default search action
Thomas G. Dietterich
Thomas Glenn Dietterich – Tom Dietterich
Person information
- affiliation: Oregon State University, School of Electrical Engineering and Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [i37]Yoshua Bengio, Sören Mindermann, Daniel Privitera, Tamay Besiroglu, Rishi Bommasani, Stephen Casper, Yejin Choi, Danielle Goldfarb, Hoda Heidari, Leila Khalatbari, Shayne Longpre, Vasilios Mavroudis, Mantas Mazeika, Kwan Yee Ng, Chinasa T. Okolo, Deborah Raji, Theodora Skeadas, Florian Tramèr, Bayo Adekanmbi, Paul F. Christiano, David Dalrymple, Thomas G. Dietterich, Edward W. Felten, Pascale Fung, Pierre-Olivier Gourinchas, Nick R. Jennings, Andreas Krause, Percy Liang, Teresa Ludermir, Vidushi Marda, Helen Margetts, John A. McDermid, Arvind Narayanan, Alondra Nelson, Alice Oh, Gopal Ramchurn, Stuart Russell, Marietje Schaake, Dawn Song, Alvaro Soto, Lee Tiedrich, Gaël Varoquaux, Andrew Yao, Ya-Qin Zhang:
International Scientific Report on the Safety of Advanced AI (Interim Report). CoRR abs/2412.05282 (2024) - 2023
- [j64]Kiri L. Wagstaff, Thomas G. Dietterich:
Hidden Heterogeneity: When to Choose Similarity-Based Calibration. Trans. Mach. Learn. Res. 2023 (2023) - [i36]George Trimponias, Thomas G. Dietterich:
Reinforcement Learning with Exogenous States and Rewards. CoRR abs/2303.12957 (2023) - 2022
- [j63]Si Liu, Risheek Garrepalli, Dan Hendrycks, Alan Fern, Debashis Mondal, Thomas G. Dietterich:
PAC Guarantees and Effective Algorithms for Detecting Novel Categories. J. Mach. Learn. Res. 23: 44:1-44:47 (2022) - [j62]Thomas G. Dietterich, Alexander Guyer:
The familiarity hypothesis: Explaining the behavior of deep open set methods. Pattern Recognit. 132: 108931 (2022) - [c131]Guansong Pang, Jundong Li, Anton van den Hengel, Longbing Cao, Thomas G. Dietterich:
ANDEA: Anomaly and Novelty Detection, Explanation, and Accommodation. KDD 2022: 4892-4893 - [i35]Kiri L. Wagstaff, Thomas G. Dietterich:
Hidden Heterogeneity: When to Choose Similarity-Based Calibration. CoRR abs/2202.01840 (2022) - [i34]Thomas G. Dietterich, Alexander Guyer:
The Familiarity Hypothesis: Explaining the Behavior of Deep Open Set Methods. CoRR abs/2203.02486 (2022) - [i33]Thomas G. Dietterich, Jesse Hostetler:
Conformal Prediction Intervals for Markov Decision Process Trajectories. CoRR abs/2206.04860 (2022) - [i32]Risheek Garrepalli, Alan Fern, Thomas G. Dietterich:
Oracle Analysis of Representations for Deep Open Set Detection. CoRR abs/2209.11350 (2022) - [i31]Alexander Guyer, Thomas G. Dietterich:
Will My Robot Achieve My Goals? Predicting the Probability that an MDP Policy Reaches a User-Specified Behavior Target. CoRR abs/2211.16462 (2022) - 2021
- [j61]Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, Klaus-Robert Müller:
A Unifying Review of Deep and Shallow Anomaly Detection. Proc. IEEE 109(5): 756-795 (2021) - [c130]Jonathan Ferrer-Mestres, Thomas G. Dietterich, Olivier Buffet, Iadine Chades:
K-N-MOMDPs: Towards Interpretable Solutions for Adaptive Management. AAAI 2021: 14775-14784 - [c129]Yunye Gong, Xiao Lin, Yi Yao, Thomas G. Dietterich, Ajay Divakaran, Melinda T. Gervasio:
Confidence Calibration for Domain Generalization under Covariate Shift. ICCV 2021: 8938-8947 - [c128]Guansong Pang, Jundong Li, Anton van den Hengel, Longbing Cao, Thomas G. Dietterich:
Anomaly and Novelty Detection, Explanation, and Accommodation (ANDEA). KDD 2021: 4145-4146 - [i30]Shiv Shankar, Daniel Sheldon, Tao Sun, John Pickering, Thomas G. Dietterich:
Three-quarter Sibling Regression for Denoising Observational Data. CoRR abs/2101.00074 (2021) - [i29]Yunye Gong, Xiao Lin, Yi Yao, Thomas G. Dietterich, Ajay Divakaran, Melinda T. Gervasio:
Confidence Calibration for Domain Generalization under Covariate Shift. CoRR abs/2104.00742 (2021) - [i28]Erich Merrill, Stefan Lee, Fuxin Li, Thomas G. Dietterich, Alan Fern:
Deep Convolution for Irregularly Sampled Temporal Point Clouds. CoRR abs/2105.00137 (2021) - 2020
- [j60]Joshua Alspector, Thomas G. Dietterich:
DARPA's Role in Machine Learning. AI Mag. 41(2): 36-48 (2020) - [j59]Shubhomoy Das, Weng-Keen Wong, Thomas G. Dietterich, Alan Fern, Andrew Emmott:
Discovering Anomalies by Incorporating Feedback from an Expert. ACM Trans. Knowl. Discov. Data 14(4): 49:1-49:32 (2020) - [c127]Jonathan Ferrer-Mestres, Thomas G. Dietterich, Olivier Buffet, Iadine Chadès:
Solving K-MDPs. ICAPS 2020: 110-118 - [c126]Tadesse Zemicheal, Thomas G. Dietterich:
Conditional mixture models for precipitation data quality control. COMPASS 2020: 13-21 - [i27]Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, Klaus-Robert Müller:
A Unifying Review of Deep and Shallow Anomaly Detection. CoRR abs/2009.11732 (2020)
2010 – 2019
- 2019
- [j58]Carla P. Gomes, Thomas G. Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Z. Fern, Daniel Fink, Douglas H. Fisher, Alexander Flecker, Daniel Freund, Angela Fuller, John M. Gregoire, John E. Hopcroft, Steve Kelling, J. Zico Kolter, Warren B. Powell, Nicole D. Sintov, John S. Selker, Bart Selman, Daniel Sheldon, David B. Shmoys, Milind Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, Mary Lou Zeeman:
Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 62(9): 56-65 (2019) - [j57]Thomas G. Dietterich:
Robust artificial intelligence and robust human organizations. Frontiers Comput. Sci. 13(1): 1-3 (2019) - [j56]Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Weng-Keen Wong:
Sequential Feature Explanations for Anomaly Detection. ACM Trans. Knowl. Discov. Data 13(1): 1:1-1:22 (2019) - [c125]Tadesse Zemicheal, Thomas G. Dietterich:
Anomaly detection in the presence of missing values for weather data quality control. COMPASS 2019: 65-73 - [c124]Dan Hendrycks, Thomas G. Dietterich:
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. ICLR (Poster) 2019 - [c123]Dan Hendrycks, Mantas Mazeika, Thomas G. Dietterich:
Deep Anomaly Detection with Outlier Exposure. ICLR (Poster) 2019 - [c122]Shiv Shankar, Daniel Sheldon, Tao Sun, John Pickering, Thomas G. Dietterich:
Three-quarter Sibling Regression for Denoising Observational Data. IJCAI 2019: 5960-5966 - [i26]Dan Hendrycks, Thomas G. Dietterich:
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. CoRR abs/1903.12261 (2019) - 2018
- [c121]Si Liu, Risheek Garrepalli, Alan Fern, Thomas G. Dietterich:
