default search action
Masanao Yamaoka
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j14]Kasho Yamamoto, Kazushi Kawamura, Kota Ando, Normann Mertig, Takashi Takemoto, Masanao Yamaoka, Hiroshi Teramoto, Akira Sakai, Shinya Takamaeda-Yamazaki, Masato Motomura:
STATICA: A 512-Spin 0.25M-Weight Annealing Processor With an All-Spin-Updates-at-Once Architecture for Combinatorial Optimization With Complete Spin-Spin Interactions. IEEE J. Solid State Circuits 56(1): 165-178 (2021) - [j13]Yuya Sugie, Yuki Yoshida, Normann Mertig, Takashi Takemoto, Hiroshi Teramoto, Atsuyoshi Nakamura, Ichigaku Takigawa, Shin-ichi Minato, Masanao Yamaoka, Tamiki Komatsuzaki:
Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102, 400 nodes. Soft Comput. 25(3): 1731-1749 (2021) - [c26]Kasho Yamamoto, Takashi Takemoto, Chihiro Yoshimura, Mayumi Mashimo, Masanao Yamaoka:
A 1.3-Mbit Annealing System Composed of Fully-Synchronized 9-board x 9-chip x 16-kbit Annealing Processor Chips for Large-Scale Combinatorial Optimization Problems. A-SSCC 2021: 1-3 - [c25]Takashi Takemoto, Kasho Yamamoto, Chihiro Yoshimura, Masato Hayashi, Masafumi Tada, Hiroaki Saito, Mayumi Mashimo, Masanao Yamaoka:
4.6 A 144Kb Annealing System Composed of 9× 16Kb Annealing Processor Chips with Scalable Chip-to-Chip Connections for Large-Scale Combinatorial Optimization Problems. ISSCC 2021: 64-66 - 2020
- [j12]Takashi Takemoto, Masato Hayashi, Chihiro Yoshimura, Masanao Yamaoka:
A 2× 30k-Spin Multi-Chip Scalable CMOS Annealing Processor Based on a Processing-in-Memory Approach for Solving Large-Scale Combinatorial Optimization Problems. IEEE J. Solid State Circuits 55(1): 145-156 (2020) - [c24]Chihiro Yoshimura, Masato Hayashi, Takashi Takemoto, Masanao Yamaoka:
CMOS Annealing Machine: A Domain-Specific Architecture for Combinatorial Optimization Problem. ASP-DAC 2020: 673-678 - [c23]Kasho Yamamoto, Kota Ando, Normann Mertig, Takashi Takemoto, Masanao Yamaoka, Hiroshi Teramoto, Akira Sakai, Shinya Takamaeda-Yamazaki, Masato Motomura:
7.3 STATICA: A 512-Spin 0.25M-Weight Full-Digital Annealing Processor with a Near-Memory All-Spin-Updates-at-Once Architecture for Combinatorial Optimization with Complete Spin-Spin Interactions. ISSCC 2020: 138-140 - [i1]Yuya Sugie, Yuki Yoshida, Normann Mertig, Takashi Takemoto, Hiroshi Teramoto, Atsuyoshi Nakamura, Ichigaku Takigawa, Shin-ichi Minato, Masanao Yamaoka, Tamiki Komatsuzaki:
Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102, 400 nodes. CoRR abs/2004.03819 (2020)
2010 – 2019
- 2019
- [j11]Daisuke Oku, Kotaro Terada, Masato Hayashi, Masanao Yamaoka, Shu Tanaka, Nozomu Togawa:
A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines. IEICE Trans. Inf. Syst. 102-D(9): 1696-1706 (2019) - [c22]Masanao Yamaoka, Takuya Okuyama, Masato Hayashi, Chihiro Yoshimura, Takashi Takemoto:
CMOS Annealing Machine: an In-memory Computing Accelerator to Process Combinatorial Optimization Problems. CICC 2019: 1-8 - [c21]Sho Kanamaru, Daisuke Oku, Masashi Tawada, Shu Tanaka, Masato Hayashi, Masanao Yamaoka, Masao Yanagisawa, Nozomu Togawa:
Efficient Ising Model Mapping to Solving Slot Placement Problem. ICCE 2019: 1-6 - [c20]Takashi Takemoto, Masato Hayashi, Chihiro Yoshimura, Masanao Yamaoka:
A 2 ×30k-Spin Multichip Scalable Annealing Processor Based on a Processing-In-Memory Approach for Solving Large-Scale Combinatorial Optimization Problems. ISSCC 2019: 52-54 - [c19]Masato Hayashi, Takashi Takemoto, Chihiro Yoshimura, Masanao Yamaoka:
A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems. VLSI Circuits 2019: 148- - 2018
- [c18]Takashi Takemoto, Normann Mertig, Masato Hayashi, Saki Susa-Tanaka, Hiroshi Teramoto, Atsuyoshi Nakamura, Ichigaku Takigawa, Shin-ichi Minato, Tamiki Komatsuzaki, Masanao Yamaoka:
FPGA-Based QBoost with Large-Scale Annealing Processor and Accelerated Hyperparameter Search. ReConFig 2018: 1-8 - [c17]Yuya Sugie, Yuki Yoshida, Normann Mertig, Takashi Takemoto, Hiroshi Teramoto, Atsuyoshi Nakamura, Ichigaku Takigawa, Shin-ichi Minato, Masanao Yamaoka, Tamiki Komatsuzaki:
Graph Minors from Simulated Annealing for Annealing Machines with Sparse Connectivity. TPNC 2018: 111-123 - [c16]Kotaro Terada, Daisuke Oku, Sho Kanamaru, Shu Tanaka, Masato Hayashi, Masanao Yamaoka, Masao Yanagisawa, Nozomu Togawa:
An Ising model mapping to solve rectangle packing problem. VLSI-DAT 2018: 1-4 - 2017
- [j10]Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Masanao Yamaoka:
Implementation and Evaluation of FPGA-based Annealing Processor for Ising Model by use of Resource Sharing. Int. J. Netw. Comput. 7(2): 154-172 (2017) - [c15]Takuya Okuyama, Masato Hayashi, Masanao Yamaoka:
An Ising Computer Based on Simulated Quantum Annealing by Path Integral Monte Carlo Method. ICRC 2017: 1-6 - 2016
- [j9]Masato Hayashi, Masanao Yamaoka, Chihiro Yoshimura, Takuya Okuyama, Hidetaka Aoki, Hiroyuki Mizuno:
Accelerator Chip for Ground-state Searches of Ising Model with Asynchronous Random Pulse Distribution. Int. J. Netw. Comput. 6(2): 195-211 (2016) - [j8]Masanao Yamaoka, Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Hidetaka Aoki, Hiroyuki Mizuno:
A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. IEEE J. Solid State Circuits 51(1): 303-309 (2016) - [c14]Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Masanao Yamaoka:
FPGA-based Annealing Processor for Ising Model. CANDAR 2016: 436-442 - [c13]Takuya Okuyama, Chihiro Yoshimura, Masato Hayashi, Masanao Yamaoka:
Computing architecture to perform approximated simulated annealing for Ising models. ICRC 2016: 1-8 - 2015
- [c12]Masato Hayashi, Masanao Yamaoka, Chihiro Yoshimura, Takuya Okuyama, Hidetaka Aoki, Hiroyuki Mizuno:
An Accelerator Chip for Ground-State Searches of the Ising Model with Asynchronous Random Pulse Distribution. CANDAR 2015: 542-546 - [c11]Masanao Yamaoka, Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Hidetaka Aoki, Hiroyuki Mizuno:
24.3 20k-spin Ising chip for combinational optimization problem with CMOS annealing. ISSCC 2015: 1-3 - [c10]N. Sugii, G. Jurczak, Masanao Yamaoka, A. Molnar, J. Tham, T. Piliszczuk, O. Nalamasu, J. Hausner, Shu Tanaka, Tadaaki Yamauchi, S. Sivaram, C. Diaz, W. Dai:
Technology/circuits joint evening panel discussion semiconductor industry in 2020: Evolution or revolution? VLSIC 2015: 22- - 2014
- [c9]Masaki Hamamoto, Masanao Yamaoka:
An energy-efficient parallel-processing method based on master-hibernating DVFS. ISCAS 2014: 1724-1727 - 2013
- [c8]Chihiro Yoshimura, Masanao Yamaoka, Hidetaka Aoki, Hiroyuki Mizuno:
Spatial computing architecture using randomness of memory cell stability under voltage control. ECCTD 2013: 1-4 - 2010
