default search action
Michael Kearns
Michael J. Kearns – Michael S. Kearns
Person information
- affiliation: Department of Computer and Information Science, University of Pennsylvania
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c152]Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, Aaron Roth:
Diversified Ensembling: An Experiment in Crowdsourced Machine Learning. FAccT 2024: 529-545 - [c151]Siqi Deng, Emily Diana, Michael Kearns, Aaron Roth:
Balanced Filtering via Disclosure-Controlled Proxies. FORC 2024: 4:1-4:23 - [c150]Shuai Tang, Steven Wu, Sergül Aydöre, Michael Kearns, Aaron Roth:
Membership Inference Attacks on Diffusion Models via Quantile Regression. ICML 2024 - [c149]Shuai Tang, Sergül Aydöre, Michael Kearns, Saeyoung Rho, Aaron Roth, Yichen Wang, Yu-Xiang Wang, Zhiwei Steven Wu:
Improved Differentially Private Regression via Gradient Boosting. SaTML 2024: 33-56 - [i60]Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, Aaron Roth:
Diversified Ensembling: An Experiment in Crowdsourced Machine Learning. CoRR abs/2402.10795 (2024) - [i59]Marcel Hussing, Michael Kearns, Aaron Roth, Sikata Bela Sengupta, Jessica Sorrell:
Oracle-Efficient Reinforcement Learning for Max Value Ensembles. CoRR abs/2405.16739 (2024) - [i58]Ira Globus-Harris, Varun Gupta, Michael Kearns, Aaron Roth:
Model Ensembling for Constrained Optimization. CoRR abs/2405.16752 (2024) - [i57]Martín Bertrán, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable. CoRR abs/2405.20272 (2024) - 2023
- [c148]Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth:
Multicalibrated Regression for Downstream Fairness. AIES 2023: 259-286 - [c147]Natalie Collina, Eshwar Ram Arunachaleswaran, Michael Kearns:
Efficient Stackelberg Strategies for Finitely Repeated Games. AAMAS 2023: 643-651 - [c146]Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth, Jessica Sorrell:
Multicalibration as Boosting for Regression. ICML 2023: 11459-11492 - [c145]Martín Bertrán, Shuai Tang, Aaron Roth, Michael Kearns, Jamie Morgenstern, Steven Wu:
Scalable Membership Inference Attacks via Quantile Regression. NeurIPS 2023 - [c144]Eric Eaton, Marcel Hussing, Michael Kearns, Jessica Sorrell:
Replicable Reinforcement Learning. NeurIPS 2023 - [i56]Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth, Jessica Sorrell:
Multicalibration as Boosting for Regression. CoRR abs/2301.13767 (2023) - [i55]Shuai Tang, Sergül Aydöre, Michael Kearns, Saeyoung Rho, Aaron Roth, Yichen Wang, Yu-Xiang Wang, Zhiwei Steven Wu:
Improved Differentially Private Regression via Gradient Boosting. CoRR abs/2303.03451 (2023) - [i54]Alessandro Achille, Michael Kearns, Carson Klingenberg, Stefano Soatto:
AI Model Disgorgement: Methods and Choices. CoRR abs/2304.03545 (2023) - [i53]Eric Eaton, Marcel Hussing, Michael Kearns, Jessica Sorrell:
Replicable Reinforcement Learning. CoRR abs/2305.15284 (2023) - [i52]Siqi Deng, Emily Diana, Michael Kearns, Aaron Roth:
Balanced Filtering via Non-Disclosive Proxies. CoRR abs/2306.15083 (2023) - [i51]Martín Bertrán, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Scalable Membership Inference Attacks via Quantile Regression. CoRR abs/2307.03694 (2023) - [i50]Shuai Tang, Zhiwei Steven Wu, Sergül Aydöre, Michael Kearns, Aaron Roth:
Membership Inference Attacks on Diffusion Models via Quantile Regression. CoRR abs/2312.05140 (2023) - 2022
- [c143]Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, Stefano Soatto:
Mixed Differential Privacy in Computer Vision. CVPR 2022: 8366-8376 - [c142]Ira Globus-Harris, Michael Kearns, Aaron Roth:
An Algorithmic Framework for Bias Bounties. FAccT 2022: 1106-1124 - [c141]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi:
Multiaccurate Proxies for Downstream Fairness. FAccT 2022: 1207-1239 - [c140]Giuseppe Vietri, Cédric Archambeau, Sergül Aydöre, William Brown, Michael Kearns, Aaron Roth, Amaresh Ankit Siva, Shuai Tang, Zhiwei Steven Wu:
Private Synthetic Data for Multitask Learning and Marginal Queries. NeurIPS 2022 - [i49]Ira Globus-Harris, Michael Kearns, Aaron Roth:
Beyond the Frontier: Fairness Without Accuracy Loss. CoRR abs/2201.10408 (2022) - [i48]Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, Stefano Soatto:
Mixed Differential Privacy in Computer Vision. CoRR abs/2203.11481 (2022) - [i47]Eshwar Ram Arunachaleswaran, Natalie Collina, Michael Kearns:
Efficient Stackelberg Strategies for Finitely Repeated Games. CoRR abs/2207.04192 (2022) - [i46]Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth:
Multicalibrated Regression for Downstream Fairness. CoRR abs/2209.07312 (2022) - [i45]Giuseppe Vietri, Cédric Archambeau, Sergül Aydöre, William Brown, Michael Kearns, Aaron Roth, Amaresh Ankit Siva, Shuai Tang, Zhiwei Steven Wu:
Private Synthetic Data for Multitask Learning and Marginal Queries. CoRR abs/2209.07400 (2022) - [i44]Travis Dick, Cynthia Dwork, Michael Kearns, Terrance Liu, Aaron Roth, Giuseppe Vietri, Zhiwei Steven Wu:
Confidence-Ranked Reconstruction of Census Microdata from Published Statistics. CoRR abs/2211.03128 (2022) - 2021
- [c139]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth:
Minimax Group Fairness: Algorithms and Experiments. AIES 2021: 66-76 - [c138]Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu:
An Algorithmic Framework for Fairness Elicitation. FORC 2021: 2:1-2:19 - [c137]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. FORC 2021: 6:1-6:23 - [c136]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Amaresh Ankit Siva:
Differentially Private Query Release Through Adaptive Projection. ICML 2021: 457-467 - [c135]Emily Diana, Travis Dick, Hadi Elzayn, Michael Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. EC 2021: 371-389 - [i43]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. CoRR abs/2102.08454 (2021) - [i42]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Amaresh Ankit Siva:
Differentially Private Query Release Through Adaptive Projection. CoRR abs/2103.06641 (2021) - [i41]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi:
Multiaccurate Proxies for Downstream Fairness. CoRR abs/2107.04423 (2021) - 2020
- [j38]Michael Kearns, Aaron Roth:
Ethical algorithm design. SIGecom Exch. 18(1): 31-36 (2020) - [c134]Emily Diana, Michael Kearns, Seth Neel, Aaron Roth:
Optimal, truthful, and private securities lending. ICAIF 2020: 48:1-48:8 - [c133]Emily Diana, Hadi Elzayn, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. EC 2020: 541-583 - [i40]Emily Diana, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. CoRR abs/2002.05699 (2020) - [i39]Emily Diana, Travis Dick, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. CoRR abs/2006.07281 (2020) - [i38]Yiling Chen, Arpita Ghosh, Michael Kearns, Tim Roughgarden, Jennifer Wortman Vaughan:
Mathematical Foundations for Social Computing. CoRR abs/2007.03661 (2020) - [i37]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth:
Convergent Algorithms for (Relaxed) Minimax Fairness. CoRR abs/2011.03108 (2020)
2010 – 2019
- 2019
- [j37]Sanjeev Goyal, Hoda Heidari, Michael J. Kearns:
Competitive contagion in networks. Games Econ. Behav. 113: 58-79 (2019) - [c132]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. FAT 2019: 100-109 - [c131]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Zachary Schutzman:
Fair Algorithms for Learning in Allocation Problems. FAT 2019: 170-179 - [c130]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. ICML 2019: 3000-3008 - [c129]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. IJCAI 2019: 180-186 - [c128]Jinshuo Dong, Hadi Elzayn, Shahin Jabbari, Michael J. Kearns, Zachary Schutzman:
Equilibrium Characterization for Data Acquisition Games. IJCAI 2019: 252-258 - [c127]Saeed Sharifi-Malvajerdi, Michael J. Kearns, Aaron Roth:
Average Individual Fairness: Algorithms, Generalization and Experiments. NeurIPS 2019: 8240-8249 - [i36]Jinshuo Dong, Hadi Elzayn, Shahin Jabbari, Michael J. Kearns, Zachary Schutzman:
Equilibrium Characterization for Data Acquisition Games. CoRR abs/1905.08909 (2019) - [i35]Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Average Individual Fairness: Algorithms, Generalization and Experiments. CoRR abs/1905.10607 (2019) - [i34]Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu:
Eliciting and Enforcing Subjective Individual Fairness. CoRR abs/1905.10660 (2019) - [i33]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. CoRR abs/1906.00241 (2019) - [i32]Emily Diana, Michael J. Kearns, Seth Neel, Aaron Roth:
Optimal, Truthful, and Private Securities Lending. CoRR abs/1912.06202 (2019) - 2018
- [c126]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Meritocratic Fairness for Infinite and Contextual Bandits. AIES 2018: 158-163 - [c125]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. ICML 2018: 2569-2577 - [c124]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. NeurIPS 2018: 2605-2614 - [i31]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. CoRR abs/1802.06936 (2018) - [i30]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. CoRR abs/1808.08166 (2018) - [i29]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Zachary Schutzman:
Fair Algorithms for Learning in Allocation Problems. CoRR abs/1808.10549 (2018) - [i28]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. CoRR abs/1812.02696 (2018) - 2017
- [c123]Michael J. Kearns, Zhiwei Steven Wu:
Predicting with Distributions. COLT 2017: 1214-1241 - [c122]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Reinforcement Learning. ICML 2017: 1617-1626 - [c121]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Meritocratic Fairness for Cross-Population Selection. ICML 2017: 1828-1836 - [c120]Michael J. Kearns:
Fair Algorithms for Machine Learning. EC 2017: 1 - [c119]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. EC 2017: 369-386 - [i27]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. CoRR abs/1705.02321 (2017) - [i26]Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
A Convex Framework for Fair Regression. CoRR abs/1706.02409 (2017) - [i25]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. CoRR abs/1711.05144 (2017) - 2016
- [j36]Yiling Chen, Arpita Ghosh, Michael J. Kearns, Tim Roughgarden, Jennifer Wortman Vaughan:
Mathematical foundations for social computing. Commun. ACM 59(12): 102-108 (2016) - [j35]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu, Grigory Yaroslavtsev:
Private algorithms for the protected in social network search. Proc. Natl. Acad. Sci. USA 113(4): 913-918 (2016) - [c118]Hoda Heidari, Michael J. Kearns, Aaron Roth:
Tight Policy Regret Bounds for Improving and Decaying Bandits. IJCAI 2016: 1562-1570 - [c117]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. NIPS 2016: 325-333 - [c116]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. WINE 2016: 429-443 - [i24]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. CoRR abs/1605.07139 (2016) - [i23]Michael J. Kearns, Zhiwei Steven Wu:
Predicting with Distributions. CoRR abs/1606.01275 (2016) - [i22]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Rawlsian Fairness for Machine Learning. CoRR abs/1610.09559 (2016) - [i21]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fair Learning in Markovian Environments. CoRR abs/1611.03071 (2016) - 2015
- [c115]Kareem Amin, Rachel Cummings, Lili Dworkin, Michael J. Kearns, Aaron Roth:
Online Learning and Profit Maximization from Revealed Preferences. AAAI 2015: 770-776 - [c114]Lili Dworkin, Michael J. Kearns:
From "In" to "Over": Behavioral Experiments on Whole-Network Computation. HCOMP 2015: 52-61 - [c113]Rachel Cummings, Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Privacy and Truthful Equilibrium Selection for Aggregative Games. WINE 2015: 286-299 - [i20]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu, Grigory Yaroslavtsev:
Privacy for the Protected (Only). CoRR abs/1506.00242 (2015) - [i19]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. CoRR abs/1511.05196 (2015) - [i18]Michael J. Kearns, Mallesh M. Pai, Ryan M. Rogers, Aaron Roth, Jonathan R. Ullman:
Robust Mediators in Large Games. CoRR abs/1512.02698 (2015) - 2014
- [c112]Moez Draief, Hoda Heidari, Michael J. Kearns:
New Models for Competitive Contagion. AAAI 2014: 637-644 - [c111]Lili Dworkin, Michael J. Kearns, Lirong Xia:
Efficient Inference for Complex Queries on Complex Distributions. AISTATS 2014: 211-219 - [c110]Lili Dworkin, Michael J. Kearns, Yuriy Nevmyvaka:
Pursuit-Evasion Without Regret, with an Application to Trading. ICML 2014: 1521-1529 - [c109]Kareem Amin, Hoda Heidari, Michael J. Kearns:
Learning from Contagion (Without Timestamps). ICML 2014: 1845-1853 - [c108]Michael J. Kearns, Mallesh M. Pai, Aaron Roth, Jonathan R. Ullman:
Mechanism design in large games: incentives and privacy. ITCS 2014: 403-410 - [i17]Michael J. Kearns, Lili Dworkin:
A Computational Study of Feasible Repackings in the FCC Incentive Auctions. CoRR abs/1406.4837 (2014) - [i16]Kareem Amin, Rachel Cummings, Lili Dworkin, Michael J. Kearns, Aaron Roth:
Online Learning and Profit Maximization from Revealed Preferences. CoRR abs/1407.7294 (2014) - [i15]Rachel Cummings, Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Privacy and Truthful Equilibrium Selection for Aggregative Games. CoRR abs/1407.7740 (2014) - 2013
- [c107]Hoda Heidari, Michael J. Kearns:
Depth-Workload Tradeoffs for Workforce Organization. HCOMP 2013: 60-68 - [c106]Jacob D. Abernethy, Kareem Amin, Michael J. Kearns, Moez Draief:
Large-Scale Bandit Problems and KWIK Learning. ICML (1) 2013: 588-596 - [c105]Tim Roughgarden, Michael J. Kearns:
Marginals-to-Models Reducibility. NIPS 2013: 1043-1051 - [e6]Michael J. Kearns, R. Preston McAfee, Éva Tardos:
Proceedings of the fourteenth ACM Conference on Electronic Commerce, EC 2013, Philadelphia, PA, USA, June 16-20, 2013. ACM 2013, ISBN 978-1-4503-1962-1 [contents] - [i14]Michael J. Kearns, Yishay Mansour:
Efficient Nash Computation in Large Population Games with Bounded Influence. CoRR abs/1301.0577 (2013) - [i13]Michael J. Kearns, Michael L. Littman, Satinder Singh:
Graphical Models for Game Theory. CoRR abs/1301.2281 (2013) - [i12]Michael J. Kearns, Yishay Mansour, Satinder Singh:
Fast Planning in Stochastic Games. CoRR abs/1301.3867 (2013) - [i11]Satinder Singh, Michael J. Kearns, Yishay Mansour:
Nash Convergence of Gradient Dynamics in Iterated General-Sum Games. CoRR abs/1301.3892 (2013) - [i10]Michael J. Kearns, Yishay Mansour:
Exact Inference of Hidden Structure from Sample Data in Noisy-OR Networks. CoRR abs/1301.7391 (2013) - [i9]Michael J. Kearns, Lawrence K. Saul:
Large Deviation Methods for Approximate Probabilistic Inference. CoRR abs/1301.7392 (2013) - [i8]Michael J. Kearns, Yishay Mansour, Andrew Y. Ng:
An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. CoRR abs/1302.1552 (2013) - 2012
- [j34]Michael J. Kearns:
Experiments in social computation. Commun. ACM 55(10): 56-67 (2012) - [c104]Quang Duong, Michael P. Wellman, Satinder Singh, Michael J. Kearns:
Learning and predicting dynamic networked behavior with graphical multiagent models. AAMAS 2012: 441-448 - [c103]Michael J. Kearns:
Experiments in social computation: (and the data they generate). KDD 2012: 5 - [c102]Michael J. Kearns, J. Stephen Judd, Yevgeniy Vorobeychik:
Behavioral experiments on a network formation game. EC 2012: 690-704 - [c101]Sanjeev Goyal, Michael J. Kearns:
Competitive contagion in networks. STOC 2012: 759-774 - [c100]Kareem Amin, Michael J. Kearns, Peter B. Key, Anton Schwaighofer:
Budget Optimization for Sponsored Search: Censored Learning in MDPs. UAI 2012: 54-63 - [c99]Pushmeet Kohli, Michael J. Kearns, Yoram Bachrach, Ralf Herbrich, David Stillwell, Thore Graepel:
Colonel Blotto on Facebook: the effect of social relations on strategic interaction. WebSci 2012: 141-150 - [i7]Kareem Amin, Michael J. Kearns, Umar Syed:
Graphical Models for Bandit Problems. CoRR abs/1202.3782 (2012) - [i6]Kuzman Ganchev, Michael J. Kearns, Yuriy Nevmyvaka, Jennifer Wortman Vaughan:
Censored Exploration and the Dark Pool Problem. CoRR abs/1205.2646 (2012) - [i5]Kareem Amin, Michael J. Kearns, Peter B. Key, Anton Schwaighofer:
Budget Optimization for Sponsored Search: Censored Learning in MDPs. CoRR abs/1210.4847 (2012) - 2011
- [c98]Michael Brautbar, Michael J. Kearns:
A Clustering Coefficient Network Formation Game. SAGT 2011: 224-235 - [c97]Tanmoy Chakraborty, Michael J. Kearns:
Market making and mean reversion. EC 2011: 307-314 - [c96]Kareem Amin, Michael J. Kearns, Umar Syed:
Graphical Models for Bandit Problems. UAI 2011: 1-10 - [c95]J. Stephen Judd, Michael J. Kearns, Yevgeniy Vorobeychik:
Behavioral Conflict and Fairness in Social Networks. WINE 2011: 242-253 - [c94]