Can We Achieve Open Category Detection with Guarantees? AAAI Workshops 2018: 356-363 - [c120]Majid Alkaee Taleghan, Thomas G. Dietterich:
Efficient Exploration for Constrained MDPs. AAAI Spring Symposia 2018 - [c119]Thomas G. Dietterich, George Trimponias, Zhitang Chen:
Discovering and Removing Exogenous State Variables and Rewards for Reinforcement Learning. ICML 2018: 1261-1269 - [c118]Si Liu, Risheek Garrepalli, Thomas G. Dietterich, Alan Fern, Dan Hendrycks:
Open Category Detection with PAC Guarantees. ICML 2018: 3175-3184 - [c117]Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Ryan Wright, Alec Theriault, David W. Archer:
Feedback-Guided Anomaly Discovery via Online Optimization. KDD 2018: 2200-2209 - [i25]Thomas G. Dietterich, George Trimponias, Zhitang Chen:
Discovering and Removing Exogenous State Variables and Rewards for Reinforcement Learning. CoRR abs/1806.01584 (2018) - [i24]Dan Hendrycks, Thomas G. Dietterich:
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. CoRR abs/1807.01697 (2018) - [i23]Si Liu, Risheek Garrepalli, Thomas G. Dietterich, Alan Fern, Dan Hendrycks:
Open Category Detection with PAC Guarantees. CoRR abs/1808.00529 (2018) - [i22]Thomas G. Dietterich, Tadesse Zemicheal:
Anomaly Detection in the Presence of Missing Values. CoRR abs/1809.01605 (2018) - [i21]John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Z. Fern, Thomas G. Dietterich:
Learning Scripts as Hidden Markov Models. CoRR abs/1809.03680 (2018) - [i20]Thomas G. Dietterich:
Robust Artificial Intelligence and Robust Human Organizations. CoRR abs/1811.10840 (2018) - [i19]Dan Hendrycks, Mantas Mazeika, Thomas G. Dietterich:
Deep Anomaly Detection with Outlier Exposure. CoRR abs/1812.04606 (2018) - 2017
- [j55]Thomas G. Dietterich:
Steps Toward Robust Artificial Intelligence. AI Mag. 38(3): 3-24 (2017) - [j54]Jesse Hostetler, Alan Fern, Thomas G. Dietterich:
Sample-Based Tree Search with Fixed and Adaptive State Abstractions. J. Artif. Intell. Res. 60: 717-777 (2017) - [j53]Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer:
Interactive visualization for testing Markov Decision Processes: MDPVIS. J. Vis. Lang. Comput. 39: 93-106 (2017) - [c116]Yann Dujardin, Tom Dietterich, Iadine Chades:
Three New Algorithms to Solve N-POMDPs. AAAI 2017: 4495-4501 - [i18]Sean McGregor, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer, Thomas G. Dietterich:
Factoring Exogenous State for Model-Free Monte Carlo. CoRR abs/1703.09390 (2017) - [i17]Sean McGregor, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer, Thomas G. Dietterich:
Fast Optimization of Wildfire Suppression Policies with SMAC. CoRR abs/1703.09391 (2017) - [i16]Shubhomoy Das, Weng-Keen Wong, Alan Fern, Thomas G. Dietterich, Md Amran Siddiqui:
Incorporating Feedback into Tree-based Anomaly Detection. CoRR abs/1708.09441 (2017) - 2016
- [c115]Shubhomoy Das, Weng-Keen Wong, Thomas G. Dietterich, Alan Fern, Andrew Emmott:
Incorporating Expert Feedback into Active Anomaly Discovery. ICDM 2016: 853-858 - [c114]Li-Ping Liu, Thomas G. Dietterich, Nan Li, Zhi-Hua Zhou:
Transductive Optimization of Top k Precision. IJCAI 2016: 1781-1787 - [c113]Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Shubhomoy Das:
Finite Sample Complexity of Rare Pattern Anomaly Detection. UAI 2016 - 2015
- [j52]Stuart Russell, Tom Dietterich, Eric Horvitz, Bart Selman, Francesca Rossi, Demis Hassabis, Shane Legg, Mustafa Suleyman, Dileep George, D. Scott Phoenix:
Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter. AI Mag. 36(4): 3-4 (2015) - [j51]Eric Eaton, Tom Dietterich, Maria L. Gini, Barbara J. Grosz, Charles L. Isbell Jr., Subbarao Kambhampati, Michael L. Littman, Francesca Rossi, Stuart Russell, Peter Stone, Toby Walsh, Michael J. Wooldridge:
Who speaks for AI? AI Matters 2(2): 4-14 (2015) - [j50]Thomas G. Dietterich, Eric Horvitz:
Rise of concerns about AI: reflections and directions. Commun. ACM 58(10): 38-40 (2015) - [j49]Majid Alkaee Taleghan, Thomas G. Dietterich, Mark Crowley, Kim Hall, H. Jo Albers:
PAC optimal MDP planning with application to invasive species management. J. Mach. Learn. Res. 16: 3877-3903 (2015) - [c112]Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad Tadepalli:
Learning Greedy Policies for the Easy-First Framework. AAAI 2015: 2339-2345 - [c111]Sean McGregor, Hailey Buckingham, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer, Thomas G. Dietterich:
MDPVIS: An Interactive Visualization for Testing Markov Decision Processes. AAAI Fall Symposia 2015: 56-58 - [c110]Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, Thomas G. Dietterich:
ℋC-search for structured prediction in computer vision. CVPR 2015: 4923-4932 - [c109]Yann Dujardin, Tom Dietterich, Iadine Chades:
α-min: A Compact Approximate Solver For Finite-Horizon POMDPs. IJCAI 2015: 2582-2588 - [c108]Jesse Hostetler, Alan Fern, Thomas G. Dietterich:
Progressive Abstraction Refinement for Sparse Sampling. UAI 2015: 365-374 - [c107]Mohammad S. Sorower, Michael Slater, Thomas G. Dietterich:
Improving Automated Email Tagging with Implicit Feedback. UIST 2015: 201-211 - [c106]Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer:
Facilitating testing and debugging of Markov Decision Processes with interactive visualization. VL/HCC 2015: 53-61 - [c105]Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman, Claire A. Montgomery, Ronald A. Metoyer:
Facilitating testing and debugging of Markov Decision Processes with interactive visualization. VL/HCC 2015: 281-282 - [i15]Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Weng-Keen Wong:
Sequential Feature Explanations for Anomaly Detection. CoRR abs/1503.00038 (2015) - [i14]Andrew Emmott, Shubhomoy Das, Thomas G. Dietterich, Alan Fern, Weng-Keen Wong:
Systematic Construction of Anomaly Detection Benchmarks from Real Data. CoRR abs/1503.01158 (2015) - [i13]Li-Ping Liu, Thomas G. Dietterich, Nan Li, Zhi-Hua Zhou:
Transductive Optimization of Top k Precision. CoRR abs/1510.05976 (2015) - 2014
- [j48]Andrew Farnsworth, Daniel Sheldon, Jeffrey Geevarghese, Jed Irvine, Benjamin Van Doren, Kevin F. Webb, Thomas G. Dietterich, Steve Kelling:
Reconstructing Velocities of Migrating Birds from Weather Radar - A Case Study in Computational Sustainability. AI Mag. 35(2): 31-48 (2014) - [j47]Kshitij Judah, Alan Paul Fern, Thomas G. Dietterich, Prasad Tadepalli:
Active lmitation learning: formal and practical reductions to I.I.D. learning. J. Mach. Learn. Res. 15(1): 3925-3963 (2014) - [c104]John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Z. Fern, Thomas G. Dietterich:
Learning Scripts as Hidden Markov Models. AAAI 2014: 1565-1571 - [c103]Jesse Hostetler, Alan Fern, Tom Dietterich:
State Aggregation in Monte Carlo Tree Search. AAAI 2014: 2446-2452 - [c102]Chao Ma, Janardhan Rao Doppa, John Walker Orr, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad Tadepalli:
Prune-and-Score: Learning for Greedy Coreference Resolution. EMNLP 2014: 2115-2126 - [c101]Li-Ping Liu, Daniel Sheldon, Thomas G. Dietterich:
Gaussian Approximation of Collective Graphical Models. ICML 2014: 1602-1610 - [c100]Li-Ping Liu, Thomas G. Dietterich:
Learnability of the Superset Label Learning Problem. ICML 2014: 1629-1637 - [i12]Li-Ping Liu, Daniel Sheldon, Thomas G. Dietterich:
Gaussian Approximation of Collective Graphical Models. CoRR abs/1405.5156 (2014) - 2013
- [c99]Kiri L. Wagstaff, Nina L. Lanza, David R. Thompson, Thomas G. Dietterich, Martha S. Gilmore:
Guiding Scientific Discovery with Explanations Using DEMUD. AAAI 2013: 905-911 - [c98]Thomas G. Dietterich, Majid Alkaee Taleghan, Mark Crowley:
PAC Optimal Planning for Invasive Species Management: Improved Exploration for Reinforcement Learning from Simulator-Defined MDPs. AAAI 2013: 1270-1276 - [c97]Daniel Sheldon, Andrew Farnsworth, Jed Irvine, Benjamin Van Doren, Kevin F. Webb, Thomas G. Dietterich, Steve Kelling:
Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar. AAAI 2013: 1334-1340 - [c96]Michael Lam, Janardhan Rao Doppa, Xu Hu, Sinisa Todorovic, Thomas G. Dietterich, Abigail Reft, Marymegan Daly:
Learning to Detect Basal Tubules of Nematocysts in SEM Images. ICCV Workshops 2013: 190-196 - [c95]Xu Hu, Michael Lam, Sinisa Todorovic, Thomas G. Dietterich, Maureen A. OLeary, Andrea L. Cirranello, Nancy B. Simmons, Paúl M. Velazco:
Zero-Shot Learning and Detection of Teeth in Images of Bat Skulls. ICCV Workshops 2013: 203-209 - [c94]Daniel Sheldon, Tao Sun, Akshat Kumar, Thomas G. Dietterich:
Approximate Inference in Collective Graphical Models. ICML (3) 2013: 1004-1012 - [c93]Ted E. Senator, Henry G. Goldberg, Alex Memory, William T. Young, Brad Rees, Robert Pierce, Daniel Huang, Matthew Reardon, David A. Bader, Edmond Chow, Irfan A. Essa, Joshua Jones, Vinay Bettadapura, Duen Horng Chau, Oded Green, Oguz Kaya, Anita Zakrzewska, Erica Briscoe, Rudolph L. Mappus IV, Robert McColl, Lora Weiss, Thomas G. Dietterich, Alan Fern, Weng-Keen Wong, Shubhomoy Das, Andrew Emmott, Jed Irvine, Jay Yoon Lee, Danai Koutra, Christos Faloutsos, Daniel D. Corkill, Lisa Friedland, Amanda Gentzel, David D. Jensen:
Detecting insider threats in a real corporate database of computer usage activity. KDD 2013: 1393-1401 - 2012
- [j46]Xiaoqin Zhang, Bhavesh Shrestha, Sung Wook Yoon, Subbarao Kambhampati, Phillip DiBona, Jinhong K. Guo, Daniel McFarlane, Martin O. Hofmann, Kenneth R. Whitebread, Darren Scott Appling, Elizabeth T. Whitaker, Ethan Trewhitt, Li Ding, James Michaelis, Deborah L. McGuinness, James A. Hendler, Janardhan Rao Doppa, Charles Parker, Thomas G. Dietterich, Prasad Tadepalli, Weng-Keen Wong, Derek T. Green, Antons Rebguns, Diana F. Spears, Ugur Kuter, Geoffrey Levine, Gerald DeJong, Reid MacTavish, Santiago Ontañón, Jainarayan Radhakrishnan, Ashwin Ram, Hala Mostafa, Huzaifa Zafar, Chongjie Zhang, Daniel D. Corkill, Victor R. Lesser, Zhexuan Song:
An Ensemble Architecture for Learning Complex Problem-Solving Techniques from Demonstration. ACM Trans. Intell. Syst. Technol. 3(4): 75:1-75:38 (2012) - [c92]Kshitij Judah, Alan Paul Fern, Thomas Glenn Dietterich:
Active Imitation Learning via Reduction to I.I.D. Active Learning. AAAI Fall Symposium: Robots Learning Interactively from Human Teachers 2012 - [c91]Thomas G. Dietterich, Ethan W. Dereszynski, Rebecca A. Hutchinson, Dan Sheldon:
Machine learning for computational sustainability. IGCC 2012: 1 - [c90]Li-Ping Liu, Thomas G. Dietterich:
A Conditional Multinomial Mixture Model for Superset Label Learning. NIPS 2012: 557-565 - [c89]Jesse Hostetler, Ethan W. Dereszynski, Thomas G. Dietterich, Alan Fern:
Inferring Strategies from Limited Reconnaissance in Real-time Strategy Games. UAI 2012: 367-376 - [c88]Kshitij Judah, Alan Fern, Thomas G. Dietterich:
Active Imitation Learning via Reduction to I.I.D. Active Learning. UAI 2012: 428-437 - [i11]Ethan W. Dereszynski, Thomas G. Dietterich:
Probabilistic Models for Anomaly Detection in Remote Sensor Data Streams. CoRR abs/1206.5250 (2012) - [i10]Eric Altendorf, Angelo C. Restificar, Thomas G. Dietterich:
Learning from Sparse Data by Exploiting Monotonicity Constraints. CoRR abs/1207.1364 (2012) - [i9]Kshitij Judah, Alan Fern, Thomas G. Dietterich:
Active Imitation Learning via Reduction to I.I.D. Active Learning. CoRR abs/1210.4876 (2012) - [i8]Jesse Hostetler, Ethan W. Dereszynski, Thomas G. Dietterich, Alan Fern:
Inferring Strategies from Limited Reconnaissance in Real-time Strategy Games. CoRR abs/1210.4880 (2012) - 2011
- [j45]Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich:
Automatic Discovery and Transfer of Task Hierarchies in Reinforcement Learning. AI Mag. 32(1): 35-50 (2011) - [j44]Xinlong Bao, Thomas G. Dietterich:
FolderPredictor: Reducing the cost of reaching the right folder. ACM Trans. Intell. Syst. Technol. 2(1): 8:1-8:23 (2011) - [j43]Ethan W. Dereszynski, Thomas G. Dietterich:
Spatiotemporal Models for Data-Anomaly Detection in Dynamic Environmental Monitoring Campaigns. ACM Trans. Sens. Networks 8(1): 3:1-3:36 (2011) - [c87]Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich:
Incorporating Boosted Regression Trees into Ecological Latent Variable Models. AAAI 2011: 1343-1348 - [c86]Ethan W. Dereszynski, Jesse Hostetler, Alan Fern, Thomas G. Dietterich, Thao-Trang Hoang, Mark Udarbe:
Learning Probabilistic Behavior Models in Real-Time Strategy Games. AIIDE 2011 - [c85]Shahed Sorower, Thomas G. Dietterich, Janardhan Rao Doppa, John Walker Orr, Prasad Tadepalli, Xiaoli Z. Fern:
Inverting Grice's Maxims to Learn Rules from Natural Language Extractions. NIPS 2011: 1053-1061 - [c84]Daniel Sheldon, Thomas G. Dietterich:
Collective Graphical Models. NIPS 2011: 1161-1169 - [c83]Natalia Larios Delgado, Junyuan Lin, Mengzi Zhang, David A. Lytle, Andrew Moldenke, Linda G. Shapiro, Thomas G. Dietterich:
Stacked spatial-pyramid kernel: An object-class recognition method to combine scores from random trees. WACV 2011: 329-335 - [c82]Janardhan Rao Doppa, Shahed Sorower, Mohammad NasrEsfahani, John Walker Orr, Thomas G. Dietterich, Xiaoli Z. Fern, Prasad Tadepalli, Jed Irvine:
Learning Rules from Incomplete Examples via Implicit Mention Models. ACML 2011: 197-212 - [i7]Valentina Bayer Zubek, Thomas G. Dietterich:
Integrating Learning from Examples into the Search for Diagnostic Policies. CoRR abs/1109.2127 (2011) - 2010
- [c81]Kshitij Judah, Saikat Roy, Alan Fern, Thomas G. Dietterich:
Reinforcement Learning Via Practice and Critique Advice. AAAI 2010: 481-486 - [c80]Carlos Jensen, Heather Lonsdale, Eleanor Wynn, Jill Cao, Michael Slater, Thomas G. Dietterich:
The life and times of files and information: a study of desktop provenance. CHI 2010: 767-776 - [c79]Natalia Larios, Bilge Soran, Linda G. Shapiro, Gonzalo Martínez-Muñoz, Junyuan Lin, Thomas G. Dietterich:
Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species Identification. ICPR 2010: 2624-2627 - [p2]Paul Barford, Marc Dacier, Thomas G. Dietterich, Matt Fredrikson, Jonathon T. Giffin, Sushil Jajodia, Somesh Jha, Jason H. Li, Peng Liu, Peng Ning, Xinming Ou, Dawn Song, Laura Strater, Vipin Swarup, George P. Tadda, C. Wang, John Yen:
Cyber SA: Situational Awareness for Cyber Defense. Cyber Situational Awareness 2010: 3-13 - [p1]Thomas G. Dietterich, Xinlong Bao, Victoria Keiser, Jianqiang Shen:
Machine Learning Methods for High Level Cyber Situation Awareness. Cyber Situational Awareness 2010: 227-247
2000 – 2009
- 2009
- [j42]Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret M. Burnett, Thomas G. Dietterich, Erin Sullivan, Jonathan L. Herlocker:
Interacting meaningfully with machine learning systems: Three experiments. Int. J. Hum. Comput. Stud. 67(8): 639-662 (2009) - [j41]Jianqiang Shen, Thomas G. Dietterich:
A family of large margin linear classifiers and its application in dynamic environments. Stat. Anal. Data Min. 2(5-6): 328-345 (2009) - [c78]Thomas G. Dietterich:
Machine Learning and Ecosystem Informatics: Challenges and Opportunities. ACML 2009: 1-5 - [c77]Gonzalo Martínez-Muñoz, Natalia Larios Delgado, Eric N. Mortensen, Wei Zhang, Asako Yamamuro, Robert Paasch, Nadia Payet, David A. Lytle, Linda G. Shapiro, Sinisa Todorovic, Andrew Moldenke, Thomas G. Dietterich:
Dictionary-free categorization of very similar objects via stacked evidence trees. CVPR 2009: 549-556 - [c76]Xiaoqin Zhang, Sung Wook Yoon, Phillip DiBona, Darren Scott Appling, Li Ding, Janardhan Rao Doppa, Derek T. Green, Jinhong K. Guo, Ugur Kuter, Geoffrey Levine, Reid MacTavish, Daniel McFarlane, James Michaelis, Hala Mostafa, Santiago Ontañón, Charles Parker, Jainarayan Radhakrishnan, Antons Rebguns, Bhavesh Shrestha, Zhexuan Song, Ethan Trewhitt, Huzaifa Zafar, Chongjie Zhang, Daniel D. Corkill, Gerald DeJong, Thomas G. Dietterich, Subbarao Kambhampati, Victor R. Lesser, Deborah L. McGuinness, Ashwin Ram, Diana F. Spears, Prasad Tadepalli