- [j7]Kiyoo Itoh, Masanao Yamaoka, Takashi Oshima:
Adaptive Circuits for the 0.5-V Nanoscale CMOS Era. IEICE Trans. Electron. 93-C(3): 216-233 (2010)
2000 – 2009
- 2009
- [c7]Shigenobu Komatsu, Masanao Yamaoka, Masao Morimoto, Noriaki Maeda, Yasuhisa Shimazaki, Kenichi Osada:
A 40-nm low-power SRAM with multi-stage replica-bitline technique for reducing timing variation. CICC 2009: 701-704 - 2008
- [c6]Masanao Yamaoka, Kenichi Osada, Takayuki Kawahara:
A cell-activation-time controlled SRAM for low-voltage operation in DVFS SoCs using dynamic stability analysis. ESSCIRC 2008: 286-289 - [c5]Masanao Yamaoka, Noriaki Maeda, Yasuhisa Shimazaki, Kenichi Osada:
65nm Low-Power High-Density SRAM Operable at 1.0V under 3σ Systematic Variation Using Separate Vth Monitoring and Body Bias for NMOS and PMOS. ISSCC 2008: 384-385 - 2007
- [c4]Kiyoo Itoh, Masashi Horiguchi, Masanao Yamaoka:
Low-voltage limitations of memory-rich nano-scale CMOS LSIs. ESSCIRC 2007: 68-75 - [c3]Masanao Yamaoka, Takayuki Kawahara:
Operating-margin-improved SRAM with column-at-a-time body-bias control technique. ESSCIRC 2007: 396-399 - [c2]Kiyoo Itoh, Masanao Yamaoka, Takayuki Kawahara:
Low-voltage limitations of deep-sub-100-nm CMOS LSIs: view of memory designers. ACM Great Lakes Symposium on VLSI 2007: 529-533 - 2006
- [j6]Masanao Yamaoka, Noriaki Maeda, Yoshihiro Shinozaki, Yasuhisa Shimazaki, Koji Nii, Shigeru Shimada, Kazumasa Yanagisawa, Takayuki Kawahara:
90-nm process-variation adaptive embedded SRAM modules with power-line-floating write technique. IEEE J. Solid State Circuits 41(3): 705-711 (2006) - [j5]Masanao Yamaoka, Ryuta Tsuchiya, Takayuki Kawahara:
SRAM Circuit With Expanded Operating Margin and Reduced Stand-By Leakage Current Using Thin-BOX FD-SOI Transistors. IEEE J. Solid State Circuits 41(11): 2366-2372 (2006) - [c1]Masanao Yamaoka, Hidetoshi Onodera:
A Detailed Vth-Variation Analysis for Sub-100-nm Embedded SRAM Design. SoCC 2006: 315-318 - 2005
- [j4]Makoto Ishikawa, Tatsuya Kamei, Yuki Kondo, Masanao Yamaoka, Yasuhisa Shimazaki, Motokazu Ozawa, Saneaki Tamaki, Mikio Furuyama, Tadashi Hoshi, Fumio Arakawa, Osamu Nishii, Kenji Hirose, Shinichi Yoshioka, Toshihiro Hattori:
A 4500 MIPS/W, 86 µA Resume-Standby, 11 µA Ultra-Standby Application Processor for 3G Cellular Phones. IEICE Trans. Electron. 88-C(4): 528-535 (2005) - [j3]Masanao Yamaoka, Yoshihiro Shinozaki, Noriaki Maeda, Yasuhisa Shimazaki, Kei Kato, Shigeru Shimada, Kazumasa Yanagisawa, Kenichi Osada:
A 300-MHz 25-μA/Mb-leakage on-chip SRAM module featuring process-variation immunity and low-leakage-active mode for mobile-phone application processor. IEEE J. Solid State Circuits 40(1): 186-194 (2005) - 2004
- [j2]Masanao Yamaoka, Kenichi Osada, Koichiro Ishibashi:
0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme. IEEE J. Solid State Circuits 39(6): 934-940 (2004) - 2002
- [j1]Masanao Yamaoka, Kazumasa Yanagisawa, Shoji Shukuri, Katsuhiro Norisue, Koichiro Ishibashi:
A system LSI memory redundancy technique using an ie-flash (inverse-gate-electrode flash) programming circuit. IEEE J. Solid State Circuits 37(5): 599-604 (2002)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-24 23:11 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint