


default search action
30th COLT 2017: Amsterdam, The Netherlands
- Satyen Kale, Ohad Shamir:

Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017. Proceedings of Machine Learning Research 65, PMLR 2017
Preface
- Satyen Kale, Ohad Shamir:

Preface: Conference on Learning Theory (COLT), 2017. 1-3
Papers
- Alekh Agarwal, Akshay Krishnamurthy, John Langford, Haipeng Luo, Robert E. Schapire:

Open Problem: First-Order Regret Bounds for Contextual Bandits. 4-7 - Benjamin Fish, Lev Reyzin:

Open Problem: Meeting Times for Learning Random Automata. 8-11 - Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, Robert E. Schapire:

Corralling a Band of Bandit Algorithms. 12-38 - Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, Sanjeev Khanna:

Learning with Limited Rounds of Adaptivity: Coin Tossing, Multi-Armed Bandits, and Ranking from Pairwise Comparisons. 39-75 - Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, Assaf Zeevi:

Thompson Sampling for the MNL-Bandit. 76-78 - Anima Anandkumar, Yuan Deng, Rong Ge, Hossein Mobahi:

Homotopy Analysis for Tensor PCA. 79-104 - Alexandr Andoni, Daniel J. Hsu, Kevin Shi, Xiaorui Sun:

Correspondence retrieval. 105-126 - Pranjal Awasthi, Avrim Blum, Nika Haghtalab, Yishay Mansour:

Efficient PAC Learning from the Crowd. 127-150 - Mitali Bafna, Jonathan R. Ullman:

The Price of Selection in Differential Privacy. 151-168 - Sivaraman Balakrishnan, Simon S. Du, Jerry Li, Aarti Singh:

Computationally Efficient Robust Sparse Estimation in High Dimensions. 169-212 - Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, Colin White:

Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems. 213-274 - Eric Balkanski, Yaron Singer:

The Sample Complexity of Optimizing a Convex Function. 275-301 - Avrim Blum, Yishay Mansour:

Efficient Co-Training of Linear Separators under Weak Dependence. 302-318 - Nicolas Brosse, Alain Durmus, Eric Moulines, Marcelo Pereyra:

Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo. 319-342 - Victor-Emmanuel Brunel, Ankur Moitra, Philippe Rigollet, John C. Urschel:

Rates of estimation for determinantal point processes. 343-345 - Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:

Learning Disjunctions of Predicates. 346-369 - Clément L. Canonne

, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Bayesian Networks. 370-448 - Sebastian Casalaina-Martin, Rafael M. Frongillo, Tom Morgan, Bo Waggoner:

Multi-Observation Elicitation. 449-464 - Nicolò Cesa-Bianchi, Pierre Gaillard, Claudio Gentile, Sébastien Gerchinovitz:

Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning. 465-481 - Lijie Chen, Anupam Gupta, Jian Li, Mingda Qiao, Ruosong Wang:

Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration. 482-534 - Lijie Chen, Jian Li, Mingda Qiao:

Towards Instance Optimal Bounds for Best Arm Identification. 535-592 - Yeshwanth Cherapanamjeri, Prateek Jain, Praneeth Netrapalli:

Thresholding Based Outlier Robust PCA. 593-628 - Alon Cohen, Tamir Hazan, Tomer Koren:

Tight Bounds for Bandit Combinatorial Optimization. 629-642 - Ashok Cutkosky

, Kwabena Boahen:
Online Learning Without Prior Information. 643-677 - Arnak S. Dalalyan:

Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent. 678-689 - Amit Daniely:

Depth Separation for Neural Networks. 690-696 - Constantinos Daskalakis, Qinxuan Pan:

Square Hellinger Subadditivity for Bayesian Networks and its Applications to Identity Testing. 697-703 - Constantinos Daskalakis, Christos Tzamos, Manolis Zampetakis

:
Ten Steps of EM Suffice for Mixtures of Two Gaussians. 704-710 - Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:

Learning Multivariate Log-concave Distributions. 711-727 - Vitaly Feldman, Thomas Steinke:

Generalization for Adaptively-chosen Estimators via Stable Median. 728-757 - Moran Feldman, Christopher Harshaw, Amin Karbasi:

Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization. 758-784 - Vitaly Feldman:

A General Characterization of the Statistical Query Complexity. 785-830 - Nicolas Flammarion, Francis R. Bach:

Stochastic Composite Least-Squares Regression with Convergence Rate $O(1/n)$. 831-875 - Dylan J. Foster, Alexander Rakhlin, Karthik Sridharan:

ZigZag: A New Approach to Adaptive Online Learning. 876-924 - Rafael M. Frongillo, Andrew B. Nobel:

Memoryless Sequences for Differentiable Losses. 925-939 - David Gamarnik, Quan Li, Hongyi Zhang:

Matrix Completion from $O(n)$ Samples in Linear Time. 940-947 - David Gamarnik, Ilias Zadik:

High Dimensional Regression with Binary Coefficients. Estimating Squared Error and a Phase Transtition. 948-953 - Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, Ulrike von Luxburg:

Two-Sample Tests for Large Random Graphs Using Network Statistics. 954-977 - Amir Globerson, Roi Livni, Shai Shalev-Shwartz:

Effective Semisupervised Learning on Manifolds. 978-1003 - Surbhi Goel, Varun Kanade, Adam R. Klivans, Justin Thaler:

Reliably Learning the ReLU in Polynomial Time. 1004-1042 - Alon Gonen, Shai Shalev-Shwartz:

Fast Rates for Empirical Risk Minimization of Strict Saddle Problems. 1043-1063 - Nick Harvey, Christopher Liaw, Abbas Mehrabian:

Nearly-tight VC-dimension bounds for piecewise linear neural networks. 1064-1068 - Avinatan Hassidim, Yaron Singer:

Submodular Optimization under Noise. 1069-1122 - David P. Helmbold, Philip M. Long:

Surprising properties of dropout in deep networks. 1123-1146 - Lunjia Hu, Ruihan Wu, Tianhong Li, Liwei Wang:

Quadratic Upper Bound for Recursive Teaching Dimension of Finite VC Classes. 1147-1156 - Bin Hu, Peter Seiler, Anders Rantzer:

A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints. 1157-1189 - Ravindran Kannan, Santosh S. Vempala:

The Hidden Hubs Problem. 1190-1213 - Michael J. Kearns, Zhiwei Steven Wu:

Predicting with Distributions. 1214-1241 - Tomer Koren, Roi Livni, Yishay Mansour:

Bandits with Movement Costs and Adaptive Pricing. 1242-1268 - Joon Kwon, Vianney Perchet, Claire Vernade:

Sparse Stochastic Bandits. 1269-1270 - Holden Lee, Rong Ge, Tengyu Ma, Andrej Risteski, Sanjeev Arora:

On the Ability of Neural Nets to Express Distributions. 1271-1296 - Marc Lelarge, Léo Miolane:

Fundamental limits of symmetric low-rank matrix estimation. 1297-1301 - Jerry Li, Ludwig Schmidt:

Robust and Proper Learning for Mixtures of Gaussians via Systems of Polynomial Inequalities. 1302-1382 - Andrea Locatelli, Alexandra Carpentier, Samory Kpotufe:

Adaptivity to Noise Parameters in Nonparametric Active Learning. 1383-1416 - Shachar Lovett, Jiapeng Zhang:

Noisy Population Recovery from Unknown Noise. 1417-1431 - Pasin Manurangsi, Aviad Rubinstein:

Inapproximability of VC Dimension and Littlestone's Dimension. 1432-1460 - Andreas Maurer:

A Second-order Look at Stability and Generalization. 1461-1475 - Song Mei, Theodor Misiakiewicz, Andrea Montanari, Roberto Imbuzeiro Oliveira:

Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality. 1476-1515 - Dana Moshkovitz, Michal Moshkovitz:

Mixing Implies Lower Bounds for Space Bounded Learning. 1516-1566 - Gergely Neu, Vicenç Gómez

:
Fast rates for online learning in Linearly Solvable Markov Decision Processes. 1567-1588 - Yury Polyanskiy, Ananda Theertha Suresh, Yihong Wu:

Sample complexity of population recovery. 1589-1618 - Aaron Potechin, David Steurer

:
Exact tensor completion with sum-of-squares. 1619-1673 - Maxim Raginsky, Alexander Rakhlin, Matus Telgarsky:

Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis. 1674-1703 - Alexander Rakhlin, Karthik Sridharan:

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities. 1704-1722 - Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher

:
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization. 1723-1742 - Yevgeny Seldin, Gábor Lugosi:

An Improved Parametrization and Analysis of the EXP3++ Algorithm for Stochastic and Adversarial Bandits. 1743-1759 - Tselil Schramm, David Steurer

:
Fast and robust tensor decomposition with applications to dictionary learning. 1760-1793 - Max Simchowitz, Kevin G. Jamieson, Benjamin Recht:

The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime. 1794-1834 - Salil P. Vadhan:

On Learning vs. Refutation. 1835-1848 - Daniel Vainsencher, Shie Mannor, Huan Xu:

Ignoring Is a Bliss: Learning with Large Noise Through Reweighting-Minimization. 1849-1881 - Jialei Wang, Weiran Wang, Nathan Srebro:

Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch Prox. 1882-1919 - Blake E. Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian, Nathan Srebro:

Learning Non-Discriminatory Predictors. 1920-1953 - Lijun Zhang, Tianbao Yang, Rong Jin:

Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$- and $O(1/n^2)$-type of Risk Bounds. 1954-1979 - Yuchen Zhang, Percy Liang, Moses Charikar:

A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics. 1980-2022 - Nikita Zhivotovskiy:

Optimal learning via local entropies and sample compression. 2023-2065

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














