


default search action
26th AISTATS 2023: Valencia, Spain
- Francisco J. R. Ruiz, Jennifer G. Dy, Jan-Willem van de Meent:

International Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research 206, PMLR 2023 - Shinsaku Sakaue, Taihei Oki:

Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation. 1-10 - Marvin Schmitt, Stefan T. Radev, Paul-Christian Bürkner:

Meta-Uncertainty in Bayesian Model Comparison. 11-29 - Jie Shen:

PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time. 30-46 - Jia Lin Hau, Marek Petrik, Mohammad Ghavamzadeh:

Entropic Risk Optimization in Discounted MDPs. 47-76 - Elias Samuel Wirth, Thomas Kerdreux, Sebastian Pokutta:

Acceleration of Frank-Wolfe Algorithms with Open-Loop Step-Sizes. 77-100 - Lianke Qin, Zhao Song, Lichen Zhang, Danyang Zhuo:

An Online and Unified Algorithm for Projection Matrix Vector Multiplication with Application to Empirical Risk Minimization. 101-156 - Jieyu Zhang, Linxin Song, Alex Ratner:

Leveraging Instance Features for Label Aggregation in Programmatic Weak Supervision. 157-171 - Aleksandr Beznosikov, Eduard Gorbunov, Hugo Berard, Nicolas Loizou:

Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods. 172-235 - Aristeidis Panos, Ioannis Kosmidis, Petros Dellaportas:

Scalable marked point processes for exchangeable and non-exchangeable event sequences. 236-252 - Martin Jankowiak:

Bayesian Variable Selection in a Million Dimensions. 253-282 - Yulai Zhao, Jianshu Chen, Simon S. Du:

Blessing of Class Diversity in Pre-training. 283-305 - Rayyan Ahmad Khan, Martin Kleinsteuber:

Barlow Graph Auto-Encoder for Unsupervised Network Embedding. 306-322 - Karim Tit, Teddy Furon, Mathias Rousset:

Gradient-Informed Neural Network Statistical Robustness Estimation. 323-334 - Andi Nika, Adish Singla, Goran Radanovic:

Online Defense Strategies for Reinforcement Learning Against Adaptive Reward Poisoning. 335-358 - Vivien Cabannes, Stefano Vigogna:

A Case of Exponential Convergence Rates for SVM. 359-374 - Ruitu Xu, Yifei Min, Tianhao Wang, Michael I. Jordan, Zhaoran Wang, Zhuoran Yang:

Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models via Reinforcement Learning. 375-407 - Simon Bartels, Kristoffer Stensbo-Smidt

, Pablo Moreno-Muñoz, Wouter Boomsma, Jes Frellsen, Søren Hauberg:
Adaptive Cholesky Gaussian Processes. 408-452 - Sing-Yuan Yeh, Fu-Chieh Chang, Chang-Wei Yueh, Pei-Yuan Wu, Alberto Bernacchia, Sattar Vakili:

Sample Complexity of Kernel-Based Q-Learning. 453-469 - Hadrien Hendrikx:

A principled framework for the design and analysis of token algorithms. 470-489 - Mohsen Heidari

, Wojciech Szpankowski:
Learning k-qubit Quantum Operators via Pauli Decomposition. 490-504 - Shiwei Zeng, Jie Shen:

Semi-Verified PAC Learning from the Crowd. 505-522 - Michal Sharoni, Sivan Sabato:

On the Capacity Limits of Privileged ERM. 523-534 - Kyungsu Lee, Haeyun Lee, Jae Youn Hwang:

USIM Gate: UpSampling Module for Segmenting Precise Boundaries concerning Entropy. 535-562 - Yang Yang, Gennaro Gala, Robert Peharz:

Bayesian Structure Scores for Probabilistic Circuits. 563-575 - Tomas Geffner, Justin Domke:

Langevin Diffusion Variational Inference. 576-593 - Javad Azizi, Ofer Meshi, Masrour Zoghi, Maryam Karimzadehgan:

Overcoming Prior Misspecification in Online Learning to Rank. 594-614 - Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik:

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity. 615-649 - Kei Ishikawa, Niao He:

Kernel Conditional Moment Constraints for Confounding Robust Inference. 650-674 - Atsutoshi Kumagai, Tomoharu Iwata, Hiroshi Takahashi, Yasuhiro Fujiwara:

Meta-learning for Robust Anomaly Detection. 675-691 - Yuka Hashimoto, Masahiro Ikeda, Hachem Kadri:

Learning in RKHM: a C*-Algebraic Twist for Kernel Machines. 692-708 - Sebastian Bordt, Ulrike von Luxburg:

From Shapley Values to Generalized Additive Models and back. 709-745 - Milan Kuzmanovic, Tobias Hatt, Stefan Feuerriegel:

Estimating Conditional Average Treatment Effects with Missing Treatment Information. 746-766 - Zenan Ling, Xingyu Xie, Qiuhao Wang, Zongpeng Zhang, Zhouchen Lin:

Global Convergence of Over-parameterized Deep Equilibrium Models. 767-787 - Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava:

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space. 788-836 - Vinod Kumar Chauhan, Soheila Molaei, Marzia Hoque Tania, Anshul Thakur, Tingting Zhu, David A. Clifton:

Adversarial De-confounding in Individualised Treatment Effects Estimation. 837-849 - Tom Hess, Ron Visbord, Sivan Sabato:

Fast Distributed k-Means with a Small Number of Rounds. 850-874 - Xinwei Sun, Xiangyu Zheng, Jim Weinstein:

A New Causal Decomposition Paradigm towards Health Equity. 875-890 - Arshak Minasyan, Tigran Galstyan, Sona Hunanyan, Arnak S. Dalalyan:

Matching Map Recovery with an Unknown Number of Outliers. 891-906 - Taejin Kim, Shubhranshu Singh, Nikhil Madaan, Carlee Joe-Wong:

Characterizing Internal Evasion Attacks in Federated Learning. 907-921 - Duc Nguyen, Anderson Ye Zhang:

Optimal and Private Learning from Human Response Data. 922-958 - Samuel Stanton, Wesley J. Maddox, Andrew Gordon Wilson:

Bayesian Optimization with Conformal Prediction Sets. 959-986 - Quan Xiao, Han Shen, Wotao Yin, Tianyi Chen:

Alternating Projected SGD for Equality-constrained Bilevel Optimization. 987-1023 - Sivan Sabato:

Improved Robust Algorithms for Learning with Discriminative Feature Feedback. 1024-1036 - Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis:

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations. 1037-1054 - Michal Grudzien, Grigory Malinovsky, Peter Richtárik:

Can 5th Generation Local Training Methods Support Client Sampling? Yes! 1055-1092 - Raul Astudillo, Zhiyuan (Jerry) Lin, Eytan Bakshy, Peter I. Frazier:

qEUBO: A Decision-Theoretic Acquisition Function for Preferential Bayesian Optimization. 1093-1114 - Natraj Raman, Daniele Magazzeni, Sameena Shah:

Bayesian Hierarchical Models for Counterfactual Estimation. 1115-1128 - Xianyang Zhang, Trisha Dawn:

Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis. 1129-1143 - Runzhe Wan, Lin Ge, Rui Song:

Towards Scalable and Robust Structured Bandits: A Meta-Learning Framework. 1144-1173 - Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey:

Compress Then Test: Powerful Kernel Testing in Near-linear Time. 1174-1218 - Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, Shiliang Pu:

Select and Optimize: Learning to aolve large-scale TSP instances. 1219-1231 - Youssef Allouah

, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, John Stephan:
Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity. 1232-1300 - Ansuman Banerjee, Shayak Chakraborty, Sourav Chakraborty, Kuldeep S. Meel, Uddalok Sarkar, Sayantan Sen

:
Testing of Horn Samplers. 1301-1330 - Hsin-En Su, Yen-Ju Chen, Ping-Chun Hsieh, Xi Liu:

Coordinate Ascent for Off-Policy RL with Global Convergence Guarantees. 1331-1378 - Konstantin Klemmer, Nathan S. Safir, Daniel B. Neill:

Positional Encoder Graph Neural Networks for Geographic Data. 1379-1389 - Omer Gottesman, Kavosh Asadi, Cameron S. Allen, Samuel Lobel, George Konidaris, Michael Littman:

Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces. 1390-1410 - Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause:

BaCaDI: Bayesian Causal Discovery with Unknown Interventions. 1411-1436 - Hengchao Chen, Xiang Li, Qiang Sun:

Statistical Analysis of Karcher Means for Random Restricted PSD Matrices. 1437-1456 - Saeyoung Rho, Rachel Cummings, Vishal Misra:

Differentially Private Synthetic Control. 1457-1491 - Felix Jimenez, Matthias Katzfuss:

Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes. 1492-1512 - Hongru Yang, Zhangyang Wang:

On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks. 1513-1553 - Andi Han, Bamdev Mishra, Pratik Jawanpuria, Junbin Gao:

Riemannian Accelerated Gradient Methods via Extrapolation. 1554-1585 - Matthew J. Holland:

Flexible risk design using bi-directional dispersion. 1586-1623 - Jung-Hun Kim, Se-Young Yun, Minchan Jeong, Junhyun Nam, Jinwoo Shin, Richard Combes:

Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles. 1624-1645 - Russell Tsuchida, Cheng Soon Ong:

Deep equilibrium models as estimators for continuous latent variables. 1646-1671 - Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, Anne-Marie Kermarrec:

Refined Convergence and Topology Learning for Decentralized SGD with Heterogeneous Data. 1672-1702 - Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian Pedregosa, Rishabh Agarwal, Marc G. Bellemare:

A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces. 1703-1718 - Joachim Spoerhase

, Kamyar Khodamoradi, Benedikt Riegel, Bruno Ordozgoiti, Aristides Gionis:
A Constant-Factor Approximation Algorithm for Reconciliation k-Median. 1719-1746 - Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar:

Neural Laplace Control for Continuous-time Delayed Systems. 1747-1778 - Natalie Maus, Kaiwen Wu, David Eriksson, Jacob R. Gardner:

Discovering Many Diverse Solutions with Bayesian Optimization. 1779-1798 - Vitalii Bulygin, Dmytro Mykheievskyi, Kyrylo Kuchynskyi:

BlitzMask: Real-Time Instance Segmentation Approach for Mobile Devices. 1799-1811 - Jane H. Lee, Saeid Haghighatshoar, Amin Karbasi:

Exact Gradient Computation for Spiking Neural Networks via Forward Propagation. 1812-1831 - Mingshan Sun, Ye Zheng, Tianpeng Bao, Jianqiu Chen, Guoqiang Jin, Liwei Wu, Rui Zhao, Xiaoke Jiang:

Uni6Dv2: Noise Elimination for 6D Pose Estimation. 1832-1844 - Kaiyu Li, Daniel Giles, Toni Karvonen, Serge Guillas, François-Xavier Briol:

Multilevel Bayesian Quadrature. 1845-1868 - Shiv Shankar, Ritwik Sinha, Saayan Mitra, Moumita Sinha, Madalina Fiterau:

Direct Inference of Effect of Treatment (DIET) for a Cookieless World. 1869-1887 - Niklas Stoehr, Benjamin J. Radford

, Ryan Cotterell, Aaron Schein:
The Ordered Matrix Dirichlet for State-Space Models. 1888-1903 - Jen Ning Lim, Sebastian J. Vollmer, Lorenz Wolf, Andrew B. Duncan:

Energy-Based Models for Functional Data using Path Measure Tilting. 1904-1923 - Emilio Dorigatti, Benjamin Schubert, Bernd Bischl, David Rügamer:

Frequentist Uncertainty Quantification in Semi-Structured Neural Networks. 1924-1941 - Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart:

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge. 1942-1964 - Pedro Cisneros-Velarde, Boxiang Lyu, Sanmi Koyejo, Mladen Kolar:

One Policy is Enough: Parallel Exploration with a Single Policy is Near-Optimal for Reward-Free Reinforcement Learning. 1965-2001 - Chengkuan Hong, Christian R. Shelton:

Variational Inference for Neyman-Scott Processes. 2002-2018 - Giannis Nikolentzos, Michalis Vazirgiannis:

Graph Alignment Kernels using Weisfeiler and Leman Hierarchies. 2019-2034 - Giannis Nikolentzos, Michalis Vazirgiannis:

Geometric Random Walk Graph Neural Networks via Implicit Layers. 2035-2053 - Shalev Shaer, Gal Maman, Yaniv Romano:

Model-X Sequential Testing for Conditional Independence via Testing by Betting. 2054-2086 - Imad Aouali, Branislav Kveton, Sumeet Katariya:

Mixed-Effect Thompson Sampling. 2087-2115 - Nelvin Tan, Ramji Venkataramanan:

Mixed Linear Regression via Approximate Message Passing. 2116-2131 - Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam:

EEGNN: Edge Enhanced Graph Neural Network with a Bayesian Nonparametric Graph Model. 2132-2146 - Ke Bai, Pengyu Cheng, Weituo Hao, Ricardo Henao, Larry Carin:

Estimating Total Correlation with Mutual Information Estimators. 2147-2164 - Çagin Ararat, Cem Tekin:

Vector Optimization with Stochastic Bandit Feedback. 2165-2190 - Ervine Zheng, Qi Yu, Rui Li, Pengcheng Shi, Anne R. Haake:

Knowledge Acquisition for Human-In-The-Loop Image Captioning. 2191-2206 - Xiang Li, Wenhao Yang, Jiadong Liang, Zhihua Zhang, Michael I. Jordan:

A Statistical Analysis of Polyak-Ruppert Averaged Q-Learning. 2207-2261 - Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal:

Linear Convergence of Gradient Descent For Finite Width Over-parametrized Linear Networks With General Initialization. 2262-2284 - Jerry Chee, Hwanwoo Kim, Panos Toulis:

"Plus/minus the learning rate": Easy and Scalable Statistical Inference with SGD. 2285-2309 - Rick Presman, Jason Xu:

Distance-to-Set Priors and Constrained Bayesian Inference. 2310-2326 - Achal Awasthi, Jason Xu:

Fast Computation of Branching Process Transition Probabilities via ADMM. 2327-2347 - Junwen Yao, N. Benjamin Erichson, Miles E. Lopes:

Error Estimation for Random Fourier Features. 2348-2364 - Feihu Huang, Xidong Wu, Zhengmian Hu:

AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization. 2365-2389 - Jaromír Plhák, Ondrej Sotolár, Michaela Lebedíková, David Smahel:

Classification of Adolescents' Risky Behavior in Instant Messaging Conversations. 2390-2404 - Tom Norman, Nir Weinberger, Kfir Y. Levy:

Robust Linear Regression for General Feature Distribution. 2405-2435 - Solenne Gaucher, Nicolas Schreuder, Evgenii Chzhen:

Fair learning with Wasserstein barycenters for non-decomposable performance measures. 2436-2459 - Matthias Rath, Alexandru Paul Condurache:

Deep Neural Networks with Efficient Guaranteed Invariances. 2460-2480 - Yasutoshi Ida, Sekitoshi Kanai, Atsutoshi Kumagai:

Fast Block Coordinate Descent for Non-Convex Group Regularizations. 2481-2493 - Andrea Pugnana

, Salvatore Ruggieri:
AUC-based Selective Classification. 2494-2514 - Shashank Singh:

Nonparametric Indirect Active Learning. 2515-2541 - Loay Mualem, Moran Feldman:

Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets. 2542-2564 - Jixiang Qing, Henry B. Moss, Tom Dhaene, Ivo Couckuyt:

PF2ES: Parallel Feasible Pareto Frontier Entropy Search for Multi-Objective Bayesian Optimization. 2565-2588 - Hedda Cohen Indelman, Tamir Hazan:

Learning Constrained Structured Spaces with Application to Multi-Graph Matching. 2589-2602 - El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Lê-Nguyên Hoang:

On the Strategyproofness of the Geometric Median. 2603-2640 - Young-Geun Kim, Ying Liu, Xuexin Wei:

Covariate-informed Representation Learning to Prevent Posterior Collapse of iVAE. 2641-2660 - Lev Telyatnikov, Simone Scardapane:

EGG-GAE: scalable graph neural networks for tabular data imputation. 2661-2676 - Mengdi Xu, Peide Huang, Yaru Niu, Visak Kumar, Jielin Qiu, Chao Fang, Kuan-Hui Lee, Xuewei Qi, Henry Lam, Bo Li, Ding Zhao:

Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables. 2677-2703 - Xun Zhu, Yutong Xiong, Ming Wu, Gaozhen Nie, Bin Zhang, Ziheng Yang:

Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations. 2704-2722 - Yiling Luo, Yiling Xie, Xiaoming Huo:

Improved Rate of First Order Algorithms for Entropic Optimal Transport. 2723-2750 - Yingying Zhang, Chengchun Shi, Shikai Luo:

Conformal Off-Policy Prediction. 2751-2768 - Jeremy Sellier, Petros Dellaportas:

Sparse Spectral Bayesian Permanental Process with Generalized Kernel. 2769-2791 - Huishuai Zhang, Da Yu, Yiping Lu, Di He:

Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks. 2792-2804 - Yassir Jedra, Junghyun Lee, Alexandre Proutière, Se-Young Yun:

Nearly Optimal Latent State Decoding in Block MDPs. 2805-2904 - Quentin Bertrand, Wojciech Marian Czarnecki, Gauthier Gidel:

On the Limitations of the Elo, Real-World Games are Transitive, not Additive. 2905-2921 - Mohsen Heidari

, Wojciech Szpankowski:
Agnostic PAC Learning of k-juntas Using L2-Polynomial Regression. 2922-2938 - Zhenbang Wang, Emanuel Ben-David, Martin Slawski:

Regularization for Shuffled Data Problems via Exponential Family Priors on the Permutation Group. 2939-2959 - Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, Ann B. Lee:

Simulator-Based Inference with WALDO: Confidence Regions by Leveraging Prediction Algorithms and Posterior Estimators for Inverse Problems. 2960-2974 - Daniel Goldfarb, Paul Hand:

Analysis of Catastrophic Forgetting for Random Orthogonal Transformation Tasks in the Overparameterized Regime. 2975-2993 - Ehsan Amid, Richard Nock, Manfred K. Warmuth:

Clustering above Exponential Families with Tempered Exponential Measures. 2994-3017 - Hussein Hazimeh, Natalia Ponomareva:

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets. 3018-3033 - Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, Tie-Yan Liu:

Learning Physics-Informed Neural Networks without Stacked Back-propagation. 3034-3047 - Kihyuk Hong, Yuhang Li, Ambuj Tewari:

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge. 3048-3085 - David Simchi-Levi, Chonghuan Wang:

Multi-armed Bandit Experimental Design: Online Decision-making and Adaptive Inference. 3086-3097 - Wonyoung Kim, Myunghee Cho Paik, Min-hwan Oh:

Squeeze All: Novel Estimator and Self-Normalized Bound for Linear Contextual Bandits. 3098-3124 - Ziye Ma, Somayeh Sojoudi:

Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate. 3125-3150 - Banghua Zhu, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, Michael I. Jordan:

Byzantine-Robust Federated Learning with Optimal Statistical Rates. 3151-3178 - Yinglong Guo, Dongmian Zou

