default search action
Lawrence K. Saul
Person information
- affiliation: Flatiron Institute, New York, NY, USA
- affiliation (former): University of California, San Diego, Department of Computer Science and Engineering, La Jolla, CA, USA
- affiliation (PhD 1994): Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c83]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. ICML 2024 - [i13]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles C. Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. CoRR abs/2402.14758 (2024) - [i12]Charles C. Margossian, Loucas Pillaud-Vivien, Lawrence K. Saul:
An Ordering of Divergences for Variational Inference with Factorized Gaussian Approximations. CoRR abs/2403.13748 (2024) - [i11]Charles C. Margossian, Lawrence K. Saul:
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix. CoRR abs/2410.11067 (2024) - [i10]Chirag Modi, Diana Cai, Lawrence K. Saul:
Batch, match, and patch: low-rank approximations for score-based variational inference. CoRR abs/2410.22292 (2024) - [i9]Diana Cai, Chirag Modi, Charles C. Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
EigenVI: score-based variational inference with orthogonal function expansions. CoRR abs/2410.24054 (2024) - 2023
- [j26]Lawrence K. Saul:
Weight-balancing fixes and flows for deep learning. Trans. Mach. Learn. Res. 2023 (2023) - [c82]Chirag Modi, Robert M. Gower, Charles Margossian, Yuling Yao, David M. Blei, Lawrence K. Saul:
Variational Inference with Gaussian Score Matching. NeurIPS 2023 - [c81]Charles C. Margossian, Lawrence K. Saul:
The Shrinkage-Delinkage Trade-off: an Analysis of Factorized Gaussian Approximations for Variational Inference. UAI 2023: 1358-1367 - [i8]Chirag Modi, Charles Margossian, Yuling Yao, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Variational Inference with Gaussian Score Matching. CoRR abs/2307.07849 (2023) - 2022
- [j25]Louis F. DeKoven, Audrey Randall, Ariana Mirian, Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M. Voelker, Stefan Savage:
Measuring security practices. Commun. ACM 65(9): 93-102 (2022) - [j24]Lawrence K. Saul:
A Nonlinear Matrix Decomposition for Mining the Zeros of Sparse Data. SIAM J. Math. Data Sci. 4(2): 431-463 (2022) - [j23]Lawrence K. Saul:
A geometrical connection between sparse and low-rank matrices and its application to manifold learning. Trans. Mach. Learn. Res. 2022 (2022) - 2021
- [j22]Lawrence K. Saul:
An EM Algorithm for Capsule Regression. Neural Comput. 33(1): 194-226 (2021) - [c80]Lawrence K. Saul:
An online passive-aggressive algorithm for difference-of-squares classification. NeurIPS 2021: 21426-21439 - 2020
- [c79]Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, Sorin Lerner:
Generating correctness proofs with neural networks. MAPL@PLDI 2020: 1-10 - [c78]Vraj Shah, Side Li, Arun Kumar, Lawrence K. Saul:
SpeakQL: Towards Speech-driven Multimodal Querying of Structured Data. SIGMOD Conference 2020: 2363-2374
2010 – 2019
- 2019
- [c77]Andrew B. Kahng, Uday Mallappa, Lawrence K. Saul, Shangyuan Tong:
"Unobserved Corner" Prediction: Reducing Timing Analysis Effort for Faster Design Convergence in Advanced-Node Design. DATE 2019: 168-173 - [c76]Louis F. DeKoven, Audrey Randall, Ariana Mirian, Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M. Voelker, Stefan Savage:
Measuring Security Practices and How They Impact Security. Internet Measurement Conference 2019: 36-49 - [c75]Vraj Shah, Side Li, Kevin Yang, Arun Kumar, Lawrence K. Saul:
Demonstration of SpeakQL: Speech-driven Multimodal Querying of Structured Data. SIGMOD Conference 2019: 2001-2004 - [i7]Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, Sorin Lerner:
Generating Correctness Proofs with Neural Networks. CoRR abs/1907.07794 (2019) - 2018
- [c74]Andrew B. Kahng, Uday Mallappa, Lawrence K. Saul:
Using Machine Learning to Predict Path-Based Slack from Graph-Based Timing Analysis. ICCD 2018: 603-612 - 2017
- [c73]Nadir Weibel, Purvi Desai, Lawrence K. Saul, Amarnath Gupta, Susan Little:
HIV Risk on Twitter: the Ethical Dimension of Social Media Evidence-based Prevention for Vulnerable Populations. HICSS 2017: 1-10 - [c72]Dharmil Chandarana, Vraj Shah, Arun Kumar, Lawrence K. Saul:
SpeakQL: Towards Speech-driven Multi-modal Querying. HILDA@SIGMOD 2017: 11:1-11:6 - 2016
- [j21]Kritika Singh, Shava Smallen, Sameer Tilak, Lawrence K. Saul:
Failure analysis and prediction for the CIPRES science gateway. Concurr. Comput. Pract. Exp. 28(7): 1971-1981 (2016) - [j20]Steven Hill, Zhimin Zhou, Lawrence K. Saul, Hovav Shacham:
On the (In)effectiveness of Mosaicing and Blurring as Tools for Document Redaction. Proc. Priv. Enhancing Technol. 2016(4): 403-417 (2016) - 2015
- [c71]Suqi Liu, Ian D. Foster, Stefan Savage, Geoffrey M. Voelker, Lawrence K. Saul:
Who is .com?: Learning to Parse WHOIS Records. Internet Measurement Conference 2015: 369-380 - [c70]Tristan Halvorson, Matthew F. Der, Ian D. Foster, Stefan Savage, Lawrence K. Saul, Geoffrey M. Voelker:
From .academy to .zone: An Analysis of the New TLD Land Rush. Internet Measurement Conference 2015: 381-394 - 2014
- [c69]Do-kyum Kim, Matthew F. Der, Lawrence K. Saul:
A Gaussian Latent Variable Model for Large Margin Classification of Labeled and Unlabeled Data. AISTATS 2014: 484-492 - [c68]David Y. Wang, Matthew F. Der, Mohammad Karami, Lawrence K. Saul, Damon McCoy, Stefan Savage, Geoffrey M. Voelker:
Search + Seizure: The Effectiveness of Interventions on SEO Campaigns. Internet Measurement Conference 2014: 359-372 - [c67]Matthew F. Der, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Knock it off: profiling the online storefronts of counterfeit merchandise. KDD 2014: 1759-1768 - [i6]Do-kyum Kim, Geoffrey M. Voelker, Lawrence K. Saul:
Topic Modeling of Hierarchical Corpora. CoRR abs/1409.3518 (2014) - 2013
- [c66]Do-kyum Kim, Geoffrey M. Voelker, Lawrence K. Saul:
A Variational Approximation for Topic Modeling of Hierarchical Corpora. ICML (2) 2013: 55-63 - [c65]Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, Yuanyuan Zhou, Lawrence K. Saul, Geoffrey M. Voelker:
eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on Smartphones. NSDI 2013: 57-70 - [i5]Michael J. Kearns, Lawrence K. Saul:
Large Deviation Methods for Approximate Probabilistic Inference. CoRR abs/1301.7392 (2013) - 2012
- [c64]Matthew F. Der, Lawrence K. Saul:
Latent Coincidence Analysis: A Hidden Variable Model for Distance Metric Learning. NIPS 2012: 3239-3247 - 2011
- [j19]Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Learning to detect malicious URLs. ACM Trans. Intell. Syst. Technol. 2(3): 30:1-30:24 (2011) - [c63]Sushma Nagesh Bannur, Lawrence K. Saul, Stefan Savage:
Judging a site by its content: learning the textual, structural, and visual features of malicious web pages. AISec 2011: 1-10 - [c62]Do-kyum Kim, Marti Motoyama, Geoffrey M. Voelker, Lawrence K. Saul:
Topic modeling of freelance job postings to monitor web service abuse. AISec 2011: 11-20 - [c61]Lawrence K. Saul, Chih-Chieh Cheng, Fei Sha:
Online learning of large margin hidden Markov models for automatic speech recognition. MLSLP 2011 - [c60]Vijay Mahadevan, Chi Wah Wong, José Costa Pereira, Tom Liu, Nuno Vasconcelos, Lawrence K. Saul:
Maximum Covariance Unfolding : Manifold Learning for Bimodal Data. NIPS 2011: 918-926 - [c59]Laurens van der Maaten, Max Welling, Lawrence K. Saul:
Hidden-Unit Conditional Random Fields. AISTATS 2011: 479-488 - [i4]Youngmin Cho, Lawrence K. Saul:
Analysis and Extension of Arc-Cosine Kernels for Large Margin Classification. CoRR abs/1112.3712 (2011) - [i3]Youngmin Cho, Lawrence K. Saul:
Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction. CoRR abs/1112.3714 (2011) - 2010
- [j18]Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
Online Learning and Acoustic Feature Adaptation in Large-Margin Hidden Markov Models. IEEE J. Sel. Top. Signal Process. 4(6): 926-942 (2010) - [j17]Youngmin Cho, Lawrence K. Saul:
Large-Margin Classification in Infinite Neural Networks. Neural Comput. 22(10): 2678-2697 (2010) - [j16]Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul:
Convex Optimizations for Distance Metric Learning and Pattern Classification [Applications Corner]. IEEE Signal Process. Mag. 27(3): 146-158 (2010) - [c58]Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Beyond heuristics: learning to classify vulnerabilities and predict exploits. KDD 2010: 105-114 - [c57]Diane Hu, Laurens van der Maaten, Youngmin Cho, Lawrence K. Saul, Sorin Lerner:
Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development. NIPS 2010: 865-873 - [c56]Justin Ma, Alex Kulesza, Mark Dredze, Koby Crammer, Lawrence K. Saul, Fernando Pereira:
Exploiting Feature Covariance in High-Dimensional Online Learning. AISTATS 2010: 493-500
2000 – 2009
- 2009
- [j15]Stuart Russell, Lawrence K. Saul:
Technical perspective - The ultimate pilot program. Commun. ACM 52(7): 96 (2009) - [j14]Kilian Q. Weinberger, Lawrence K. Saul:
Distance Metric Learning for Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 10: 207-244 (2009) - [c55]Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
Large-margin feature adaptation for automatic speech recognition. ASRU 2009: 87-92 - [c54]Youngmin Cho, Lawrence K. Saul:
Sparse decomposition of mixed audio signals by basis pursuit with autoregressive models. ICASSP 2009: 1705-1708 - [c53]Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
Matrix updates for perceptron training of continuous density hidden Markov models. ICML 2009: 153-160 - [c52]Youngmin Cho, Lawrence K. Saul:
Learning dictionaries of stable autoregressive models for audio scene analysis. ICML 2009: 169-176 - [c51]Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Identifying suspicious URLs: an application of large-scale online learning. ICML 2009: 681-688 - [c50]Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
A fast online algorithm for large margin training of continuous density hidden Markov models. INTERSPEECH 2009: 668-671 - [c49]Diane Hu, Lawrence K. Saul:
A Probabilistic Topic Model for Unsupervised Learning of Musical Key-Profiles. ISMIR 2009: 441-446 - [c48]Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Beyond blacklists: learning to detect malicious web sites from suspicious URLs. KDD 2009: 1245-1254 - [c47]Youngmin Cho, Lawrence K. Saul:
Kernel Methods for Deep Learning. NIPS 2009: 342-350 - [d1]Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
URL Reputation. UCI Machine Learning Repository, 2009 - 2008
- [c46]Chih-Chieh Cheng, D. Jingtong Hu, Lawrence K. Saul:
Nonnegative matrix factorization for real time musical analysis and sight-reading evaluation. ICASSP 2008: 2017-2020 - [c45]Kilian Q. Weinberger, Lawrence K. Saul:
Fast solvers and efficient implementations for distance metric learning. ICML 2008: 1160-1167 - [c44]Joshua M. Lewis, Pincelli M. Hull, Kilian Q. Weinberger, Lawrence K. Saul:
Mapping Uncharted Waters: Exploratory Analysis, Visualization, and Clustering of Oceanographic Data. ICMLA 2008: 388-395 - 2007
- [j13]Fei Sha, Yuanqing Lin, Lawrence K. Saul, Daniel D. Lee:
Multiplicative Updates for Nonnegative Quadratic Programming. Neural Comput. 19(8): 2004-2031 (2007) - [c43]Fei Sha, Lawrence K. Saul:
Comparison of Large Margin Training to Other Discriminative Methods for Phonetic Recognition by Hidden Markov Models. ICASSP (4) 2007: 313-316 - [c42]Fei Sha, Y. Albert Park, Lawrence K. Saul:
Multiplicative Updates for L1-Regularized Linear and Logistic Regression. IDA 2007: 13-24 - 2006
- [j12]Kilian Q. Weinberger, Lawrence K. Saul:
Unsupervised Learning of Image Manifolds by Semidefinite Programming. Int. J. Comput. Vis. 70(1): 77-90 (2006) - [j11]Yun Mao, Lawrence K. Saul, Jonathan M. Smith:
IDES: An Internet Distance Estimation Service for Large Networks. IEEE J. Sel. Areas Commun. 24(12): 2273-2284 (2006) - [c41]Kilian Q. Weinberger, Lawrence K. Saul:
An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding. AAAI 2006: 1683-1686 - [c40]Fei Sha, Lawrence K. Saul:
Large Margin Gaussian Mixture Modeling for Phonetic Classification and Recognition. ICASSP (1) 2006: 265-268 - [c39]Fei Sha, Lawrence K. Saul:
Large Margin Hidden Markov Models for Automatic Speech Recognition. NIPS 2006: 1249-1256 - [c38]Kilian Q. Weinberger, Fei Sha, Qihui Zhu, Lawrence K. Saul:
Graph Laplacian Regularization for Large-Scale Semidefinite Programming. NIPS 2006: 1489-1496 - [p3]Lawrence K. Saul, Kilian Q. Weinberger, Fei Sha, Jihun Ham, Daniel D. Lee:
Spectral Methods for Dimensionality Reduction. Semi-Supervised Learning 2006: 292-308 - 2005
- [c37]Jihun Ham, Daniel D. Lee, Lawrence K. Saul:
Semisupervised alignment of manifolds. AISTATS 2005: 120-127 - [c36]Kilian Q. Weinberger, Benjamin Packer, Lawrence K. Saul:
Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization. AISTATS 2005: 381-388 - [c35]John Ashley Burgoyne, Lawrence K. Saul:
Visualization of low Dimensional Structure in tonal pitch Space. ICMC 2005 - [c34]Fei Sha, Lawrence K. Saul:
Analysis and extension of spectral methods for nonlinear dimensionality reduction. ICML 2005: 784-791 - [c33]John Ashley Burgoyne, Lawrence K. Saul:
Learning Harmonic Relationships in Digital Audio with Dirichlet-Based Hidden Markov Models. ISMIR 2005: 438-443 - [c32]Kilian Q. Weinberger, John Blitzer, Lawrence K. Saul:
Distance Metric Learning for Large Margin Nearest Neighbor Classification. NIPS 2005: 1473-1480 - 2004
- [c31]Kilian Q. Weinberger, Lawrence K. Saul:
Unsupervised Learning of Image Manifolds by Semidefinite Programming. CVPR (2) 2004: 988-995 - [c30]Yuanqing Lin, Daniel D. Lee, Lawrence K. Saul:
Nonnegative deconvolution for time of arrival estimation. ICASSP (2) 2004: 377-380 - [c29]Fei Sha, John Ashley Burgoyne, Lawrence K. Saul:
Multiband statistical learning for f0 estimation in speech. ICASSP (5) 2004: 661-664 - [c28]Viren Jain, Lawrence K. Saul:
Exploratory analysis and visualization of speech and music by locally linear embedding. ICASSP (3) 2004: 984-987 - [c27]Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul:
Learning a kernel matrix for nonlinear dimensionality reduction. ICML 2004 - [c26]Yun Mao, Lawrence K. Saul:
Modeling distances in large-scale networks by matrix factorization. Internet Measurement Conference 2004: 278-287 - [c25]John Blitzer, Kilian Q. Weinberger, Lawrence K. Saul, Fernando Pereira:
Hierarchical Distributed Representations for Statistical Language Modeling. NIPS 2004: 185-192 - [c24]Fei Sha, Lawrence K. Saul:
Real-Time Pitch Determination of One or More Voices by Nonnegative Matrix Factorization. NIPS 2004: 1233-1240 - [e1]Sebastian Thrun, Lawrence K. Saul, Bernhard Schölkopf:
Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. MIT Press 2004, ISBN 0-262-20152-6 [contents] - 2003
- [j10]Lawrence K. Saul, Sam T. Roweis:
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold. J. Mach. Learn. Res. 4: 119-155 (2003) - [c23]Andrew I. Schein, Lawrence K. Saul, Lyle H. Ungar:
A Generalized Linear Model for Principal Component Analysis of Binary Data. AISTATS 2003: 240-247 - [c22]Fei Sha, Lawrence K. Saul, Daniel D. Lee:
Multiplicative Updates for Large Margin Classifiers. COLT 2003: 188-202 - [c21]Lawrence K. Saul, Fei Sha, Daniel D. Lee:
Statistical signal processing with nonnegativity constraints. INTERSPEECH 2003: 1001-1004 - 2002
- [c20]Fei Sha, Lawrence K. Saul, Daniel D. Lee:
Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines. NIPS 2002: 1041-1048 - [c19]Lawrence K. Saul, Daniel D. Lee, Charles L. Isbell Jr., Yann LeCun:
Real Time Voice Processing with Audiovisual Feedback: Toward Autonomous Agents with Perfect Pitch. NIPS 2002: 1181-1188 - 2001
- [j9]Lawrence K. Saul, Mazin G. Rahim, Jont B. Allen:
A statistical model for robust integration of narrowband cues in speech. Comput. Speech Lang. 15(2): 175-194 (2001) - [j8]Mazin G. Rahim, Giuseppe Riccardi, Lawrence K. Saul, Jeremy H. Wright, Bruce Buntschuh, Allen L. Gorin:
Robust numeric recognition in spoken language dialogue. Speech Commun. 34(1-2): 195-212 (2001) - [c18]Sam T. Roweis, Lawrence K. Saul, Geoffrey E. Hinton:
Global Coordination of Local Linear Models. NIPS 2001: 889-896 - [c17]Lawrence K. Saul, Daniel D. Lee:
Multiplicative Updates for Classification by Mixture Models. NIPS 2001: 897-904 - 2000
- [j7]Lawrence K. Saul, Mazin G. Rahim:
Markov Processes on Curves. Mach. Learn. 41(3): 345-363 (2000) - [j6]Lawrence K. Saul, Michael I. Jordan:
Attractor Dynamics in Feedforward Neural Networks. Neural Comput. 12(6): 1313-1335 (2000) - [j5]Lawrence K. Saul, Mazin G. Rahim:
Maximum likelihood and minimum classification error factor analysis for automatic speech recognition. IEEE Trans. Speech Audio Process. 8(2): 115-125 (2000) - [c16]Lawrence K. Saul, Jont B. Allen:
Periodic Component Analysis: An Eigenvalue Method for Representing Periodic Structure in Speech. NIPS 2000: 807-813
1990 – 1999
- 1999
- [j4]Lawrence K. Saul, Michael I. Jordan:
Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones. Mach. Learn. 37(1): 75-87 (1999) - [j3]Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, Lawrence K. Saul:
An Introduction to Variational Methods for Graphical Models. Mach. Learn. 37(2): 183-233 (1999) - [c15]Lawrence K. Saul, Mazin G. Rahim:
Modeling the rate of speech by Markov processes on curves. EUROSPEECH 1999: 415-418 - 1998
- [c14]Lawrence K. Saul:
Automatic Segmentation of Continuous Trajectories with Invariance to Nonlinear Warpings of Time. ICML 1998: 506-514 - [c13]Michael J. Kearns, Lawrence K. Saul:
Inference in Multilayer Networks via Large Deviation Bounds. NIPS 1998: 260-266 - [c12]Lawrence K. Saul, Mazin G. Rahim:
Markov Processes on Curves for Automatic Speech Recognition. NIPS 1998: 751-760 - [c11]Michael J. Kearns, Lawrence K. Saul:
Large Deviation Methods for Approximate Probabilistic Inference. UAI 1998: 311-319 - [p2]Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, Lawrence K. Saul:
An Introduction to Variational Methods for Graphical Models. Learning in Graphical Models 1998: 105-161 - [p1]Lawrence K. Saul, Michael I. Jordan:
A Mean Field Learning Algorithm for Unsupervised Neural Networks. Learning in Graphical Models 1998: 541-554 - 1997
- [c10]Lawrence K. Saul, Michael I. Jordan:
Mixed Memory Markov Models. AISTATS 1997: 437-444 - [c9]Lawrence K. Saul, Fernando Pereira:
Aggregate and mixed-order Markov models for statistical language processing. EMNLP 1997 - [c8]Lawrence K. Saul, Mazin G. Rahim:
Modeling Acoustic Correlations by Factor Analysis. NIPS 1997: 749-755 - [i2]Lawrence K. Saul, Fernando Pereira:
Aggregate and mixed-order Markov models for statistical language processing. CoRR cmp-lg/9706007 (1997) - 1996
- [j2]Lawrence K. Saul, Tommi S. Jaakkola, Michael I. Jordan:
Mean Field Theory for Sigmoid Belief Networks. J. Artif. Intell. Res. 4: 61-76 (1996) - [c7]Lawrence K. Saul, Satinder P. Singh:
Learning Curve Bounds for a Markov Decision Process with Undiscounted Rewards. COLT 1996: 147-156 - [c6]