


default search action
NIPS 2006: Vancouver, British Columbia, Canada
- Bernhard Schölkopf, John C. Platt, Thomas Hofmann:

Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006. MIT Press 2007, ISBN 0-262-19568-2 - Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng:

An Application of Reinforcement Learning to Aerobatic Helicopter Flight. 1-8 - Amiran Ambroladze, Emilio Parrado-Hernández, John Shawe-Taylor:

Tighter PAC-Bayes Bounds. 9-16 - Yonatan Amit, Shai Shalev-Shwartz, Yoram Singer:

Online Classification for Complex Problems Using Simultaneous Projections. 17-24 - Rie Kubota Ando, Tong Zhang:

Learning on Graph with Laplacian Regularization. 25-32 - Jerónimo Arenas-García, Kaare Brandt Petersen, Lars Kai Hansen

:
Sparse Kernel Orthonormalized PLS for feature extraction in large data sets. 33-40 - Andreas Argyriou, Theodoros Evgeniou, Massimiliano Pontil:

Multi-Task Feature Learning. 41-48 - Peter Auer, Ronald Ortner:

Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning. 49-56 - Shai Avidan, Moshe Butman:

Efficient Methods for Privacy Preserving Face Detection. 57-64 - Francis R. Bach:

Active learning for misspecified generalized linear models. 65-72 - Aharon Bar-Hillel, Daphna Weinshall:

Subordinate class recognition using relational object models. 73-80 - David Barber, Silvia Chiappa:

Unified Inference for Variational Bayesian Linear Gaussian State-Space Models. 81-88 - David Barber, Bertrand Mesot:

A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems. 89-96 - Peter L. Bartlett, Ambuj Tewari:

Sample Complexity of Policy Search with Known Dynamics. 97-104 - Peter L. Bartlett, Mikhail Traskin:

AdaBoost is Consistent. 105-112 - Chiara Bartolozzi, Giacomo Indiveri:

A selective attention multi--chip system with dynamic synapses and spiking neurons. 113-120 - Alexis J. Battle, Gal Chechik, Daphne Koller:

Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks. 121-128 - Mikhail Belkin, Partha Niyogi:

Convergence of Laplacian Eigenmaps. 129-136 - Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira:

Analysis of Representations for Domain Adaptation. 137-144 - Eli Ben-Sasson, Adam Tauman Kalai, Ehud Kalai:

An Approach to Bounded Rationality. 145-152 - Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle:

Greedy Layer-Wise Training of Deep Networks. 153-160 - Steffen Bickel, Tobias Scheffer:

Dirichlet-Enhanced Spam Filtering based on Biased Samples. 161-168 - Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto:

Detecting Humans via Their Pose. 169-176 - Oren Boiman, Michal Irani:

Similarity by Composition. 177-184 - Mikio L. Braun, Joachim M. Buhmann, Klaus-Robert Müller:

Denoising and Dimension Reduction in Feature Space. 185-192 - Christopher J. C. Burges, Robert Ragno, Quoc Viet Le:

Learning to Rank with Nonsmooth Cost Functions. 193-200 - Peter Carbonetto, Nando de Freitas:

Conditional mean field. 201-208 - Gavin C. Cawley, Nicola L. C. Talbot, Mark A. Girolami:

Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation. 209-216 - Olivier Chapelle, Vikas Sindhwani, S. Sathiya Keerthi:

Branch and Bound for Semi-Supervised Support Vector Machines. 217-224 - Laurent Charlin, Pascal Poupart, Romy Shioda:

Automated Hierarchy Discovery for Planning in Partially Observable Environments. 225-232 - Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller:

Max-margin classification of incomplete data. 233-240 - Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers:

Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model. 241-248 - Li Cheng, S. V. N. Vishwanathan, Dale Schuurmans, Shaojun Wang, Terry Caelli:

implicit Online Learning with Kernels. 249-256 - Elisabetta Chicca, Giacomo Indiveri, Rodney J. Douglas:

Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons. 257-264 - Hugh A. Chipman, Edward I. George, Robert E. McCulloch:

Bayesian Ensemble Learning. 265-272 - Christian Walder, Bernhard Schölkopf, Olivier Chapelle:

Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions. 273-280 - Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, Kunle Olukotun:

Map-Reduce for Machine Learning on Multicore. 281-288 - Wei Chu, Vikas Sindhwani, Zoubin Ghahramani, S. Sathiya Keerthi:

Relational Learning with Gaussian Processes. 289-296 - David Cohn, Deepak Verma, Karl Pfleger:

Recursive Attribute Factoring. 297-304 - Corinna Cortes, Mehryar Mohri:

On Transductive Regression. 305-312 - Timothée Cour, Praveen Srinivasan, Jianbo Shi:

Balanced Graph Matching. 313-320 - Koby Crammer, Michael J. Kearns, Jennifer Wortman:

Learning from Multiple Sources. 321-328 - Marco Cuturi, Kenji Fukumizu:

Kernels on Structured Objects Through Nested Histograms. 329-336 - Jason V. Davis, Inderjit S. Dhillon:

Differential Entropic Clustering of Multivariate Gaussians. 337-344 - Ofer Dekel, Yoram Singer:

Support Vector Machines on a Budget. 345-352 - Eizaburo Doi, Michael S. Lewicki:

A Theory of Retinal Population Coding. 353-360 - Piotr Dollár, Serge J. Belongie, Vincent C. Rabaud:

Learning to Traverse Image Manifolds. 361-368 - John C. Duchi, Daniel Tarlow, Gal Elidan, Daphne Koller:

Using Combinatorial Optimization within Max-Product Belief Propagation. 369-376 - Ran El-Yaniv, Mordechai Nisenson:

Optimal Single-Class Classification Strategies. 377-384 - Eyal Even-Dar, Michael J. Kearns:

A Small World Threshold for Economic Network Formation. 385-392 - Yu Feng, Greg Hamerly:

PG-means: learning the number of clusters in data. 393-400 - Mário A. T. Figueiredo, Dong Seon Cheng, Vittorio Murino:

Clustering Under Prior Knowledge with Application to Image Segmentation. 401-408 - Karim Filali, Jeff A. Bilmes:

Multi-dynamic Bayesian Networks. 409-416 - Andrea Frome, Yoram Singer, Jitendra Malik:

Image Retrieval and Classification Using Local Distance Functions. 417-424 - Glenn Fung, Murat Dundar, Balaji Krishnapuram, R. Bharat Rao:

Multiple Instance Learning for Computer Aided Diagnosis. 425-432 - Stanislav Funiak, Carlos Guestrin, Mark A. Paskin, Rahul Sukthankar:

Distributed Inference in Dynamical Systems. 433-440 - Alborz Geramifard, Michael H. Bowling, Martin Zinkevich, Richard S. Sutton:

iLSTD: Eligibility Traces and Convergence Analysis. 441-448 - Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:

A PAC-Bayes Risk Bound for General Loss Functions. 449-456 - Mohammad Ghavamzadeh, Yaakov Engel:

Bayesian Policy Gradient Algorithms. 457-464 - Mark A. Girolami, Mingjun Zhong:

Data Integration for Classification Problems Employing Gaussian Process Priors. 465-472 - Amir Globerson, Tommi S. Jaakkola:

Approximate inference using planar graph decomposition. 473-480 - Carla P. Gomes, Ashish Sabharwal, Bart Selman:

Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints. 481-488 - Geoffrey J. Gordon:

No-regret Algorithms for Online Convex Programs. 489-496 - Amit Gore, Shantanu Chakrabartty:

Large Margin Multi-channel Analog-to-Digital Conversion with Applications to Neural Prosthesis. 497-504 - Kristen Grauman, Trevor Darrell:

Approximate Correspondences in High Dimensions. 505-512 - Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola:

A Kernel Method for the Two-Sample-Problem. 513-520 - David B. Grimes, Daniel R. Rashid, Rajesh P. N. Rao:

Learning Nonparametric Models for Probabilistic Imitation. 521-528 - Samuel S. Gross, Olga Russakovsky, Chuong B. Do, Serafim Batzoglou:

Training Conditional Random Fields for Maximum Labelwise Accuracy. 529-536 - Moritz Grosse-Wentrup, Klaus Gramann, Martin Buss:

Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces. 537-544 - Jonathan Harel, Christof Koch, Pietro Perona:

Graph-Based Visual Saliency. 545-552 - Gloria Haro, Gregory Randall, Guillermo Sapiro:

Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds. 553-560 - Matthias Hein, Markus Maier:

Manifold Denoising. 561-568 - Ralf Herbrich, Tom Minka, Thore Graepel:

TrueSkillTM: A Bayesian Skill Rating System. 569-576 - Mark Herbster, Massimiliano Pontil:

Prediction on a Graph with a Perceptron. 577-584 - Alfred O. Hero III:

Geometric entropy minimization (GEM) for anomaly detection and localization. 585-592 - John R. Hershey, Trausti T. Kristjansson, Steven J. Rennie, Peder A. Olsen:

Single Channel Speech Separation Using Factorial Dynamics. 593-600 - Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf:

Correcting Sample Selection Bias by Unlabeled Data. 601-608 - Ke Huang, Selin Aviyente:

Sparse Representation for Signal Classification. 609-616 - Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Michael I. Jordan, Anthony D. Joseph, Nina Taft:

In-Network PCA and Anomaly Detection. 617-624 - Alexander T. Ihler, Padhraic Smyth:

Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models. 625-632 - Robert Jenssen, Torbjørn Eltoft, Mark A. Girolami, Deniz Erdogmus:

Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm. 633-640 - Mark Johnson, Thomas L. Griffiths, Sharon Goldwater:

Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models. 641-648 - Amit Kagian, Gideon Dror, Tommer Leyvand, Daniel Cohen-Or, Eytan Ruppin:

A Humanlike Predictor of Facial Attractiveness. 649-656 - Anitha Kannan, John M. Winn, Carsten Rother:

Clustering appearance and shape by learning jigsaws. 657-664 - Yoshinobu Kawahara, Takehisa Yairi, Kazuo Machida:

A Kernel Subspace Method by Stochastic Realization for Learning Nonlinear Dynamical Systems. 665-672 - S. Sathiya Keerthi, Vikas Sindhwani, Olivier Chapelle:

An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models. 673-680 - Charles Kemp, Patrick Shafto, Allison Berke, Joshua B. Tenenbaum:

Combining causal and similarity-based reasoning. 681-688 - Wolf Kienzle, Felix A. Wichmann, Bernhard Schölkopf, Matthias O. Franz:

A Nonparametric Approach to Bottom-Up Visual Saliency. 689-696 - Seyoung Kim, Padhraic Smyth:

Hierarchical Dirichlet Processes with Random Effects. 697-704 - Joseph M. Kimmel, Richard M. Salter, Peter J. Thomas:

An Information Theoretic Framework for Eukaryotic Gradient Sensing. 705-712 - Stefan Klampfl, Robert Legenstein, Wolfgang Maass:

Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons. 713-720 - Ryota Kobayashi, Shigeru Shinomoto:

Predicting spike times from subthreshold dynamics of a neuron. 721-728 - Risi Kondor, Tony Jebara:

Gaussian and Wishart Hyperkernels. 729-736 - Konrad P. Körding, Joshua B. Tenenbaum:

Causal inference in sensorimotor integration. 737-744 - Konrad P. Körding, Joshua B. Tenenbaum, Reza Shadmehr:

Multiple timescales and uncertainty in motor adaptation. 745-752 - Matthias Krauledat, Michael Schröder, Benjamin Blankertz, Klaus-Robert Müller:

Reducing Calibration Time For Brain-Computer Interfaces: A Clustering Approach. 753-760 - Kenichi Kurihara, Max Welling, Nikos Vlassis:

Accelerated Variational Dirichlet Process Mixtures. 761-768 - Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, Nicolas Usunier:

PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier. 769-776 - Julian Laub, Jakob H. Macke, Klaus-Robert Müller, Felix A. Wichmann:

Inducing Metric Violations in Human Similarity Judgements. 777-784 - Neil D. Lawrence, Guido Sanguinetti, Magnus Rattray:

Modelling transcriptional regulation using Gaussian Processes. 785-792 - Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, Russell Greiner:

Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. 793-800 - Honglak Lee, Alexis J. Battle, Rajat Raina, Andrew Y. Ng:

Efficient sparse coding algorithms. 801-808 - Michael D. Lee, Ian G. Fuss, Daniel J. Navarro:

A Bayesian Approach to Diffusion Models of Decision-Making and Response Time. 809-816 - Su-In Lee, Varun Ganapathi, Daphne Koller:

Efficient Structure Learning of Markov Networks using L1-Regularization. 817-824 - Steven Lemm, Christin Schäfer, Gabriel Curio:

Aggregating Classification Accuracy across Time: Application to Single Trial EEG. 825-832 - Máté Lengyel, Peter Dayan:

Uncertainty, phase and oscillatory hippocampal recall. 833-840 - Anat Levin:

Blind Motion Deblurring Using Image Statistics. 841-848 - Roger Levy, T. Florian Jaeger:

Speakers optimize information density through syntactic reduction. 849-856 - Jeremy Lewi, Robert J. Butera, Liam Paninski:

Real-time adaptive information-theoretic optimization of neurophysiology experiments. 857-864 - Ling Li, Hsuan-Tien Lin:

Ordinal Regression by Extended Binary Classification. 865-872 - Ping Li, Kenneth Ward Church, Trevor Hastie:

Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data. 873-880 - Wenye Li, Kin-Hong Lee, Kwong-Sak Leung:

Generalized Regularized Least-Squares Learning with Predefined Features in a Hilbert Space. 881-888 - Yi Li, Philip M. Long:

Learnability and the doubling dimension. 889-896 - Jussi T. Lindgren, Aapo Hyvärinen:

Emergence of conjunctive visual features by quadratic independent component analysis. 897-904 - Jennifer Listgarten, Radford M. Neal, Sam T. Roweis, Rachel Puckrin, Sean Cutler:

Bayesian Detection of Infrequent Differences in Sets of Time Series with Shared Structure. 905-912 - Ce Liu, William T. Freeman, Edward H. Adelson:

Analysis of Contour Motions. 913-920 - Philip M. Long, Rocco A. Servedio:

Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions. 921-928 - Le Lu, Gregory D. Hager:

Dynamic Foreground/Background Extraction from Images and Videos using Random Patches. 929-936 - Gediminas Luksys, Jérémie Knüsel, Denis Sheynikhovich, Carmen Sandi, Wulfram Gerstner:

Effects of Stress and Genotype on Meta-parameter Dynamics in Reinforcement Learning. 937-944 - Siwei Lyu, Eero P. Simoncelli:

Statistical Modeling of Images with Fields of Gaussian Scale Mixtures. 945-952 - Michael I. Mandel, Daniel P. W. Ellis, Tony Jebara:

An EM Algorithm for Localizing Multiple Sound Sources in Reverberant Environments. 953-960 - Yi Mao, Guy Lebanon:

Isotonic Conditional Random Fields and Local Sentiment Flow. 961-968 - Graham McNeill, Sethu Vijayakumar:

Part-based Probabilistic Point Matching using Equivalence Constraints. 969-976 - Edward Meeds, Zoubin Ghahramani, Radford M. Neal, Sam T. Roweis:

Modeling Dyadic Data with Binary Latent Factors. 977-984 - Frank Moosmann, Bill Triggs, Frédéric Jurie:

Fast Discriminative Visual Codebooks using Randomized Clustering Forests. 985-992 - Michael C. Mozer, Michael Jones, Michael Shettel:

Context Effects in Category Learning: An Investigation of Four Probabilistic Models. 993-1000 - Chris Murray, Geoffrey J. Gordon:

Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General-Sum Stochastic Games. 1001-1008 - Andriy Myronenko, Xubo B. Song, Miguel Á. Carreira-Perpiñán:

Non-rigid point set registration: Coherent Point Drift. 1009-1016 - Boaz Nadler, Meirav Galun:

Fundamental Limitations of Spectral Clustering. 1017-1024 - Hariharan Narayanan, Mikhail Belkin, Partha Niyogi:

On the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts. 1025-1032 - Danko Nikolic, Stefan Häusler, Wolf Singer, Wolfgang Maass:

Temporal dynamics of information content carried by neurons in the primary visual cortex. 1041-1048 - Lars Omlor, Martin A. Giese:

Blind source separation for over-determined delayed mixtures. 1049-1056 - Thomas Ott, Ruedi Stoop:

The Neurodynamics of Belief Propagation on Binary Markov Random Fields. 1057-1064 - Sandeep Pandey, Christopher Olston:

Handling Advertisements of Unknown Quality in Search Advertising. 1065-1072 - Sridevi Parise, Max Welling:

Bayesian Model Scoring in Markov Random Fields. 1073-1080 - Luis Pérez-Breva, Luis E. Ortiz, Chen-Hsiang Yeang, Tommi S. Jaakkola:

Game Theoretic Algorithms for Protein-DNA binding. 1081-1088 - Lyndsey C. Pickup, David P. Capel, Stephen J. Roberts, Andrew Zisserman:

Bayesian Image Super-resolution, Continued. 1089-1096 - Yuan (Alan) Qi, Tommi S. Jaakkola:

Parameter Expanded Variational Bayesian Methods. 1097-1104 - Michael G. Rabbat, Mário A. T. Figueiredo, Robert D. Nowak:

Inferring Network Structure from Co-Occurrences. 1105-1112 - Ali Rahimi, Ben Recht:

Unsupervised Regression with Applications to Nonlinear System Identification. 1113-1120 - Alexander Rakhlin, Andrea Caponnetto:

Stability of $K$-Means Clustering. 1121-1128 - Deva Ramanan:

Learning to parse images of articulated bodies. 1129-1136 - Marc'Aurelio Ranzato, Christopher S. Poultney, Sumit Chopra, Yann LeCun:

Efficient Learning of Sparse Representations with an Energy-Based Model. 1137-1144 - Martin Raphan, Eero P. Simoncelli:

Learning to be Bayesian without Supervision. 1145-1152 - Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, Joel E. Chestnutt:

Boosting Structured Prediction for Imitation Learning. 1153-1160 - Gunnar Rätsch, Sören Sonnenburg:

Large Scale Hidden Semi-Markov SVMs. 1161-1168 - Silvia Richter, Douglas Aberdeen, Jin Yu:

Natural Actor-Critic for Road Traffic Optimisation. 1169-1176 - Konrad Rieck, Pavel Laskov, Sören Sonnenburg:

Computation of Similarity Measures for Sequential Data using Generalized Suffix Trees. 1177-1184 - Daniel M. Roy, Charles Kemp, Vikash Mansinghka, Joshua B. Tenenbaum:

Learning annotated hierarchies from relational data. 1185-1192 - Benjamin I. P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein:

Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds. 1193-1200 - Jason M. Samonds, Brian Potetz, Tai Sing Lee:

Neurophysiological Evidence of Cooperative Mechanisms for Stereo Computation. 1201-1208 - Ashutosh Saxena, Justin Driemeyer, Justin Kearns, Andrew Y. Ng:

Robotic Grasping of Novel Objects. 1209-1216 - Paul R. Schrater, Rashmi Sundareswara:

Theory and Dynamics of Perceptual Bistability. 1217-1224 - Nicol N. Schraudolph, Simon Günter, S. V. N. Vishwanathan:

Fast Iterative Kernel PCA. 1225-1232 - Matthias W. Seeger:

Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods. 1233-1240 - Yevgeny Seldin, Noam Slonim, Naftali Tishby:

Information Bottleneck for Non Co-Occurrence Data. 1241-1248 - Fei Sha, Lawrence K. Saul:

Large Margin Hidden Markov Models for Automatic Speech Recognition. 1249-1256 - Gregory Shakhnarovich, Sung-Phil Kim, Michael J. Black:

Nonlinear physically-based models for decoding motor-cortical population activity. 1257-1264 - Shai Shalev-Shwartz, Yoram Singer:

Convex Repeated Games and Fenchel Duality. 1265-1272 - Honghao Shan, Lingyun Zhang, Garrison W. Cottrell:

Recursive ICA. 1273-1280 - Christian R. Shelton, Wesley Huie, Kin Fai Kan:

Chained Boosting. 1281-1288 - Hideaki Shimazaki, Shigeru Shinomoto:

A recipe for optimizing a time-histogram. 1289-1296 - Tobias Sing, Niko Beerenwinkel:

Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype. 1297-1304 - Kyung-Ah Sohn, Eric P. Xing:

Hidden Markov Dirichlet Process: Modeling Genetic Recombination in Open Ancestral Space. 1305-1312 - Florian Steinke, Bernhard Schölkopf, Volker Blanz:

Learning Dense 3D Correspondence. 1313-1320 - Ingo Steinwart, Don R. Hush, Clint Scovel:

An Oracle Inequality for Clipped Regularized Risk Minimizers. 1321-1328 - Amos J. Storkey, Enrico Simonotto, Heather Whalley, Stephen M. Lawrie, Lawrence Murray, David J. McGonigle:

Learning Structural Equation Models for fMRI. 1329-1336 - Amos J. Storkey, Masashi Sugiyama:

Mixture Regression for Covariate Shift. 1337-1344 - Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis:

Modeling Human Motion Using Binary Latent Variables. 1345-1352 - Yee Whye Teh, David Newman, Max Welling:

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation. 1353-1360 - Fabian J. Theis:

Towards a general independent subspace analysis. 1361-1368 - Emanuel Todorov:

Linearly-solvable Markov decision problems. 1369-1376 - Ryota Tomioka, Kazuyuki Aihara, Klaus-Robert Müller:

Logistic Regression for Single Trial EEG Classification. 1377-1384 - Lorenzo Torresani, Kuang-chih Lee:

Large Margin Component Analysis. 1385-1392 - Lorenzo Torresani, Peggy Hackney, Christoph Bregler:

Learning Motion Style Synthesis from Perceptual Observations. 1393-1400 - Ivor W. Tsang

, James T. Kwok:
Large-Scale Sparsified Manifold Regularization. 1401-1408 - Joseph P. Turian, Benjamin Wellington, I. Dan Melamed:

Scalable Discriminative Learning for Natural Language Parsing and Translation. 1409-1416 - Hamed Valizadegan, Rong Jin:

Generalized Maximum Margin Clustering and Unsupervised Kernel Learning. 1417-1424 - Andrea Vedaldi, Stefano Soatto:

A Complexity-Distortion Approach to Joint Pattern Alignment. 1425-1432 - René Vidal:

Online Clustering of Moving Hyperplanes. 1433-1440 - Jade P. Vinson, David DeCaprio, Matthew D. Pearson, Stacey Luoma, James E. Galagan:

Comparative Gene Prediction using Conditional Random Fields. 1441-1448 - S. V. N. Vishwanathan, Karsten M. Borgwardt, Nicol N. Schraudolph:

Fast Computation of Graph Kernels. 1449-1456 - Thomas Voegtlin:

Temporal Coding using the Response Properties of Spiking Neurons. 1457-1464 - Martin J. Wainwright, Pradeep Ravikumar, John D. Lafferty:

High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression. 1465-1472 - Yingxue Wang, Rodney J. Douglas, Shih-Chii Liu:

Attentional Processing on a Spike-Based VLSI Neural Network. 1473-1480 - Manfred K. Warmuth, Dima Kuzmin:

Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension. 1481-1488 - Kilian Q. Weinberger, Fei Sha, Qihui Zhu, Lawrence K. Saul:

Graph Laplacian Regularization for Large-Scale Semidefinite Programming. 1489-1496 - Oliver Williams:

A Switched Gaussian Process for Estimating Disparity and Segmentation in Binocular Stereo. 1497-1504 - David P. Wipf, Rey Ramírez, Jason A. Palmer, Scott Makeig, Bhaskar D. Rao:

Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization. 1505-1512 - Frank D. Wood, Thomas L. Griffiths:

Particle Filtering for Nonparametric Bayesian Matrix Factorization. 1513-1520 - Lin Wu, Pierre Baldi:

A Scalable Machine Learning Approach to Go. 1521-1528 - Mingrui Wu, Bernhard Schölkopf:

A Local Learning Approach for Clustering. 1529-1536 - Huan Xu, Shie Mannor:

The Robustness-Performance Tradeoff in Markov Decision Processes. 1537-1544 - Angela J. Yu:

Optimal Change-Detection and Spiking Neurons. 1545-1552 - Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, Zhao Xu:

Stochastic Relational Models for Discriminative Link Prediction. 1553-1560 - Ron Zass, Amnon Shashua:

Nonnegative Sparse PCA. 1561-1568 - Ron Zass, Amnon Shashua:

Doubly Stochastic Normalization for Spectral Clustering. 1569-1576 - Kai Zhang, James T. Kwok:

Simplifying Mixture Models through Function Approximation. 1577-1584 - Xinhua Zhang, Wee Sun Lee:

Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms. 1585-1592 - Zhenyue Zhang, Jing Wang:

MLLE: Modified Locally Linear Embedding Using Multiple Weights. 1593-1600 - Dengyong Zhou, Jiayuan Huang, Bernhard Schölkopf:

Learning with Hypergraphs: Clustering, Classification, and Embedding. 1601-1608 - Zhi-Hua Zhou, Min-Ling Zhang:

Multi-Instance Multi-Label Learning with Application to Scene Classification. 1609-1616 - Long Zhu, Yuanhao Chen, Alan L. Yuille:

Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing. 1617-1624 - Johanna M. Zumer, Hagai Thomas Attias, Kensuke Sekihara, Srikantan S. Nagarajan:

A Probabilistic Algorithm Integrating Source Localization and Noise Suppression of MEG and EEG data. 1625-1632

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