, Gilad Lerman:
An Unpooling Layer for Graph Generation. 3179-3209 - Devansh Jalota, Karthik Gopalakrishnan, Navid Azizan, Ramesh Johari, Marco Pavone:

Online Learning for Traffic Routing under Unknown Preferences. 3210-3229 - Yiding Chen, Xuezhou Zhang, Kaiqing Zhang, Mengdi Wang, Xiaojin Zhu:

Byzantine-Robust Online and Offline Distributed Reinforcement Learning. 3230-3269 - Mengxiao Zhang, Shi Chen, Haipeng Luo, Yingfei Wang:

No-Regret Learning in Two-Echelon Supply Chain with Unknown Demand Distribution. 3270-3298 - Aidan Scannell, Carl Henrik Ek, Arthur Richards:

Mode-constrained Model-based Reinforcement Learning via Gaussian Processes. 3299-3314 - Qingzhong Ai, Pengyun Wang, Lirong He, Liangjian Wen, Lujia Pan, Zenglin Xu:

Generative Oversampling for Imbalanced Data via Majority-Guided VAE. 3315-3330 - Eren Mehmet Kiral, Thomas Möllenhoff, Mohammad Emtiyaz Khan:

The Lie-Group Bayesian Learning Rule. 3331-3352 - Dan Meller, Nicolas Berkouk:

Singular Value Representation: A New Graph Perspective On Neural Networks. 3353-3369 - Shengbo Wang, Nian Si, José H. Blanchet, Zhengyuan Zhou:

A Finite Sample Complexity Bound for Distributionally Robust Q-learning. 3370-3398 - Hiroshi Morioka, Aapo Hyvärinen:

Connectivity-contrastive learning: Combining causal discovery and representation learning for multimodal data. 3399-3426 - Oisin Faust, Hamza Fawzi, James Saunderson:

A Bregman Divergence View on the Difference-of-Convex Algorithm. 3427-3439 - Arnab Kumar Mondal, Lakshya Singhal, Piyush Tiwary, Parag Singla, Prathosh AP:

Minority Oversampling for Imbalanced Data via Class-Preserving Regularized Auto-Encoders. 3440-3465 - Yuchao Qin, Mihaela van der Schaar, Changhee Lee:

T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in Disease Progression. 3466-3492 - Boris van Breugel, Hao Sun, Zhaozhi Qian, Mihaela van der Schaar:

Membership Inference Attacks against Synthetic Data through Overfitting Detection. 3493-3514 - Qixin Zhang, Zengde Deng, Zaiyi Chen, Kuangqi Zhou, Haoyuan Hu, Yu Yang:

Online Learning for Non-monotone DR-Submodular Maximization: From Full Information to Bandit Feedback. 3515-3537 - Chieh-Hsin Lai, Dongmian Zou

, Gilad Lerman:
Robust Variational Autoencoding with Wasserstein Penalty for Novelty Detection. 3538-3567 - Jeroen Berrevoets

, Fergus Imrie, Trent Kyono, James Jordon, Mihaela van der Schaar:
To Impute or not to Impute? Missing Data in Treatment Effect Estimation. 3568-3590 - Sebastian Shenghong Tay, Quoc Phong Nguyen, Chuan Sheng Foo, Bryan Kian Hsiang Low:

No-regret Sample-efficient Bayesian Optimization for Finding Nash Equilibria with Unknown Utilities. 3591-3619 - Ossi Räisä, Joonas Jälkö, Samuel Kaski, Antti Honkela:

Noise-Aware Statistical Inference with Differentially Private Synthetic Data. 3620-3643 - Louis Leconte, Sholom Schechtman, Eric Moulines:

ASkewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks. 3644-3663 - Alberto Cabezas, Christopher Nemeth:

Transport Elliptical Slice Sampling. 3664-3676 - Yiyan Huang, Cheuk Hang Leung, Shumin Ma, Zhiri Yuan, Qi Wu, Siyi Wang, Dongdong Wang

, Zhixiang Huang:
Towards Balanced Representation Learning for Credit Policy Evaluation. 3677-3692 - Lukang Sun, Avetik G. Karagulyan, Peter Richtárik:

Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition. 3693-3717 - Maxim Kodryan, Dmitry Kropotov, Dmitry P. Vetrov:

MARS: Masked Automatic Ranks Selection in Tensor Decompositions. 3718-3732 - Song Duong, Alberto Lumbreras, Mike Gartrell, Patrick Gallinari:

Learning from Multiple Sources for Data-to-Text and Text-to-Data. 3733-3753 - Sulin Liu, Qing Feng, David Eriksson, Benjamin Letham, Eytan Bakshy:

Sparse Bayesian optimization. 3754-3774 - Anass Aghbalou, Anne Sabourin, François Portier:

On the bias of K-fold cross validation with stable learners. 3775-3794 - Yohan Jung, Jinkyoo Park:

Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior. 3795-3824 - Shuo Yang, Yijun Dong, Rachel A. Ward, Inderjit S. Dhillon, Sujay Sanghavi, Qi Lei:

Sample Efficiency of Data Augmentation Consistency Regularization. 3825-3853 - Thomas Kleine Buening, Aadirupa Saha:

ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non-Stationary Dueling Bandits. 3854-3878 - Changwoo Lee, Xiao Hu, Hun-Seok Kim:

Deep Joint Source-Channel Coding with Iterative Source Error Correction. 3879-3902 - Yu-Zhen Janice Chen, Lin Yang, Xuchuang Wang, Xutong Liu, Mohammad H. Hajiesmaili, John C. S. Lui, Don Towsley:

On-Demand Communication for Asynchronous Multi-Agent Bandits. 3903-3930 - Simon Damm

, Dennis Forster, Dmytro Velychko, Zhenwen Dai, Asja Fischer
, Jörg Lücke:
The ELBO of Variational Autoencoders Converges to a Sum of Entropies. 3931-3960 - Joshua C. Chang, Carson C. Chow, Julia Porcino:

Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery. 3961-3976 - Rachel Redberg, Yuqing Zhu, Yu-Xiang Wang:

Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy. 3977-4005 - Hanlin Zhu, Ruosong Wang, Jason D. Lee:

Provably Efficient Reinforcement Learning via Surprise Bound. 4006-4032 - Xinyi Xu, Zhaoxuan Wu

, Arun Verma, Chuan Sheng Foo, Bryan Kian Hsiang Low:
FAIR: Fair Collaborative Active Learning with Individual Rationality for Scientific Discovery. 4033-4057 - Austin J. Stromme:

Sampling From a Schrödinger Bridge. 4058-4067 - Yehu Chen, Annamaria Prati, Jacob M. Montgomery, Roman Garnett:

A Multi-Task Gaussian Process Model for Inferring Time-Varying Treatment Effects in Panel Data. 4068-4088 - Naoya Takeishi, Alexandros Kalousis:

Deep Grey-Box Modeling With Adaptive Data-Driven Models Toward Trustworthy Estimation of Theory-Driven Models. 4089-4100 - Aarshvi Gajjar, Christopher Musco, Chinmay Hegde:

Active Learning for Single Neuron Models with Lipschitz Non-Linearities. 4101-4113 - Hippolyte Bourel, Anders Jonsson, Odalric-Ambrym Maillard, Mohammad Sadegh Talebi:

Exploration in Reward Machines with Low Regret. 4114-4146 - Alankrita Bhatt, J. Jon Ryu, Young-Han Kim:

On Universal Portfolios with Continuous Side Information. 4147-4163 - Yaxuan Zhu, Jianwen Xie, Ping Li:

Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation. 4164-4180 - Ilya Shpitser:

The Lauritzen-Chen Likelihood For Graphical Models. 4181-4195 - Emmanouil Zampetakis

, Fred Zhang:
Bayesian Strategy-Proof Facility Location via Robust Estimation. 4196-4208 - William I. Walker, Hugo Soulat, Changmin Yu, Maneesh Sahani:

Unsupervised representation learning with recognition-parametrised probabilistic models. 4209-4230 - Samuel Allen Alexander, David Quarel, Len Du, Marcus Hutter:

Universal Agent Mixtures and the Geometry of Intelligence. 4231-4246 - Wei-Ning Chen, Ayfer Özgür, Graham Cormode, Akash Bharadwaj:

The communication cost of security and privacy in federated frequency estimation. 4247-4274 - Zixian Yang, R. Srikant, Lei Ying

:
Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB. 4275-4312 - Sujay Bhatt, Guanhua Fang, Ping Li:

Piecewise Stationary Bandits under Risk Criteria. 4313-4335 - Ruihan Wu, Jin Peng Zhou, Kilian Q. Weinberger, Chuan Guo:

Does Label Differential Privacy Prevent Label Inference Attacks? 4336-4347 - Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, Linjun Zhang:

Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data. 4348-4380 - Hiroki Naganuma, Hideaki Iiduka:

Conjugate Gradient Method for Generative Adversarial Networks. 4381-4408 - Davin Choo, Kirankumar Shiragur:

Subset verification and search algorithms for causal DAGs. 4409-4442 - Han Shen, Songtao Lu, Xiaodong Cui, Tianyi Chen:

Distributed Offline Policy Optimization Over Batch Data. 4443-4472 - Rui Wang, Pengyu Cheng, Ricardo Henao:

Toward Fairness in Text Generation via Mutual Information Minimization based on Importance Sampling. 4473-4485 - Christian Fabian, Kai Cui, Heinz Koeppl:

Learning Sparse Graphon Mean Field Games. 4486-4514 - Joel Oskarsson

, Per Sidén, Fredrik Lindsten:
Temporal Graph Neural Networks for Irregular Data. 4515-4531 - Xingyu Xu, Yuantao Gu:

Oblivious near-optimal sampling for multidimensional signals with Fourier constraints. 4532-4555 - Viacheslav Borovitskiy, Mohammad Reza Karimi, Vignesh Ram Somnath, Andreas Krause

:
Isotropic Gaussian Processes on Finite Spaces of Graphs. 4556-4574 - Alberto Maria Metelli, Mirco Mutti, Marcello Restelli:

A Tale of Sampling and Estimation in Discounted Reinforcement Learning. 4575-4601 - Shaokui Wei, Jiayin Liu, Bing Li, Hongyuan Zha:

Mean Parity Fair Regression in RKHS. 4602-4628 - Xiangqian Sun, Cheuk Hang Leung, Yijun Li, Qi Wu:

A Unified Perspective on Regularization and Perturbation in Differentiable Subset Selection. 4629-4642 - Ryuichiro Hataya, Makoto Yamada:

Nyström Method for Accurate and Scalable Implicit Differentiation. 4643-4654 - Yixuan Zhang, Feng Zhou, Zhidong Li

, Yang Wang, Fang Chen:
Fair Representation Learning with Unreliable Labels. 4655-4667 - Pavan Karjol, Rohan Kashyap, Prathosh AP:

Neural Discovery of Permutation Subgroups. 4668-4678 - Duy Nguyen, Ngoc Bui, Viet Anh Nguyen:

Feasible Recourse Plan via Diverse Interpolation. 4679-4698 - Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski:

Computing Abductive Explanations for Boosted Trees. 4699-4711 - Kevin Elgui, Alex Nowak, Geneviève Robin:

A Statistical Learning Take on the Concordance Index for Survival Analysis. 4712-4731 - Giovanni Luca Marchetti, Vladislav Polianskii, Anastasiia Varava, Florian T. Pokorny, Danica Kragic:

An Efficient and Continuous Voronoi Density Estimator. 4732-4744 - Giovanni Luca Marchetti, Gustaf Tegnér, Anastasiia Varava, Danica Kragic:

Equivariant Representation Learning via Class-Pose Decomposition. 4745-4756 - Flavio Chierichetti, Mirko Giacchini

, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins:
Approximating a RUM from Distributions on k-Slates. 4757-4767 - Ikko Yamane, Yann Chevaleyre, Takashi Ishida, Florian Yger:

Mediated Uncoupled Learning and Validation with Bregman Divergences: Loss Family with Maximal Generality. 4768-4801 - Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin:

Coordinate Descent for SLOPE. 4802-4821 - Leonardo Cella, Karim Lounici, Grégoire Pacreau, Massimiliano Pontil:

Multi-task Representation Learning with Stochastic Linear Bandits. 4822-4847 - Gianluigi Lopardo, Frédéric Precioso, Damien Garreau:

A Sea of Words: An In-Depth Analysis of Anchors for Text Data. 4848-4879 - Rosanne Turner, Peter Grunwald:

Safe Sequential Testing and Effect Estimation in Stratified Count Data. 4880-4893 - Paul Mangold, Aurélien Bellet, Joseph Salmon, Marc Tommasi:

High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent. 4894-4916 - Hossein Taheri, Christos Thrampoulidis:

On Generalization of Decentralized Learning with Separable Data. 4917-4945 - Alvaro H. C. Correia, Daniel E. Worrall, Roberto Bondesan:

Neural Simulated Annealing. 4946-4962 - Yusha Liu, Aarti Singh:

Adaptation to Misspecified Kernel Regularity in Kernelised Bandits. 4963-4985 - François Bachoc, Louis Béthune, Alberto González-Sanz

, Jean-Michel Loubes:
Gaussian Processes on Distributions based on Regularized Optimal Transport. 4986-5010 - Yuxuan Han, Jialin Zeng, Yang Wang, Yang Xiang, Jiheng Zhang:

Optimal Contextual Bandits with Knapsacks under Realizability via Regression Oracles. 5011-5035 - Lukasz Struski, Marcin Mazur, Pawel Batorski, Przemyslaw Spurek, Jacek Tabor:

Bounding Evidence and Estimating Log-Likelihood in VAE. 5036-5051 - Lijie Hu, Zihang Xiang, Jiabin Liu, Di Wang:

Privacy-preserving Sparse Generalized Eigenvalue Problem. 5052-5062 - Minh-Toan Nguyen, Romain Couillet:

Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture. 5063-5078 - Muhammad Faaiz Taufiq, Patrick Blöbaum, Lenon Minorics:

Manifold Restricted Interventional Shapley Values. 5079-5106 - Yutong Dai, Guanyi Wang, Frank E. Curtis

, Daniel P. Robinson:
A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization. 5107-5133 - Juan Kuntz, Jen Ning Lim, Adam M. Johansen:

Particle algorithms for maximum likelihood training of latent variable models. 5134-5180 - Jonas Wacker, Ruben Ohana, Maurizio Filippone:

Complex-to-Real Sketches for Tensor Products with Applications to the Polynomial Kernel. 5181-5212 - Henry B. Moss, Sebastian W. Ober, Victor Picheny:

Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation. 5213-5230 - Quan Nguyen, Roman Garnett:

Nonmyopic Multiclass Active Search with Diminishing Returns for Diverse Discovery. 5231-5249 - Matthäus Kleindessner, Michele Donini, Chris Russell, Muhammad Bilal Zafar:

Efficient fair PCA for fair representation learning. 5250-5270 - Masahiro Kato, Masaaki Imaizumi, Kentaro Minami:

Unified Perspective on Probability Divergence via the Density-Ratio Likelihood: Bridging KL-Divergence and Integral Probability Metrics. 5271-5298 - Vincent Plassier, Eric Moulines, Alain Durmus:

Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms. 5299-5356 - David S. Watson, Kristin Blesch, Jan Kapar, Marvin N. Wright

:
Adversarial Random Forests for Density Estimation and Generative Modeling. 5357-5375 - Tyler Sypherd, Nathaniel Stromberg, Richard Nock, Visar Berisha, Lalitha Sankar:

Smoothly Giving up: Robustness for Simple Models. 5376-5410 - Xiaoyan Hu

, Ho-fung Leung:
A Tighter Problem-Dependent Regret Bound for Risk-Sensitive Reinforcement Learning. 5411-5437 - Gandharv Patil, Prashanth L. A., Dheeraj Nagaraj, Doina Precup:

Finite time analysis of temporal difference learning with linear function approximation: Tail averaging and regularisation. 5438-5448 - Hannah Sansford, Alexander Modell, Nick Whiteley, Patrick Rubin-Delanchy:

Implications of sparsity and high triangle density for graph representation learning. 5449-5473 - Vincent Liu, Yash Chandak, Philip S. Thomas, Martha White:

Asymptotically Unbiased Off-Policy Policy Evaluation when Reusing Old Data in Nonstationary Environments. 5474-5492 - Ludovic Arnould, Claire Boyer, Erwan Scornet:

Is interpolation benign for random forest regression? 5493-5548 - Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, David A. Sontag:

TabLLM: Few-shot Classification of Tabular Data with Large Language Models. 5549-5581 - Simon Barthelmé, Nicolas Tremblay, Pierre-Olivier Amblard:

A Faster Sampler for Discrete Determinantal Point Processes. 5582-5592 - Andrew Stirn, Harm Wessels, Megan Schertzer, Laura Pereira, Neville E. Sanjana, David A. Knowles:

Faithful Heteroscedastic Regression with Neural Networks. 5593-5613 - Ben London, Levi Lu, Ted Sandler, Thorsten Joachims:

Boosted Off-Policy Learning. 5614-5640 - Sarath Pattathil, Kaiqing Zhang, Asuman E. Ozdaglar:

Symmetric (Optimistic) Natural Policy Gradient for Multi-Agent Learning with Parameter Convergence. 5641-5685 - Nikita Puchkin, Valeriia Shcherbakova:

A Contrastive Approach to Online Change Point Detection. 5686-5713 - Truc D. T. Nguyen, Phung Lai, Khang Tran, NhatHai Phan, My T. Thai:

Active Membership Inference Attack under Local Differential Privacy in Federated Learning. 5714-5730 - Lingxiao Wang, Boxin Zhao, Mladen Kolar:

Differentially Private Matrix Completion through Low-rank Matrix Factorization. 5731-5748 - Andrew Lowy, Ali Ghafelebashi, Meisam Razaviyayn:

Private Non-Convex Federated Learning Without a Trusted Server. 5749-5786 - Tristan Cinquin, Tammo Rukat, Philipp Schmidt, Martin Wistuba, Artur Bekasov:

Variational Boosted Soft Trees. 5787-5801 - Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause:

The Schrödinger Bridge between Gaussian Measures has a Closed Form. 5802-5833 - Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, Phillip B. Gibbons:

Federated Learning under Distributed Concept Drift. 5834-5853 - Zachary Robertson, Hantao Zhang, Sanmi Koyejo:

Cooperative Inverse Decision Theory for Uncertain Preferences. 5854-5868 - Zeshan M. Hussain, Ming-Chieh Shih, Michael Oberst

, Ilker Demirel, David A. Sontag:
Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions. 5869-5898 - Yuqing Hu, Stéphane Pateux, Vincent Gripon:

Adaptive Dimension Reduction and Variational Inference for Transductive Few-Shot Classification. 5899-5917 - Dmitry M. Malioutov, Sanjeeb Dash, Dennis Wei:

Heavy Sets with Applications to Interpretable Machine Learning Diagnostics. 5918-5930 - Sasila Ilandarideva, Yannis Bekri, Anatoli B. Juditsky, Vianney Perchet:

Stochastic Mirror Descent for Large-Scale Sparse Recovery. 5931-5957 - Evan Becker, Jingdong Gao, Ted Zadouri, Baharan Mirzasoleiman:

High Probability Bounds for Stochastic Continuous Submodular Maximization. 5958-5979 - Sung Jae Jun, Sokbae Lee:

Average Adjusted Association: Efficient Estimation with High Dimensional Confounders. 5980-5996 - Jiachen Yang, Tarik Dzanic, Brenden K. Petersen, Jun Kudo, Ketan Mittal, Vladimir Z. Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio V. Kolev, Robert W. Anderson, Daniel M. Faissol:

Reinforcement Learning for Adaptive Mesh Refinement. 5997-6014 - Yikai Zhang, Jiahe Lin

, Fengpei Li, Yeshaya Adler, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka:
Risk Bounds on Aleatoric Uncertainty Recovery. 6015-6036 - Nathan Kallus, Miruna Oprescu:

Robust and Agnostic Learning of Conditional Distributional Treatment Effects. 6037-6060 - Benjamin Howson, Ciara Pike-Burke, Sarah Filippi:

Optimism and Delays in Episodic Reinforcement Learning. 6061-6094 - Benjamin Howson, Ciara Pike-Burke, Sarah Filippi:

Delayed Feedback in Generalised Linear Bandits Revisited. 6095-6119 - Nikolay Krantsevich, Jingyu He, P. Richard Hahn:

Stochastic Tree Ensembles for Estimating Heterogeneous Effects. 6120-6131 - Rong Tang, Yun Yang:

Minimax Nonparametric Two-Sample Test under Adversarial Losses. 6132-6165 - Helmuth J. Naumer, Farzad Kamalabadi:

Dimensionality Collapse: Optimal Measurement Selection for Low-Error Infinite-Horizon Forecasting. 6166-6198 - Tamara A. Pereira, Erik Nascimento, Lucas E. Resck

, Diego Mesquita, Amauri H. Souza:
Distill n' Explain: explaining graph neural networks using simple surrogates. 6199-6214 - Yueyang Liu, Benjamin Van Roy, Kuang Xu:

Nonstationary Bandit Learning via Predictive Sampling. 6215-6244 - Zhiyue Zhang, Hongyuan Mei, Yanxun Xu:

Continuous-Time Decision Transformer for Healthcare Applications. 6245-6262 - Aadirupa Saha, Aldo Pacchiano, Jonathan Lee:

Dueling RL: Reinforcement Learning with Trajectory Preferences. 6263-6289 - Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans:

Discrete Langevin Samplers via Wasserstein Gradient Flow. 6290-6313 - Haotian Ju, Dongyue Li, Aneesh Sharma, Hongyang R. Zhang:

Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion. 6314-6341 - Volodymyr Tkachuk, Seyed Alireza Bakhtiari, Johannes Kirschner, Matej Jusup, Ilija Bogunovic, Csaba Szepesvári:

Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning. 6342-6370 - Muralikrishnna G. Sethuraman, Romain Lopez, Rahul Mohan, Faramarz Fekri

, Tommaso Biancalani, Jan-Christian Hütter:
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning. 6371-6387 - Jiachen T. Wang, Ruoxi Jia:

Data Banzhaf: A Robust Data Valuation Framework for Machine Learning. 6388-6421 - Cyrus Cousins:

Revisiting Fair-PAC Learning and the Axioms of Cardinal Welfare. 6422-6442 - Zhouhao Yang, Yihong Guo, Pan Xu, Anqi Liu, Animashree Anandkumar:

Distributionally Robust Policy Gradient for Offline Contextual Bandits. 6443-6462 - Hideaki Ishibashi, Masayuki Karasuyama, Ichiro Takeuchi, Hideitsu Hino:

A stopping criterion for Bayesian optimization by the gap of expected minimum simple regrets. 6463-6497 - Qihan Wang, Chen Dun, Fangshuo Liao, Chris Jermaine, Anastasios Kyrillidis:

LOFT: Finding Lottery Tickets through Filter-wise Training. 6498-6526 - Honghao Wei, Arnob Ghosh, Ness B. Shroff, Lei Ying

, Xingyu Zhou:
Provably Efficient Model-Free Algorithms for Non-stationary CMDPs. 6527-6570 - Fasil Cheema, Ruth Urner:

Precision Recall Cover: A Method For Assessing Generative Models. 6571-6594 - Zihan Wang, Jason Lee, Qi Lei:

Reconstructing Training Data from Model Gradient, Provably. 6595-6612 - Ji Wang, Ding Lu, Ian Davidson, Zhaojun Bai:

Scalable Spectral Clustering with Group Fairness Constraints. 6613-6629 - Chen Dun, Mirian Hipolito Garcia, Chris Jermaine, Dimitrios Dimitriadis, Anastasios Kyrillidis:

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout. 6630-6660 - Toshihiro Ota, Ikuro Sato, Rei Kawakami, Masayuki Tanaka, Nakamasa Inoue:

Learning with Partial Forgetting in Modern Hopfield Networks. 6661-6673 - Weilin Cong, Mehrdad Mahdavi:

Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection. 6674-6703 - Yunzhe Zhou, Zhengling Qi, Chengchun Shi, Lexin Li:

Optimizing Pessimism in Dynamic Treatment Regimes: A Bayesian Learning Approach. 6704-6721 - Yucheng Wang, Mingyuan Zhou, Yu Sun, Xiaoning Qian:

Uncertainty-aware Unsupervised Video Hashing. 6722-6740 - Vishnu Raj, Tianyu Cui, Markus Heinonen, Pekka Marttinen:

Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach. 6741-6763 - Christopher Harker, Aditya Bhaskara:

Structure of Nonlinear Node Embeddings in Stochastic Block Models. 6764-6782 - Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima:

On Model Selection Consistency of Lasso for High-Dimensional Ising Models. 6783-6805 - Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee:

Optimal Sample Complexity Bounds for Non-convex Optimization under Kurdyka-Lojasiewicz Condition. 6806-6821 - Ning Liu, Yue Yu, Huaiqian You, Neeraj Tatikola:

INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation. 6822-6838 - Laurence Davies, Robert Salomone, Matthew Sutton, Chris Drovandi:

Transport Reversible Jump Proposals. 6839-6852 - Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark W. Barrett, Eitan Farchi:

Convex Bounds on the Softmax Function with Applications to Robustness Verification. 6853-6878 - Zheyang Xiong, Fangshuo Liao, Anastasios Kyrillidis:

Strong Lottery Ticket Hypothesis with ε-perturbation. 6879-6902 - Sayak Chatterjee, Dibyendu Saha, Soham Dan, Bhaswar B. Bhattacharya:

Two-Sample Tests for Inhomogeneous Random Graphs in Lr Norm: Optimality and Asymptotics. 6903-6911 - Quanhan Xi, Benjamin Bloem-Reddy:

Indeterminacy in Generative Models: Characterization and Strong Identifiability. 6912-6939 - Paramita Koley, Harshavardhan Alimi

, Shrey Singla, Sourangshu Bhattacharya, Niloy Ganguly, Abir De:
Differentiable Change-point Detection With Temporal Point Processes. 6940-6955 - Adrian N. Bishop, Edwin V. Bonilla:

Recurrent Neural Networks and Universal Approximation of Bayesian Filters. 6956-6967 - Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen:

Thresholded linear bandits. 6968-7020 - Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Janardhan Rao Doppa, David Eriksson:

Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary-based Embeddings. 7021-7039 - Munir Hiabu, Joseph T. Meyer, Marvin N. Wright

:
Unifying local and global model explanations by functional decomposition of low dimensional structures. 7040-7060 - Alexander K. Lew, George Matheos, Tan Zhi-Xuan, Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell, Vikash K. Mansinghka:

SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals. 7061-7088 - Lucas Clarté, Bruno Loureiro, Florent Krzakala

, Lenka Zdeborová:
On double-descent in uncertainty quantification in overparametrized models. 7089-7125 - Sofia Triantafillou, Fattaneh Jabbari, Gregory F. Cooper:

Learning Treatment Effects from Observational and Experimental Data. 7126-7146 - Zhiqiang Xu:

On the Accelerated Noise-Tolerant Power Method. 7147-7175 - Chandramauli Chakraborty, Sayan Paul, Saptarshi Chakraborty, Swagatam Das:

Clustering High-dimensional Data with Ordered Weighted ℓ1 Regularization. 7176-7189 - Aldo Gael Carranza, Sanath Kumar Krishnamurthy, Susan Athey:

Flexible and Efficient Contextual Bandits with Heterogeneous Treatment Effect Oracles. 7190-7212 - Dan Garber, Tsur Livney, Shoham Sabach:

Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal Oracle. 7213-7238 - Shibo Li, Zheng Wang, Akil Narayan, Robert M. Kirby, Shandian Zhe:

Meta-Learning with Adjoint Methods. 7239-7251 - Ankur Ankan, Inge M. N. Wortel, Kenneth Bollen, Johannes Textor:

Combining Graphical and Algebraic Approaches for Parameter Identification in Latent Variable Structural Equation Models. 7252-7264 - Antonio Orvieto, Anant Raj, Hans Kersting, Francis R. Bach:

Explicit Regularization in Overparametrized Models via Noise Injection. 7265-7287 - Yue Xiang, Dongyao Zhu, Bowen Lei, Dongkuan Xu, Ruqi Zhang:

Efficient Informed Proposals for Discrete Distributions via Newton's Series Approximation. 7288-7310 - Théo Lacombe:

An Homogeneous Unbalanced Regularized Optimal Transport Model with Applications to Optimal Transport with Boundary. 7311-7330 - Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, Tom Rainforth:

Prediction-Oriented Bayesian Active Learning. 7331-7348 - Mojmir Mutny, Tadeusz Janik, Andreas Krause:

Active Exploration via Experiment Design in Markov Chains. 7349-7374 - Charles Marx, Youngsuk Park, Hilaf Hasson, Yuyang Wang, Stefano Ermon, Luke Huan:

But Are You Sure? An Uncertainty-Aware Perspective on Explainable AI. 7375-7391 - Victor Boone, Bruno Gaujal:

Identification of Blackwell Optimal Policies for Deterministic MDPs. 7392-7424 - Petrus Mikkola, Julien Martinelli, Louis Filstroff, Samuel Kaski:

Multi-Fidelity Bayesian Optimization with Unreliable Information Sources. 7425-7454 - Fares Fourati, Vaneet Aggarwal, Christopher J. Quinn, Mohamed-Slim Alouini:

Randomized Greedy Learning for Non-monotone Stochastic Submodular Maximization Under Full-bandit Feedback. 7455-7471 - Michelle Chen, Olga Ohrimenko:

Protecting Global Properties of Datasets with Distribution Privacy Mechanisms. 7472-7491 - Xiaolu Wang, Yuchen Jiao, Hoi-To Wai, Yuantao Gu:

Incremental Aggregated Riemannian Gradient Method for Distributed PCA. 7492-7510 - Thomas Kleine Buening, Christos Dimitrakakis, Hannes Eriksson, Divya Grover, Emilio Jorge:

Minimax-Bayes Reinforcement Learning. 7511-7527 - Natasa Tagasovska, Firat Ozdemir, Axel Brando:

Retrospective Uncertainties for Deep Models using Vine Copulas. 7528-7539 - Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam

, Prateek Jain:
Optimal Algorithms for Latent Bandits with Cluster Structure. 7540-7577 - Hang Zhang, Ping Li:

Improved Bound on Generalization Error of Compressed KNN Estimator. 7578-7593 - Shuoguang Yang, Yuhao Yan, Xiuneng Zhu, Qiang Sun:

Online Linearized LASSO. 7594-7610 - Prashant Trivedi, Nandyala Hemachandra:

Multi-Agent congestion cost minimization with linear function approximations. 7611-7643 - Hoang Phan, Trung Le, Trung Phung, Anh Tuan Bui, Nhat Ho, Dinh Q. Phung:

Global-Local Regularization Via Distributional Robustness. 7644-7664 - Daesoo Lee, Sara Malacarne, Erlend Aune:

Vector Quantized Time Series Generation with a Bidirectional Prior Model. 7665-7693 - Mrinank Sharma, Sebastian Farquhar, Eric T. Nalisnick, Tom Rainforth:

Do Bayesian Neural Networks Need To Be Fully Stochastic? 7694-7722 - Patrick Saux, Odalric Maillard:

Risk-aware linear bandits with convex loss. 7723-7754 - Pierre Gaillard, Aadirupa Saha, Soham Dan:

One Arrow, Two Kills: A Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits. 7755-7773 - Samuel Stocksieker, Denys Pommeret, Arthur Charpentier:

Data Augmentation for Imbalanced Regression. 7774-7799 - Francesco Quinzan, Rajiv Khanna, Moshik Hershcovitch, Sarel Cohen, Daniel G. Waddington, Tobias Friedrich, Michael W. Mahoney:

Fast Feature Selection with Fairness Constraints. 7800-7823 - Qin-Cheng Zheng, Shen-Huan Lyu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou:

On the Consistency Rate of Decision Tree Learning Algorithms. 7824-7848 - Grigor Keropyan, David Strieder, Mathias Drton:

Rank-Based Causal Discovery for Post-Nonlinear Models. 7849-7870 - Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric:

On the Complexity of Representation Learning in Contextual Linear Bandits. 7871-7896 - Matthias Bitzer, Mona Meister, Christoph Zimmer:

Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems. 7897-7912 - Jing Wang, Peng Zhao, Zhi-Hua Zhou:

Revisiting Weighted Strategy for Non-stationary Parametric Bandits. 7913-7942 - Rob Romijnders, Yuki M. Asano, Christos Louizos, Max Welling:

No time to waste: practical statistical contact tracing with few low-bit messages. 7943-7960 - Alicia Curth, Mihaela van der Schaar:

Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data. 7961-7980 - Jia-Wei Shan, Peng Zhao, Zhi-Hua Zhou:

Beyond Performative Prediction: Open-environment Learning with Presence of Corruptions. 7981-7998 - Kenshi Abe, Kaito Ariu, Mitsuki Sakamoto, Kentaro Toyoshima, Atsushi Iwasaki:

Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games. 7999-8028 - Carlos E. Luis, Alessandro G. Bottero, Julia Vinogradska, Felix Berkenkamp, Jan Peters:

Model-Based Uncertainty in Value Functions. 8029-8052 - Itay Evron, Ophir Onn, Tamar Weiss Orzech, Hai Azeroual, Daniel Soudry:

The Role of Codeword-to-Class Assignments in Error-Correcting Codes: An Empirical Study. 8053-8077 - Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson:

Online Algorithms with Costly Predictions. 8078-8101 - Lionel Riou-Durand, Pavel Sountsov, Jure Vogrinc, Charles Margossian, Sam Power:

Adaptive Tuning for Metropolis Adjusted Langevin Trajectories. 8102-8116 - Taira Tsuchiya, Shinji Ito, Junya Honda:

Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits. 8117-8144 - Michael Sucker, Peter Ochs:

PAC-Bayesian Learning of Optimization Algorithms. 8145-8164 - Felix Biggs, Benjamin Guedj:

Tighter PAC-Bayes Generalisation Bounds by Leveraging Example Difficulty. 8165-8182 - Tyler Maunu, Thibaut Le Gouic, Philippe Rigollet:

Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery. 8183-8210 - Ralph E. Q. Urlus, Max Baak, Stéphane Collot, Ilan Fridman Rojas:

Pointwise sampling uncertainties on the Precision-Recall curve. 8211-8232 - Debangshu Banerjee, Avishek Ghosh, Sayak Ray Chowdhury, Aditya Gopalan:

Exploration in Linear Bandits with Rich Action Sets and its Implications for Inference. 8233-8262 - Osman Mian, David Kaltenpoth, Michael Kamp, Jilles Vreeken:

Nothing but Regrets - Privacy-Preserving Federated Causal Discovery. 8263-8278 - Thomas M. McDonald, Magnus Ross, Michael T. Smith, Mauricio A. Álvarez:

Nonparametric Gaussian Process Covariances via Multidimensional Convolutions. 8279-8293 - Pascal Mattia Esser, Satyaki Mukherjee, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar:

Improved Representation Learning Through Tensorized Autoencoders. 8294-8307 - Frederiek Wesel, Kim Batselier:

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data. 8308-8320 - Cheuk Ting Li, Farzan Farnia

:
Mode-Seeking Divergences: Theory and Applications to GANs. 8321-8350 - Yu Wang, Mikolaj Kasprzak, Jonathan H. Huggins:

A Targeted Accuracy Diagnostic for Variational Approximations. 8351-8372 - Zhe Huang, Mary-Joy Sidhom, Benjamin Wessler, Michael C. Hughes:

Fix-A-Step: Semi-supervised Learning From Uncurated Unlabeled Data. 8373-8394 - Charles K. Assaad

, Imad Ez-zejjari, Lei Zan
:
Root Cause Identification for Collective Anomalies in Time Series given an Acyclic Summary Causal Graph with Loops. 8395-8404 - Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh:

Principled Approaches for Private Adaptation from a Public Source. 8405-8432 - Aman Shrivastava, Ramprasaath R. Selvaraju, Nikhil Naik, Vicente Ordonez:

CLIP-Lite: Information Efficient Visual Representation Learning with Language Supervision. 8433-8447 - Dongping Qi, David Bindel, Alexander Vladimirsky:

Surveillance Evasion Through Bayesian Reinforcement Learning. 8448-8462 - Zhichao Wang, Yizhe Zhu:

Overparameterized Random Feature Regression with Nearly Orthogonal Data. 8463-8493 - Haiyun He, Gholamali Aminian, Yuheng Bu, Miguel R. D. Rodrigues, Vincent Y. F. Tan:

How Does Pseudo-Labeling Affect the Generalization Error of the Semi-Supervised Gibbs Algorithm? 8494-8520 - Tam Le, Truyen Nguyen, Kenji Fukumizu:

Scalable Unbalanced Sobolev Transport for Measures on a Graph. 8521-8560 - Jayadev Acharya, Yuhan Liu

, Ziteng Sun:
Discrete Distribution Estimation under User-level Local Differential Privacy. 8561-8585 - Nicola Branchini, Virginia Aglietti, Neil Dhir, Theodoros Damoulas:

Causal Entropy Optimization. 8586-8605 - Seungjae Shin, HeeSun Bae, DongHyeok Shin, Weonyoung Joo, Il-Chul Moon:

Loss-Curvature Matching for Dataset Selection and Condensation. 8606-8628 - Kyriakos Lotidis, Nicholas Bambos, Jose H. Blanchet, Jiajin Li:

Wasserstein Distributionally Robust Linear-Quadratic Estimation under Martingale Constraints. 8629-8644 - Josh Givens, Song Liu, Henry W. J. Reeve:

Density Ratio Estimation and Neyman Pearson Classification with Missing Data. 8645-8681 - James Thornton, Marco Cuturi:

Rethinking Initialization of the Sinkhorn Algorithm. 8682-8698 - Riashat Islam, Hongyu Zang, Manan Tomar, Aniket Didolkar, Md Mofijul Islam, Samin Yeasar Arnob, Tariq Iqbal, Xin Li, Anirudh Goyal, Nicolas Heess, Alex Lamb:

Representation Learning in Deep RL via Discrete Information Bottleneck. 8699-8722 - Abdullah Alchihabi, Yuhong Guo:

Learning Robust Graph Neural Networks with Limited Supervision. 8723-8733 - Shuqi Liu, Yuzhou Cao, Qiaozhen Zhang, Lei Feng, Bo An:

Consistent Complementary-Label Learning via Order-Preserving Losses. 8734-8748 - Tom Huix, Matthew Zhang, Alain Durmus:

Tight Regret and Complexity Bounds for Thompson Sampling via Langevin Monte Carlo. 8749-8770 - Lukas Zierahn

, Dirk van der Hoeven, Nicolò Cesa-Bianchi, Gergely Neu:
Nonstochastic Contextual Combinatorial Bandits. 8771-8813 - Zhendong Wang, Ruijiang Gao, Mingzhang Yin, Mingyuan Zhou, David M. Blei:

Probabilistic Conformal Prediction Using Conditional Random Samples. 8814-8836 - Srshti Putcha, Christopher Nemeth, Paul Fearnhead:

Preferential Subsampling for Stochastic Gradient Langevin Dynamics. 8837-8856 - Thomas Mortier

, Viktor Bengs, Eyke Hüllermeier, Stijn Luca, Willem Waegeman:
On the Calibration of Probabilistic Classifier Sets. 8857-8870 - Manuele Leonelli, Gherardo Varando:

Context-Specific Causal Discovery for Categorical Data Using Staged Trees. 8871-8888 - Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, Richard Vidal:

Federated Learning for Data Streams. 8889-8924 - Neil Jethani, Adriel Saporta, Rajesh Ranganath:

Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation. 8925-8953 - Asif Khan, Amos J. Storkey:

Adversarial robustness of VAEs through the lens of local geometry. 8954-8967 - Haotian Ye, James Zou, Linjun Zhang:

Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise. 8968-8990 - Hanjun Dai, Yuan Xue, Niao He, Yixin Wang, Na Li, Dale Schuurmans, Bo Dai:

Learning to Optimize with Stochastic Dominance Constraints. 8991-9009 - Yuhang He, Andrew Markham:

SoundSynp: Sound Source Detection from Raw Waveforms with Multi-Scale Synperiodic Filterbanks. 9010-9023 - Dheeraj Baby, Yu-Xiang Wang:

Second Order Path Variationals in Non-Stationary Online Learning. 9024-9075 - Syrine Belakaria, Janardhan Rao Doppa, Nicolò Fusi, Rishit Sheth:

Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach. 9076-9093 - Thomas Gebhart, Jakob Hansen, Paul Schrater:

Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph Embedding. 9094-9116 - Ting Cai

, Kirthevasan Kandasamy:
Active Cost-aware Labeling of Streaming Data. 9117-9136 - Eric Xia, Martin J. Wainwright:

Krylov-Bellman boosting: Super-linear policy evaluation in general state spaces. 9137-9166 - Minyoung Kim:

SwAMP: Swapped Assignment of Multi-Modal Pairs for Cross-Modal Retrieval. 9167-9190 - Achraf Bahamou, Donald Goldfarb, Yi Ren:

A Mini-Block Fisher Method for Deep Neural Networks. 9191-9220 - Elvis Dohmatob, Chuan Guo, Morgane Goibert:

Origins of Low-Dimensional Adversarial Perturbations. 9221-9237 - Hongchang Gao, Bin Gu, My T. Thai:

On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network. 9238-9281 - Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, Vahab Mirrokni:

Pricing against a Budget and ROI Constrained Buyer. 9282-9307 - Nicholas Monath, Manzil Zaheer, Kelsey Allen, Andrew McCallum:

Improving Dual-Encoder Training through Dynamic Indexes for Negative Mining. 9308-9330 - Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang:

Incentive-aware Contextual Pricing with Non-parametric Market Noise. 9331-9361 - Syama Sundar Rangapuram, Shubham Kapoor, Rajbir-Singh Nirwan, Pedro Mercado, Tim Januschowski, Yuyang Wang, Michael Bohlke-Schneider:

Coherent Probabilistic Forecasting of Temporal Hierarchies. 9362-9376 - Nicolas Christianson, Junxuan Shen, Adam Wierman:

Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems. 9377-9399 - Cyril Bachelard, Apostolos Chalkis, Vissarion Fisikopoulos, Elias P. Tsigaridas:

Randomized geometric tools for anomaly detection in stock markets. 9400-9416 - Brian Liu, Rahul Mazumder:

ForestPrune: Compact Depth-Pruned Tree Ensembles. 9417-9428 - Arnab Maiti, Kevin G. Jamieson, Lillian J. Ratliff:

Instance-dependent Sample Complexity Bounds for Zero-sum Matrix Games. 9429-9469 - Christoph Dann, Mohammad Ghavamzadeh, Teodor V. Marinov:

Multiple-policy High-confidence Policy Evaluation. 9470-9487 - Benjie Wang, Marta Kwiatkowska:

Compositional Probabilistic and Causal Inference using Tractable Circuit Models. 9488-9498 - Sara Ahmadian, Maryam Negahbani:

Improved Approximation for Fair Correlation Clustering. 9499-9516 - Victoria G. Crawford:

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover. 9517-9537 - Gavin Kerrigan, Justin Ley, Padhraic Smyth:

Diffusion Generative Models in Infinite Dimensions. 9538-9563 - Namrata Deka, Danica J. Sutherland:

MMD-B-Fair: Learning Fair Representations with Statistical Testing. 9564-9576 - Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton:

Domain Adaptation under Missingness Shift. 9577-9606 - Maria-Florina Balcan, Rattana Pukdee, Pradeep Ravikumar, Hongyang Zhang:

Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games. 9607-9636 - Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai:

Adapting to Latent Subgroup Shifts via Concepts and Proxies. 9637-9661 - Hongjian Wang, Aaditya Ramdas:

Huber-robust confidence sequences. 9662-9679 - Martin Pawelczyk, Himabindu Lakkaraju, Seth Neel:

On the Privacy Risks of Algorithmic Recourse. 9680-9696 - Zhaoyue Chen, Yifan Sun:

Reducing Discretization Error in the Frank-Wolfe Method. 9697-9727 - Zaiyan Xu, Kishan Panaganti, Dileep Kalathil:

Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning. 9728-9754 - Daniel P. Jeong, Seyoung Kim:

Factorial SDE for Multi-Output Gaussian Process Regression. 9755-9772 - Yigit Efe Erginbas, Soham Phade, Kannan Ramchandran:

Interactive Learning with Pricing for Optimal and Stable Allocations in Markets. 9773-9806 - Junjie Yang, Tianlong Chen, Mingkang Zhu, Fengxiang He, Dacheng Tao, Yingbin Liang, Zhangyang Wang:

Learning to Generalize Provably in Learning to Optimize. 9807-9825 - Pranjal Awasthi, Corinna Cortes, Christopher Mohri:

Theory and Algorithm for Batch Distribution Drift Problems. 9826-9851 - Anna Winnicki, R. Srikant:

On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation. 9852-9878 - Hongwei Shang, Jean-Marc Langlois, Kostas Tsioutsiouliklis, Changsung Kang:

Precision/Recall on Imbalanced Test Data. 9879-9891 - Zeju Qiu, Weiyang Liu, Tim Z. Xiao, Zhen Liu, Umang Bhatt, Yucen Luo, Adrian Weller, Bernhard Schölkopf:

Iterative Teaching by Data Hallucination. 9892-9913 - Dan Qiao, Yu-Xiang Wang:

Near-Optimal Differentially Private Reinforcement Learning. 9914-9940 - Jianyu Xu, Dan Qiao, Yu-Xiang Wang:

Doubly Fair Dynamic Pricing. 9941-9975 - Garud Iyengar, Henry Lam, Tianyu Wang:

Hedging against Complexity: Distributionally Robust Optimization with Parametric Approximation. 9976-10011 - Ang Li, Judea Pearl:

Probabilities of Causation: Role of Observational Data. 10012-10027 - Jillian Fisher, Lang Liu, Krishna Pillutla, Yejin Choi, Zaïd Harchaoui:

Influence Diagnostics under Self-concordance. 10028-10076 - Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:

Theoretically Grounded Loss Functions and Algorithms for Adversarial Robustness. 10077-10094 - Dragana Bajovic, Dusan Jakovetic, Soummya Kar:

Large deviations rates for stochastic gradient descent with strongly convex functions. 10095-10111 - Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaïd Harchaoui:

Stochastic Optimization for Spectral Risk Measures. 10112-10159 - Nabeel Seedat, Alan Jeffares, Fergus Imrie, Mihaela van der Schaar:

Improving Adaptive Conformal Prediction Using Self-Supervised Learning. 10160-10177 - Muhammad Aneeq uz Zaman, Alec Koppel, Sujay Bhatt, Tamer Basar:

Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample Path. 10178-10206 - Anirban Samaddar, Sandeep Madireddy, Prasanna Balaprakash, Taps Maiti, Gustavo de los Campos, Ian Fischer:

Sparsity-Inducing Categorical Prior Improves Robustness of the Information Bottleneck. 10207-10222 - Michael Poli, Stefano Massaroli, Stefano Ermon, Bryan Wilder, Eric Horvitz:

Ideal Abstractions for Decision-Focused Learning. 10223-10234 - Alex Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth:

Probabilistic Querying of Continuous-Time Event Sequences. 10235-10251 - Kareem Ahmed, Kai-Wei Chang, Guy Van den Broeck:

Semantic Strengthening of Neuro-Symbolic Learning. 10252-10261 - Caleb Dahlke, Sue Zheng, Jason Pacheco:

Fast Variational Estimation of Mutual Information for Implicit and Explicit Likelihood Models. 10262-10278 - Alexander Norcliffe, Bogdan Cebere, Fergus Imrie, Pietro Liò, Mihaela van der Schaar:

SurvivalGAN: Generating Time-to-Event Data for Survival Analysis. 10279-10304 - Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, Erfan Yazdandoost Hamedani:

A Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem. 10305-10323 - Yao Yao, Qihang Lin, Tianbao Yang:

Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints. 10324-10342 - Mukund Sudarshan, Aahlad Manas Puli, Wesley Tansey, Rajesh Ranganath:

DIET: Conditional independence testing with marginal dependence measures of residual information. 10343-10367 - Qi Chen, Mario Marchand:

Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation. 10368-10394 - Harry Jake Cunningham, Daniel Augusto de Souza, So Takao, Mark van der Wilk, Marc Peter Deisenroth:

Actually Sparse Variational Gaussian Processes. 10395-10408 - Aditya Bhaskara, Kamesh Munagala:

Competing against Adaptive Strategies in Online Learning via Hints. 10409-10424 - Matthew D. Hoffman, Tuan Anh Le, Pavel Sountsov, Christopher Suter, Ben Lee, Vikash K. Mansinghka, Rif A. Saurous:

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images. 10425-10444 - Spencer Compton, Dmitriy Katz, Benjamin Qi, Kristjan H. Greenewald, Murat Kocaoglu:

Minimum-Entropy Coupling Approximation Guarantees Beyond the Majorization Barrier. 10445-10469 - Kaiqi Zhao, Animesh Jain, Ming Zhao:

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions. 10470-10486 - Jayadev Acharya, Sourbh Bhadane, Arnab Bhattacharyya, Saravanan Kandasamy, Ziteng Sun:

Sample Complexity of Distinguishing Cause from Effect. 10487-10504 - Shay Deutsch, Stefano Soatto:

Graph Spectral Embedding using the Geodesic Betweenness Centrality. 10505-10519 - Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:

Who Should Predict? Exact Algorithms For Learning to Defer to Humans. 10520-10545 - Suya Wu, Enmao Diao, Taposh Banerjee, Jie Ding, Vahid Tarokh:

Score-based Quickest Change Detection for Unnormalized Models. 10546-10565 - Xingyu Lu, Hasin Us Sami, Basak Güler:

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity. 10566-10593 - Zhun Deng, He Sun, Steven Wu, Linjun Zhang, David C. Parkes:

Reinforcement Learning with Stepwise Fairness Constraints. 10594-10618 - Xinyue Xia, Gal Mishne, Yusu Wang:

Implicit Graphon Neural Representation. 10619-10634 - Ga Ming Angus Chan, Tianxi Li:

Fitting low-rank models on egocentrically sampled partial networks. 10635-10649 - Gary Cheng, Karan N. Chadha, John C. Duchi:

Federated Asymptotics: a model to compare federated learning algorithms. 10650-10689 - Ahmed M. Alaa, Zeshan M. Hussain, David A. Sontag:

Conformalized Unconditional Quantile Regression. 10690-10702 - Chengliang Tang, Nathan Lenssen, Ying Wei, Tian Zheng:

Wasserstein Distributional Learning via Majorization-Minimization. 10703-10731 - Ziang Chen

, Jianfeng Lu, Huajie Qian, Xinshang Wang, Wotao Yin:
HeteRSGD: Tackling Heterogeneous Sampling Costs via Optimal Reweighted Stochastic Gradient Descent. 10732-10781 - Joseph Janssen, Vincent Guan, Elina Robeva:

Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees. 10782-10814 - Tina Behnia, Ganesh Ramachandra Kini, Vala Vakilian, Christos Thrampoulidis:

On the Implicit Geometry of Cross-Entropy Parameterizations for Label-Imbalanced Data. 10815-10838 - Ekaterina Khramtsova, Guido Zuccon, Xi Wang, Mahsa Baktashmotlagh:

Convolutional Persistence as a Remedy to Neural Model Analysis. 10839-10855 - Wanqiao Xu, Yecheng Jason Ma, Kan Xu, Hamsa Bastani, Osbert Bastani:

Uniformly Conservative Exploration in Reinforcement Learning. 10856-10870 - Andrew Bennett, Dipendra Misra, Nathan Kallus:

Provable Safe Reinforcement Learning with Binary Feedback. 10871-10900 - Adam N. Elmachtoub, Vishal Gupta, Yunfan Zhao:

Balanced Off-Policy Evaluation for Personalized Pricing. 10901-10917 - Kurtland Chua, Qi Lei, Jason D. Lee:

Provable Hierarchy-Based Meta-Reinforcement Learning. 10918-10967 - Jasper Tan, Daniel LeJeune, Blake Mason, Hamid Javadi, Richard G. Baraniuk:

A Blessing of Dimensionality in Membership Inference through Regularization. 10968-10993 - Koji Tabata, Junpei Komiyama, Atsuyoshi Nakamura, Tamiki Komatsuzaki:

Posterior Tracking Algorithm for Classification Bandits. 10994-11022 - Behrooz Tahmasebi, Derek Lim, Stefanie Jegelka:

The Power of Recursion in Graph Neural Networks for Counting Substructures. 11023-11042 - Nikil Roashan Selvam, Honghua Zhang, Guy Van den Broeck:

Mixtures of All Trees. 11043-11058 - Sina Baharlouei, Fatemeh Sheikholeslami, Meisam Razaviyayn, Zico Kolter:

Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes. 11059-11078 - Mehrnaz Mofakhami, Ioannis Mitliagkas, Gauthier Gidel:

Performative Prediction with Neural Networks. 11079-11093 - Xingyu Xu, Yuantao Gu:

Benign overfitting of non-smooth neural networks beyond lazy training. 11094-11117 - Hailiang Dong, James Amato, Vibhav Gogate

, Nicholas Ruozzi:
A New Modeling Framework for Continuous, Sequential Domains. 11118-11131 - Jackie Baek, Vivek F. Farias:

TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation. 11132-11148 - Kush Bhatia, Wenshuo Guo, Jacob Steinhardt:

Reward Learning as Doubly Nonparametric Bandits: Optimal Design and Scaling Laws. 11149-11171 - Roy Dong, Heling Zhang, Lillian J. Ratliff:

Approximate Regions of Attraction in Learning with Decision-Dependent Distributions. 11172-11184 - Erfan Yazdandoost Hamedani, Afrooz Jalilzadeh, Necdet S. Aybat:

Randomized Primal-Dual Methods with Adaptive Step Sizes. 11185-11212 - Amur Ghose, Yingxue Zhang, Jianye Hao, Mark Coates:

Spectral Augmentations for Graph Contrastive Learning. 11213-11266 - Hyunglip Bae, Jinkyu Lee, Woo Chang Kim, Yongjae Lee:

Deep Value Function Networks for Large-Scale Multistage Stochastic Programs. 11267-11287 - Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, David P. Woodruff:

Optimal Sketching Bounds for Sparse Linear Regression. 11288-11316 - Koki Okajima, Xiangming Meng, Takashi Takahashi, Yoshiyuki Kabashima:

Average case analysis of Lasso under ultra sparse conditions. 11317-11330 - Sebastian Gruber, Florian Buettner:

Uncertainty Estimates of Predictions via a General Bias-Variance Decomposition. 11331-11354 - Hiromi Narimatsu, Mayuko Ozawa, Shiro Kumano:

Collision Probability Matching Loss for Disentangling Epistemic Uncertainty from Aleatoric Uncertainty. 11355-11370 - David Bosch, Ashkan Panahi, Ayça Özçelikkale, Devdatt P. Dubhashi:

Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves. 11371-11414 - Rajeev Verma, Daniel Barrejón, Eric T. Nalisnick:

Learning to Defer to Multiple Experts: Consistent Surrogate Losses, Confidence Calibration, and Conformal Ensembles. 11415-11434 - Mingtian Zhang, Yitong Sun, Chen Zhang, Steven McDonagh:

Spread Flows for Manifold Modelling. 11435-11456 - Grzegorz Gluch, Khashayar Barooti, Rüdiger L. Urbanke:

Breaking a Classical Barrier for Classifying Arbitrary Test Examples in the Quantum Model. 11457-11488 - Nikolaos Nakis, Abdulkadir Çelikkanat, Louis Boucherie, Christian Djurhuus, Felix Burmester, Daniel Mathias Holmelund, Monika Frolcová, Morten Mørup:

Characterizing Polarization in Social Networks using the Signed Relational Latent Distance Model. 11489-11505 - Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:

Algorithm for Constrained Markov Decision Process with Linear Convergence. 11506-11533 - Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Yuan Yao, Lujia Pan:

Inducing Neural Collapse in Deep Long-tailed Learning. 11534-11544 - Arber Qoku, Florian Buettner:

Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity. 11545-11562 - Lawrence Stewart, Francis R. Bach, Quentin Berthet, Jean-Philippe Vert:

Regression as Classification: Influence of Task Formulation on Neural Network Features. 11563-11582 - Meyer Scetbon, Elvis Dohmatob:

Robust Linear Regression: Gradient-descent, Early-stopping, and Beyond. 11583-11607 - Shelvia Wongso, Rohan Ghosh, Mehul Motani:

Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural Networks. 11608-11629 - Mohammad Sadegh Akhondzadeh, Vijay Lingam, Aleksandar Bojchevski:

Probing Graph Representations. 11630-11649 - Christoph Luther, Gunnar König, Moritz Grosse-Wentrup:

Efficient SAGE Estimation via Causal Structure Learning. 11650-11670

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














