


default search action
20th COLT 2007: San Diego, CA, USA
- Nader H. Bshouty, Claudio Gentile:

Learning Theory, 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings. Lecture Notes in Computer Science 4539, Springer 2007, ISBN 978-3-540-72925-9
Invited Presentations
- Dana Ron:

Property Testing: A Learning Theory Perspective. 1-2 - Santosh S. Vempala:

Spectral Algorithms for Learning and Clustering. 3-4
Unsupervised, Semisupervised and Active Learning I
- Rui M. Castro, Robert D. Nowak:

Minimax Bounds for Active Learning. 5-19 - Shai Ben-David, Dávid Pál, Hans Ulrich Simon

:
Stability of k -Means Clustering. 20-34 - Maria-Florina Balcan, Andrei Z. Broder, Tong Zhang:

Margin Based Active Learning. 35-50
Unsupervised, Semisupervised and Active Learning II
- Dana Angluin, James Aspnes, Jiang Chen, Lev Reyzin:

Learning Large-Alphabet and Analog Circuits with Value Injection Queries. 51-65 - Steve Hanneke:

Teaching Dimension and the Complexity of Active Learning. 66-81 - Sham M. Kakade, Dean P. Foster:

Multi-view Regression Via Canonical Correlation Analysis. 82-96
Statistical Learning Theory
- Arnak S. Dalalyan, Alexandre B. Tsybakov:

Aggregation by Exponential Weighting and Sharp Oracle Inequalities. 97-111 - Gilles Blanchard, François Fleuret:

Occam's Hammer. 112-126 - Sylvain Arlot, Gilles Blanchard, Étienne Roquain:

Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector. 127-141 - Guillaume Lecué

:
Suboptimality of Penalized Empirical Risk Minimization in Classification. 142-156 - Ran El-Yaniv, Dmitry Pechyony:

Transductive Rademacher Complexity and Its Applications. 157-171
Inductive Inference
- John Case, Samuel E. Moelius:

U-Shaped, Iterative, and Iterative-with-Counter Learning. 172-186 - Oliver Schulte, Wei Luo

, Russell Greiner:
Mind Change Optimal Learning of Bayes Net Structure. 187-202 - Lorenzo Carlucci, John Case, Sanjay Jain:

Learning Correction Grammars. 203-217 - Sanjay Jain, Frank Stephan:

Mitotic Classes. 218-232
Online and Reinforcement Learning I
- Eyal Even-Dar, Michael J. Kearns, Yishay Mansour, Jennifer Wortman:

Regret to the Best vs. Regret to the Average. 233-247 - Gábor Lugosi, Shie Mannor

, Gilles Stoltz:
Strategies for Prediction Under Imperfect Monitoring. 248-262 - Ambuj Tewari, Peter L. Bartlett:

Bounded Parameter Markov Decision Processes with Average Reward Criterion. 263-277
Online and Reinforcement Learning II
- Sanjoy Dasgupta, Daniel J. Hsu:

On-Line Estimation with the Multivariate Gaussian Distribution. 278-292 - Yuri Kalnishkan, Vladimir Vovk, Michael V. Vyugin:

Generalised Entropy and Asymptotic Complexities of Languages. 293-307 - Francisco S. Melo, M. Isabel Ribeiro:

Q -Learning with Linear Function Approximation. 308-322
Regularized Learning, Kernel Methods, SVM
- Nathan Srebro:

How Good Is a Kernel When Used as a Similarity Measure? 323-335 - Nikolas List, Don R. Hush, Clint Scovel, Ingo Steinwart

:
Gaps in Support Vector Optimization. 336-348 - Corinna Cortes, Leonid Kontorovich, Mehryar Mohri:

Learning Languages with Rational Kernels. 349-364 - Nikolas List:

Generalized SMO-Style Decomposition Algorithms. 365-377
Learning Algorithms and Limitations on Learning
- Adam Tauman Kalai:

Learning Nested Halfspaces and Uphill Decision Trees. 378-392 - Alexandre Belloni, Robert M. Freund, Santosh S. Vempala:

An Efficient Re-scaled Perceptron Algorithm for Conic Systems. 393-408 - Adam R. Klivans, Alexander A. Sherstov:

A Lower Bound for Agnostically Learning Disjunctions. 409-423 - Sudipto Guha, Piotr Indyk, Andrew McGregor:

Sketching Information Divergences. 424-438
Online and Reinforcement Learning III
- Vladimir Vovk:

Competing with Stationary Prediction Strategies. 439-453 - Peter Auer

, Ronald Ortner
, Csaba Szepesvári:
Improved Rates for the Stochastic Continuum-Armed Bandit Problem. 454-468 - David P. Helmbold, Manfred K. Warmuth:

Learning Permutations with Exponential Weights. 469-483
Online and Reinforcement Learning IV
- Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin:

Multitask Learning with Expert Advice. 484-498 - Elad Hazan

, Nimrod Megiddo:
Online Learning with Prior Knowledge. 499-513
Dimensionality Reduction
- Ping Li, Trevor Hastie, Kenneth Ward Church

:
Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections. 514-529 - Florentina Bunea, Alexandre B. Tsybakov, Marten H. Wegkamp

:
Sparse Density Estimation with l1 Penalties. 530-543 - Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, Ji Zhu:

l1 Regularization in Infinite Dimensional Feature Spaces. 544-558 - Sivan Sabato

, Shai Shalev-Shwartz:
Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking. 559-573
Other Approaches
- Julian Lorenz, Martin Marciniszyn, Angelika Steger:

Observational Learning in Random Networks. 574-588 - Marcus Hutter

:
The Loss Rank Principle for Model Selection. 589-603 - Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin

:
Robust Reductions from Ranking to Classification. 604-619
Open Problems
- Liwei Wang, Jufu Feng:

Rademacher Margin Complexity. 620-621 - Avrim Blum, Maria-Florina Balcan:

Open Problems in Efficient Semi-supervised PAC Learning. 622-624 - Pallika H. Kanani, Andrew McCallum:

Resource-Bounded Information Gathering for Correlation Clustering. 625-627 - Nathan Srebro:

Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation? 628-629 - Manfred K. Warmuth:

When Is There a Free Matrix Lunch? 630-632

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














