppel, John S. Baras, Ufuk Topcu, Brian M. Sadler:
Collaborative Beamforming for Agents with Localization Errors. ACSCC 2021: 204-208 - [c50]Abhishek Chakraborty
, Ketan Rajawat, Alec Koppel:
Projected Pseudo-Mirror Descent in Reproducing Kernel Hilbert Space. ACSCC 2021: 1008-1012 - [c49]Alec Koppel, Amrit Singh Bedi, Bhargav Ganguly, Vaneet Aggarwal:
Randomized Linear Programming for Tabular Average-Cost Multi-agent Reinforcement Learning. ACSCC 2021: 1023-1026 - [c48]Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel:
Beyond Cumulative Returns via Reinforcement Learning over State-Action Occupancy Measures. ACC 2021: 894-901 - [c47]Anjaly Parayil, Amrit Singh Bedi, Alec Koppel:
Joint Position and Beamforming Control via Alternating Nonlinear Least-Squares with a Hierarchical Gamma Prior. ACC 2021: 3513-3518 - [c46]Amrit Singh Bedi, Alec Koppel, Mengdi Wang, Junyu Zhang:
Intermittent Communications in Decentralized Shadow Reward Actor-Critic. CDC 2021: 2613-2620 - [c45]Sujay Bhatt, Weichao Mao, Alec Koppel, Tamer Basar:
Semiparametric Information State Embedding for Policy Search under Imperfect Information. CDC 2021: 4501-4506 - [c44]Alec Koppel, Amrit S. Bedi, Vikram Krishnamurthy:
A Dynamical Systems Perspective on Online Bayesian Nonparametric Estimators with Adaptive Hyperparameters. ICASSP 2021: 2975-2979 - [c43]Michael E. Kepler, Alec Koppel, Amrit Singh Bedi, Daniel J. Stilwell:
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous Online Bayesian Inference. IROS 2021: 9833-9840 - [i31]Ekaterina I. Tolstaya, Ethan Stump, Alec Koppel, Alejandro Ribeiro:
Composable Learning with Sparse Kernel Representations. CoRR abs/2103.14474 (2021) - [i30]Ehsan Zobeidi, Alec Koppel, Nikolay Atanasov:
Dense Incremental Metric-Semantic Mapping for Multi-Agent Systems via Sparse Gaussian Process Regression. CoRR abs/2103.16170 (2021) - [i29]Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel:
MARL with General Utilities via Decentralized Shadow Reward Actor-Critic. CoRR abs/2106.00543 (2021) - [i28]Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, Alec Koppel:
On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control. CoRR abs/2106.08414 (2021) - [i27]Michael E. Kepler, Alec Koppel, Amrit Singh Bedi, Daniel J. Stilwell:
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous Online Bayesian Inference. CoRR abs/2107.12797 (2021) - [i26]Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel, Vaneet Aggarwal:
Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach. CoRR abs/2109.06332 (2021) - [i25]James Di, Ehsan Zobeidi, Alec Koppel, Nikolay Atanasov:
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication. CoRR abs/2110.06401 (2021) - 2020
- [j15]Aryan Mokhtari, Alec Koppel, Martin Takác, Alejandro Ribeiro:
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning. J. Mach. Learn. Res. 21: 120:1-120:51 (2020) - [j14]Yulun Tian
, Alec Koppel
, Amrit Singh Bedi
, Jonathan P. How
:
Asynchronous and Parallel Distributed Pose Graph Optimization. IEEE Robotics Autom. Lett. 5(4): 5819-5826 (2020) - [j13]Kaiqing Zhang
, Alec Koppel
, Hao Zhu, Tamer Basar:
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies. SIAM J. Control. Optim. 58(6): 3586-3612 (2020) - [j12]Alec Koppel
, Amrit Singh Bedi
, Ketan Rajawat
, Brian M. Sadler
:
Optimally Compressed Nonparametric Online Learning: Tradeoffs between memory and consistency. IEEE Signal Process. Mag. 37(3): 61-70 (2020) - [j11]Aryan Mokhtari
, Alec Koppel
:
High-Dimensional Nonconvex Stochastic Optimization by Doubly Stochastic Successive Convex Approximation. IEEE Trans. Signal Process. 68: 6287-6302 (2020) - [c42]Hrusikesha Pradhan, Amrit Singh Bedi, Alec Koppel, Ketan Rajawat:
Conservative Multi-agent Online Kernel Learning in Heterogeneous Networks. ACSSC 2020: 53-57 - [c41]Amrit Singh Bedi, Alec Koppel, Ketan Rajawat, Brian M. Sadler
:
Trading Dynamic Regret for Model Complexity in Nonstationary Nonparametric Optimization. ACC 2020: 321-326 - [c40]Nagananda K. G, Rick S. Blum
, Alec Koppel:
Reduced-rank Least Squares Parameter Estimation in the Presence of Byzantine Sensors. CISS 2020: 1-6 - [c39]Deepak S. Kalhan, Amrit S. Bedi, Alec Koppel, Ketan Rajawat, Abhishek K. Gupta
, Adrish Banerjee:
Projection Free Dynamic Online Learning. ICASSP 2020: 3957-3961 - [c38]Zhan Gao, Alec Koppel, Alejandro Ribeiro
:
Balancing Rates and Variance via Adaptive Batch-Sizes in First-Order Stochastic Optimization. ICASSP 2020: 5385-5389 - [c37]Ehsan Zobeidi, Alec Koppel, Nikolay Atanasov:
Dense Incremental Metric-Semantic Mapping via Sparse Gaussian Process Regression. IROS 2020: 6180-6187 - [c36]Amrit Singh Bedi, Dheeraj Peddireddy, Vaneet Aggarwal, Alec Koppel:
Efficient Large-Scale Gaussian Process Bandits by Believing only Informative Actions. L4DC 2020: 924-934 - [c35]Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvári, Mengdi Wang:
Variational Policy Gradient Method for Reinforcement Learning with General Utilities. NeurIPS 2020 - [i24]Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel:
Cautious Reinforcement Learning via Distributional Risk in the Dual Domain. CoRR abs/2002.12475 (2020) - [i23]Yulun Tian, Alec Koppel, Amrit Singh Bedi, Jonathan P. How:
Asynchronous and Parallel Distributed Pose Graph Optimization. CoRR abs/2003.03281 (2020) - [i22]Amrit Singh Bedi, Dheeraj Peddireddy, Vaneet Aggarwal, Alec Koppel:
Efficient Gaussian Process Bandits by Believing only Informative Actions. CoRR abs/2003.10550 (2020) - [i21]Erfaun Noorani, Yagiz Savas, Alec Koppel, John S. Baras, Ufuk Topcu, Brian M. Sadler:
Distributed Beamforming for Agents with Localization Errors. CoRR abs/2003.12637 (2020) - [i20]Sujay Bhatt, Alec Koppel, Vikram Krishnamurthy:
Policy Gradient using Weak Derivatives for Reinforcement Learning. CoRR abs/2004.04843 (2020) - [i19]Alec Koppel, Hrusikesha Pradhan, Ketan Rajawat:
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck. CoRR abs/2004.11094 (2020) - [i18]Zhan Gao, Alec Koppel, Alejandro Ribeiro:
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems. CoRR abs/2007.01219 (2020) - [i17]Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvári, Mengdi Wang:
Variational Policy Gradient Method for Reinforcement Learning with General Utilities. CoRR abs/2007.02151 (2020) - [i16]Bingjia Wang, Alec Koppel, Vikram Krishnamurthy:
A Markov Decision Process Approach to Active Meta Learning. CoRR abs/2009.04950 (2020) - [i15]Abhishek Chakraborty, Ketan Rajawat, Alec Koppel:
Sparse Representations of Positive Functions via Projected Pseudo-Mirror Descent. CoRR abs/2011.07142 (2020)
2010 – 2019
- 2019
- [j10]Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro:
Parsimonious Online Learning with Kernels via Sparse Projections in Function Space. J. Mach. Learn. Res. 20: 3:1-3:44 (2019) - [j9]Amrit Singh Bedi
, Alec Koppel
, Ketan Rajawat
:
Asynchronous Online Learning in Multi-Agent Systems With Proximity Constraints. IEEE Trans. Signal Inf. Process. over Networks 5(3): 479-494 (2019) - [j8]Amrit Singh Bedi
, Alec Koppel
, Ketan Rajawat
:
Asynchronous Saddle Point Algorithm for Stochastic Optimization in Heterogeneous Networks. IEEE Trans. Signal Process. 67(7): 1742-1757 (2019) - [j7]Alec Koppel
, Kaiqing Zhang
, Hao Zhu
, Tamer Basar
:
Projected Stochastic Primal-Dual Method for Constrained Online Learning With Kernels. IEEE Trans. Signal Process. 67(10): 2528-2542 (2019) - [c34]Amrit Singh Bedi, Alec Koppel, Brian M. Sadler
, Víctor Elvira:
Compressed Streaming Importance Sampling for Efficient Representations of Localization Distributions. ACSSC 2019: 477-481 - [c33]Alec Koppel:
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck. ACC 2019: 3512-3518 - [c32]Alec Koppel, Amrit S. Bedi, Ketan Rajawat:
Controlling the Bias-Variance Tradeoff via Coherent Risk for Robust Learning with Kernels. ACC 2019: 3519-3525 - [c31]Rishabh Dixit, Amrit Singh Bedi, Ketan Rajawat, Alec Koppel:
Distributed Online Learning over Time-varying Graphs via Proximal Gradient Descent. CDC 2019: 2745-2751 - [c30]Sujay Bhatt, Alec Koppel, Vikram Krishnamurthy:
Policy Gradient using Weak Derivatives for Reinforcement Learning. CDC 2019: 5531-5537 - [c29]Kaiqing Zhang, Alec Koppel, Hao Zhu, Tamer Basar:
Convergence and Iteration Complexity of Policy Gradient Method for Infinite-horizon Reinforcement Learning. CDC 2019: 7415-7422 - [c28]Sujay Bhatt, Alec Koppel, Vikram Krishnamurthy:
Policy Gradient using Weak Derivatives for Reinforcement Learning. CISS 2019: 1-3 - [c27]Kaiqing Zhang, Alec Koppel, Hao Zhu, Tamer Basar:
Policy Search in Infinite-Horizon Discounted Reinforcement Learning: Advances through Connections to Non-Convex Optimization : Invited Presentation. CISS 2019: 1-3 - [i14]Kaiqing Zhang, Alec Koppel, Hao Zhu, Tamer Basar:
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies. CoRR abs/1906.08383 (2019) - [i13]Amrit Singh Bedi, Alec Koppel, Ketan Rajawat, Brian M. Sadler:
Nonstationary Nonparametric Online Learning: Balancing Dynamic Regret and Model Parsimony. CoRR abs/1909.05442 (2019) - [i12]Alec Koppel, Amrit Singh Bedi, Victor Elvira, Brian M. Sadler:
Approximate Shannon Sampling in Importance Sampling: Nearly Consistent Finite Particle Estimates. CoRR abs/1909.10279 (2019) - [i11]Alec Koppel, Amrit Singh Bedi, Ketan Rajawat, Brian M. Sadler:
Optimally Compressed Nonparametric Online Learning. CoRR abs/1909.11555 (2019) - [i10]Harshat Kumar, Alec Koppel, Alejandro Ribeiro:
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation. CoRR abs/1910.08412 (2019) - 2018
- [j6]Alec Koppel
, Santiago Paternain, Cédric Richard
, Alejandro Ribeiro
:
Decentralized Online Learning With Kernels. IEEE Trans. Signal Process. 66(12): 3240-3255 (2018) - [c26]Brian Jalaian, Alec Koppel, Andre Harrison, James Michaelis, Stephen Russell:
On Stream-Centric Learning for Internet of Battlefield Things. AAAI Spring Symposia 2018 - [c25]Alec Koppel, Santiago Paternain, Cédric Richard, Alejandro Ribeiro
:
Decentralized Online Nonparametric Learning. ACSSC 2018: 2139-2143 - [c24]Ekaterina I. Tolstaya, Alec Koppel, Ethan Stump, Alejandro Ribeiro
:
Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems. ACC 2018: 6608-6615 - [c23]Amrit Singh Bedi, Alec Koppel, Ketan Rajawat:
Asynchronous Saddle Point Method: Interference Management Through Pricing. CDC 2018: 3229-3235 - [c22]Kaiqing Zhang, Hao Zhu, Tamer Basar, Alec Koppel:
Projected Stochastic Primal-Dual Method for Constrained Online Learning with Kernels. CDC 2018: 4224-4231 - [c21]Hrusikesha Pradhan, Amrit Singh Bedi, Alec Koppel, Ketan Rajawat:
Exact Nonparametric Decentralized Online Optimization. GlobalSIP 2018: 643-647 - [c20]Alec Koppel, Aryan Mokhtari, Alejandro Ribeiro
:
Parallel Stochastic Successive Convex Approximation Method for Large-Scale Dictionary Learning. ICASSP 2018: 2771-2775 - [c19]Ekaterina I. Tolstaya, Ethan Stump, Alec Koppel, Alejandro Ribeiro
:
Composable Learning with Sparse Kernel Representations. IROS 2018: 4622-4628 - [i9]Alec Koppel, Ekaterina I. Tolstaya, Ethan Stump, Alejandro Ribeiro:
Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems. CoRR abs/1804.07323 (2018) - 2017
- [j5]Andrea Simonetto
, Alec Koppel, Aryan Mokhtari, Geert Leus
, Alejandro Ribeiro
:
Decentralized Prediction-Correction Methods for Networked Time-Varying Convex Optimization. IEEE Trans. Autom. Control. 62(11): 5724-5738 (2017) - [j4]Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro
:
D4L: Decentralized Dynamic Discriminative Dictionary Learning. IEEE Trans. Signal Inf. Process. over Networks 3(4): 728-743 (2017) - [j3]Alec Koppel, Brian M. Sadler
, Alejandro Ribeiro
:
Proximity Without Consensus in Online Multiagent Optimization. IEEE Trans. Signal Process. 65(12): 3062-3077 (2017) - [c18]Amrit Singh Bedi, Alec Koppel, Ketan Rajawat:
Beyond consensus and synchrony in decentralized online optimization using saddle point method. ACSSC 2017: 293-297 - [c17]Mahyar Fazlyab, Alec Koppel, Victor M. Preciado, Alejandro Ribeiro
:
A variational approach to dual methods for constrained convex optimization. ACC 2017: 5269-5275 - [c16]Alec Koppel, Santiago Paternain, Cédric Richard, Alejandro Ribeiro
:
Decentralized efficient nonparametric stochastic optimization. GlobalSIP 2017: 533-537 - [c15]Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro
:
Parsimonious Online Learning with Kernels via sparse projections in function space. ICASSP 2017: 4671-4675 - [c14]Aryan Mokhtari, Alec Koppel, Gesualdo Scutari, Alejandro Ribeiro
:
Large-scale nonconvex stochastic optimization by Doubly Stochastic Successive Convex approximation. ICASSP 2017: 4701-4705 - [i8]Alec Koppel, Santiago Paternain, Cédric Richard, Alejandro Ribeiro:
Decentralized Online Learning with Kernels. CoRR abs/1710.04062 (2017) - 2016
- [j2]Andrea Simonetto
, Aryan Mokhtari, Alec Koppel, Geert Leus
, Alejandro Ribeiro
:
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization. IEEE Trans. Signal Process. 64(17): 4576-4591 (2016) - [c13]Alec Koppel, Aryan Mokhtari, Alejandro Ribeiro
:
Doubly stochastic algorithms for large-scale optimization. ACSSC 2016: 1705-1709 - [c12]Aryan Mokhtari, Alec Koppel, Alejandro Ribeiro
:
Doubly random parallel stochastic methods for large scale learning. ACC 2016: 4847-4852 - [c11]Andrea Simonetto, Alec Koppel, Aryan Mokhtari, Geert Leus
, Alejandro Ribeiro
:
A Quasi-newton prediction-correction method for decentralized dynamic convex optimization. ECC 2016: 1934-1939 - [c10]Alec Koppel, Brian M. Sadler, Alejandro Ribeiro
:
Decentralized online optimization with heterogeneous data sources. GlobalSIP 2016: 515-519 - [c9]Alec Koppel, Brian M. Sadler, Alejandro Ribeiro
:
Proximity without consensus in online multi-agent optimization. ICASSP 2016: 3726-3730 - [c8]Alec Koppel, Jonathan Fink, Garrett Warnell, Ethan Stump, Alejandro Ribeiro
:
Online learning for characterizing unknown environments in ground robotic vehicle models. IROS 2016: 626-633 - [i7]Andrea Simonetto, Alec Koppel, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro:
Decentralized Prediction-Correction Methods for Networked Time-Varying Convex Optimization. CoRR abs/1602.01716 (2016) - [i6]