


default search action
14th UAI 1998: Madison, Wisconsin, USA
- Gregory F. Cooper, Serafín Moral:

UAI '98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, University of Wisconsin Business School, Madison, Wisconsin, USA, July 24-26, 1998. Morgan Kaufmann 1998, ISBN 1-55860-555-X - Leila Amgoud, Claudette Cayrol:

On the Acceptability of Arguments in Preference-based Argumentation. 1-7 - Salem Benferhat, Claudio Sossai:

Merging uncertain knowledge bases in a possibilistic logic framework. 8-15 - Mark Bloemeke, Marco Valtorta:

A Hybrid Algorithm to Compute Marginal and Joint Beliefs in Bayesian Networks and Its Complexity. 16-23 - Craig Boutilier, Ronen I. Brafman, Christopher W. Geib:

Structured Reachability Analysis for Markov Decision Processes. 24-32 - Xavier Boyen, Daphne Koller:

Tractable Inference for Complex Stochastic Processes. 33-42 - John S. Breese, David Heckerman, Carl Myers Kadie:

Empirical Analysis of Predictive Algorithms for Collaborative Filtering. 43-52 - Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete:

Query Expansion in Information Retrieval Systems using a Bayesian Network-Based Thesaurus. 53-60 - Charles Castel, Corine Cossart, Catherine Tessier:

Dealing with Uncertainty in Situation Assessment: towards a Symbolic Approach. 61-68 - Enrique F. Castillo, Juan M. Fernández-Luna, Pilar Sanmartin:

Marginalizing in Undirected Graph and Hypergraph Models. 69-78 - Urszula Chajewska, Lise Getoor, Joseph Norman, Yuval Shahar:

Utility Elicitation as a Classification Problem. 79-88 - Fábio Gagliardi Cozman:

Irrelevance and Independence Relations in quasi-Bayesian Networks. 89-96 - Adnan Darwiche:

Dynamic Jointrees. 97-104 - Benoit Desjardins:

On the semi-Markov Equivalence of Causal Models. 105-112 - Didier Dubois, Hélène Fargier, Henri Prade:

Comparative uncertainty, belief functions and accepted beliefs. 113-120 - Didier Dubois, Henri Prade, Régis Sabbadin:

Qualitative Decision Theory with Sugeno Integrals. 121-128 - Nir Friedman:

The Bayesian Structural EM Algorithm. 129-138 - Nir Friedman, Kevin P. Murphy, Stuart Russell:

Learning the Structure of Dynamic Probabilistic Networks. 139-147 - Alexander Gammerman, Volodya Vovk, Vladimir Vapnik:

Learning by Transduction. 148-155 - Dan Geiger:

Graphical Models and Exponential Families. 156-165 - Clark Glymour:

Psychological and Normative Theories of Causal Power and the Probabilities of Causes. 166-172 - Adam J. Grove, Joseph Y. Halpern:

Updating Sets of Probabilities. 173-182 - Peter Grünwald, Petri Kontkanen, Petri Myllymäki, Tomi Silander, Henry Tirri:

Minimum Encoding Approaches for Predictive Modeling. 183-192 - Vu A. Ha, Peter Haddawy:

Toward Case-Based Preference Elicitation: Similarity Measures on Preference Structures. 193-201 - Joseph Y. Halpern:

Axiomatizing Causal Reasoning. 202-210 - Eric A. Hansen:

Solving POMDPs by Searching in Policy Space. 211-219 - Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, Craig Boutilier:

Hierarchical Solution of Markov Decision Processes using Macro-actions. 220-229 - David Heckerman, Eric Horvitz:

Inferring Informational Goals from Free-Text Queries: A Bayesian Approach. 230-237 - Holger H. Hoos, Thomas Stützle:

Evaluating Las Vegas Algorithms: Pitfalls and Remedies. 238-245 - Michael C. Horsch, David L. Poole:

An Anytime Algorithm for Decision Making under Uncertainty. 246-255 - Eric Horvitz, Jack S. Breese, David Heckerman, David Hovel, Koos Rommelse:

The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users. 256-265 - Pablo H. Ibargüengoytia, Luis Enrique Sucar, Sunil Vadera:

Any Time Probabilistic Reasoning for Sensor Validation. 266-273 - Manfred Jaeger:

Measure Selection: Notions of Rationality and Representation Independence. 274-281 - Jean-Yves Jaffray:

Implementing Resolute Choice Under Uncertainty. 282-288 - Iman Jarkass, Michèle Rombaut:

Dealing with uncertainty on the initial state of a Petri net. 289-295 - Wenxin Jiang, Martin A. Tanner:

Hierarchical Mixtures-of-Experts for Exponential Family Regression Models with Generalized Linear Mean Functions: A Survey of Approximation and Consistency Results. 296-303 - Michael J. Kearns, Yishay Mansour:

Exact Inference of Hidden Structure from Sample Data in noisy-OR Networks. 304-310 - Michael J. Kearns, Lawrence K. Saul:

Large Deviation Methods for Approximate Probabilistic Inference. 311-319 - Neil D. Lawrence, Christopher M. Bishop, Michael I. Jordan:

Mixture Representations for Inference and Learning in Boltzmann Machines. 320-327 - Vasilica Lepar, Prakash P. Shenoy:

A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions. 328-337 - Chao-Lin Liu, Michael P. Wellman:

Incremental Tradeoff Resolution in Qualitative Probabilistic Networks. 338-345 - Chao-Lin Liu, Michael P. Wellman:

Using Qualitative Relationships for Bounding Probability Distributions. 346-353 - Thomas Lukasiewicz:

Magic Inference Rules for Probabilistic Deduction under Taxonomic Knowledge. 354-361 - Anders L. Madsen, Finn Verner Jensen:

Lazy Propagation in Junction Trees. 362-369 - Suzanne M. Mahoney, Kathryn B. Laskey:

Constructing Situation Specific Belief Networks. 370-37 - Charles F. Manski:

Treatment Choice in Heterogeneous Populations Using Experiments without Covariate Data. 379-385 - Marina Meila, David Heckerman:

An Experimental Comparison of Several Clustering and Initialization Methods. 386-395 - Paul-André Monney:

From Likelihood to Plausibility. 396-403 - Stefano Monti, Gregory F. Cooper:

A Multivariate Discretization Method for Learning Bayesian Networks from Mixed Data. 404-413 - Benson Hin Kwong Ng, Kam-Fai Wong, Boon Toh Low:

Resolving Conflicting Arguments under Uncertainties. 414-421 - Ronald Parr:

Flexible Decomposition Algorithms for Weakly Coupled Markov Decision Problems. 422-430 - David M. Pennock:

Logarithmic Time Parallel Bayesian Inference. 431-438 - Mark A. Peot, Ross D. Shachter:

Learning From What You Don't Observe. 439-446 - David Poole:

Context-specific approximation in probabilistic inference. 447-454 - Irina Rish, Kalev Kask, Rina Dechter:

Empirical Evaluation of Approximation Algorithms for Probabilistic Decoding. 455-463 - Paola Sebastiani, Marco Ramoni:

Decision Theoretic Foundations of Graphical Model Selection. 464-471 - Raffaella Settimi, Jim Q. Smith:

On the Geometry of Bayesian Graphical Models with Hidden Variables. 472-479 - Ross D. Shachter:

Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams). 480-487 - Yoram Singer:

Switching Portfolios. 488-495 - Milan Studený:

Bayesian Networks from the Point of View of Chain Graphs. 496-503 - Bo Thiesson, Christopher Meek, David Maxwell Chickering, David Heckerman:

Learning Mixtures of DAG Models. 504-513 - Nevin Lianwen Zhang:

Probabilistic Inference in Influence Diagrams. 514-522 - Nevin Lianwen Zhang, Stephen S. Lee:

Planning with Partially Observable Markov Decision Processes: Advances in Exact Solution Method. 523-530 - Andrea Bobbio:

Flexible and Approximate Computation through State-Space Reduction. 531-538

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














