


default search action
NIPS 1995: Denver, CO, USA
- David S. Touretzky, Michael Mozer, Michael E. Hasselmo:

Advances in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995. MIT Press 1996, ISBN 0-262-20107-0
Cognitive Science
- Joshua B. Tenenbaum:

Learning the Structure of Similarity. 3-9 - Alexandre Pouget, Terrence J. Sejnowski:

A Model of Spatial Representations in Parietal Cortex Explains Hemineglect. 10-16 - Gale Martin:

Human Reading and the Curse of Dimensionality. 17-23 - Mark W. Craven, Jude W. Shavlik:

Extracting Tree-Structured Representations of Trained Networks. 24-30 - René Gourley:

Harmony Networks Do Not Work. 31-37 - Hiroyuki Nakahara, Kenji Doya:

Dynamics of Attention as Near Saddle-Node Bifurcation Behavior. 38-44 - Kevin J. Cherkauer, Jude W. Shavlik:

Rapid Quality Estimation of Neural Network Input Representations. 45-51 - Susan L. McCabe, Michael J. Denham:

A Model of Auditory Streaming. 52-58
Neuroscience
- A. David Redish, David S. Touretzky:

Modeling Interactions of the Rat's Place and Head Direction Systems. 61-67 - Wyeth Bair, Ehud Zohary, Christof Koch:

Correlated Neuronal Response: Time Scales and Mechanisms. 68-74 - Charles F. Stevens, Anthony M. Zador:

Information through a Spiking Neuron. 75-81 - Rasmus S. Petersen, John G. Taylor:

Reorganisation of Somatosensory Cortex after Tactile Training. 82-88 - Olivier J. M. D. Coenen, Terrence J. Sejnowski:

A Dynamical Moedl of Context Dependencies for the Vestibulo-Ocular Reflex. 89-95 - Samuel R. H. Joseph, David J. Willshaw:

The Role of Activity in Synaptic Competition at the Neuromuscular Junction. 96-102 - Charles F. Stevens, Anthony M. Zador:

When is an Integrate-and-fire Neuron like a Poisson Neuron? 103-109 - Christopher L. Fry:

How Perception Guides Production in Birdsong Learning. 110-116 - Amir A. Handzel, Tamar Flash:

The Geometry of Eye Rotations and Listing's Law. 117-123 - Richard Kempter, Wulfram Gerstner, J. Leo van Hemmen, Hermann Wagner:

Temporal coding in the sub-millisecond range: Model of barn owl auditory pathway. 124-130 - Michael E. Hasselmo, Milos Cekic:

Cholinergic suppression of transmission may allow combined associative memory function and self-organization in the neocortex. 131-137 - Andrew G. Barto, James C. Houk:

A Predictive Switching Model of Cerebellar Movement Control. 138-144 - Scott Makeig, Anthony J. Bell, Tzyy-Ping Jung, Terrence J. Sejnowski:

Independent Component Analysis of Electroencephalographic Data. 145-151 - Hugh T. Blair:

Simualtion of a Thalamocortical Circuit for Computing Directional Heading in the Rat. 152-158 - Syozo Yasui, Tetsuo Furukawa, Masahiro Yamada, T. Saito:

Plasticity of Center-Surround Opponent Receptive Fields in Real and Artificial Neural Systems of Vision. 159-165
Theory
- Jonathan Baxter:

Learning Model Bias. 169-175 - Shun-ichi Amari, Noboru Murata, Klaus-Robert Müller, Michael Finke, Howard Hua Yang:

Statistical Theory of Overtraining - Is Cross-Validation Asymptotically Effective? 176-182 - Michael J. Kearns:

A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split. 183-189 - Peter Sollich, Anders Krogh:

Learning with ensembles: How overfitting can be useful. 190-196 - Pascal Koiran, Eduardo D. Sontag:

Neural Networks with Quadratic VC Dimension. 197-203 - Bhaskar DasGupta, Eduardo D. Sontag:

Sample Complexity for Learning Recurrent Perceptron Mappings. 204-210 - Wolfgang Maass:

On the Computational Power of Noisy Spiking Neurons. 211-217 - Siegfried Bös:

A Realizable Learning Task which Exhibits Overfitting. 218-224 - Stefan M. Rüger:

Stable Dynamic Parameter Adaption. 225-231 - Robert R. Snapp, Tong Xu:

Estimating the Bayes Risk from Sample Data. 232-238 - Visakan Kadirkamanathan, Maha Kadirkamanathan:

Recursive Estimation of Dynamic Modular RBF Networks. 239-245 - Vasken Bohossian, Jehoshua Bruck:

On Neural Networks with Minimal Weights. 246-252 - Anthony C. C. Coolen, Stephen Nicholas Laughton, D. Sherrington:

Modern Analytic Techniques to Solve the Dynamics of Recuurent Neural Networks. 253-259 - Yishay Mansour, Sigal Sahar:

Implementation Issues in the Fourier Transform Algorithm. 260-266 - John Shawe-Taylor, Jieyu Zhao:

Generalisation of A Class of Continuous Neural Networks. 267-273 - James W. Howse, Chaouki T. Abdallah, Gregory L. Heileman:

Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks. 274-280 - Michael Robert DeWeese:

Optimization Principles for the Neural Code. 281-287 - Mario Marchand, Saeed Hadjifaradji:

Strong Unimodality and Exact Learning of Constant Depth µ-Perceptron Networks. 288-294 - Kenji Fukumizu:

Active Learning in Multilayer Perceptrons. 295-301 - David Saad, Sara A. Solla:

Dynamics of On-Line Gradient Descent Learning for Multilayer Neural Networks. 302-308 - David P. Helmbold, Jyrki Kivinen, Manfred K. Warmuth:

Worst-case Loss Bounds for Single Neurons. 309-315 - Peter Auer, Mark Herbster, Manfred K. Warmuth:

Exponentially many local minima for single neurons. 316-322 - Ansgar Heinrich Ludolf West, David Saad:

Adaptive Back-Propagation in On-Line Learning of Multilayer Networks. 323-329 - Geoffrey J. Goodhill, Steven Finch, Terrence J. Sejnowski:

Optimizing Cortical Mappings. 330-336 - Anke Meyer-Bäse:

Quadratic-Type Lyapunov Functions for Competitive Neural Networks with Different Time-Scales. 337-343 - Adam Kowalczyk, Jacek Szymanski, Peter L. Bartlett, Robert C. Williamson:

Examples of learning curves from a modified VC-formalism. 344-350 - Steve R. Waterhouse, David J. C. MacKay, Anthony J. Robinson:

Bayesian Methods for Mixtures of Experts. 351-357 - Serguei A. Semenov, Irina B. Shuvalova:

Some results on convergent unlearning algorithm. 358-364 - Robert H. Dodier:

Geometry of Early Stopping in Linear Networks. 365-371 - Xin Wang, Arun K. Jagota, Fernanda Botelho, Max H. Garzon:

Absence of Cycles in Symmetric Neural Networks. 372-378
Algorithms and Architectures
- Yoram Singer:

Adaptive Mixture of Probabilistic Transducers. 381-387 - Yochai Konig, Hervé Bourlard, Nelson Morgan:

REMAP: Recursive Estimation and Maximization of A Posteriori Probabilities - Application to Transition-Based Connectionist Speech Recognition. 388-394 - Yoshua Bengio, Francois Gingras:

Recurrent Neural Networks for Missing or Asynchronous Data. 395-401 - Stephen M. Omohundro:

Family Discovery. 402-408 - Trevor Hastie, Robert Tibshirani:

Discriminant Adaptive Nearest Neighbor Classification and Regression. 409-415 - Marcelo Blatt, Shai Wiseman, Eytan Domany:

Clustering data through an analogy to the Potts model. 416-422 - Atsushi Sato, Keiji Yamada:

Generalized Learning Vector Quantization. 423-429 - Ari Juels, Martin Wattenberg:

Stochastic Hillclimbing as a Baseline Mathod for Evaluating Genetic Algorithms. 430-436 - Lucas C. Parra:

Symplectic Nonlinear Component Analysis. 437-443 - Lei Xu:

A Unified Learning Scheme: Bayesian-Kullback Ying-Yang Machines. 444-450 - Pierre Baldi, Kurt Hornik:

Universal Approximnation and Learning of Trajectories Using Oscillators. 451-457 - Lizhong Wu, John E. Moody:

A Smoothing Regularizer for Recurrent Neural Networks. 458-464 - Christopher M. Bishop, Markus Svensén, Christopher K. I. Williams:

EM Optimization of Latent-Variables Density Models. 465-471 - Zoubin Ghahramani, Michael I. Jordan:

Factorial Hidden Markov Models. 472-478 - Harris Drucker, Corinna Cortes:

Boosting Decision Trees. 479-485 - Lawrence K. Saul, Michael I. Jordan:

Exploiting Tractable Substructures in Intractable Networks. 486-492 - Salah El Hihi, Yoshua Bengio:

Hierarchical Recurrent Neural Networks for Long-Term Dependencies. 493-499 - Reimar Hofmann, Volker Tresp:

Discovering Structure in Continuous Variables Using Bayesian Networks. 500-506 - Geoffrey E. Hinton, Michael Revow:

Using Pairs of Data-Points to Define Splits for Decision Trees. 507-513 - Christopher K. I. Williams, Carl Edward Rasmussen:

Gaussian Processes for Regression. 514-520 - Morten With Pedersen, Lars Kai Hansen

, Jan Larsen:
Pruning with generalization based weight saliencies: gamma-OBD, gamma-OBS. 521-527 - Tommi S. Jaakkola, Lawrence K. Saul, Michael I. Jordan:

Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks. 528-534 - David W. Opitz, Jude W. Shavlik:

Generating Accurate and Diverse Members of a Neural-Network Ensemble. 535-541 - Dirk Ormoneit, Volker Tresp:

Improved Gaussian Mixture Density Estimates Using Bayesian Penalty Terms and Network Averaging. 542-548 - Thomas P. Rebotier, Jeffrey L. Elman:

Explorations with the Dynamic Wave Model. 549-555 - Gary William Flake:

The Capacity of a Bump. 556-562 - Nicol N. Schraudolph, Terrence J. Sejnowski:

Tempering Backpropagation Networks: Not All Weights are Created Equal. 563-569 - Jörg A. Walter, Helge J. Ritter:

Investment Learning with Hierarchical PSOMs. 570-576 - Tsungnan Lin, Bill G. Horne, Peter Tiño, C. Lee Giles

:
Learning long-term dependencies is not as difficult with NARX networks. 577-583 - Steve R. Waterhouse, Anthony J. Robinson:

Constructive Algorithms for Hierarchical Mixtures of Experts. 584-590 - David J. Miller, Ajit V. Rao, Kenneth Rose, Allen Gersho:

An Information-theoretic Learning Algorithm for Neural Network Classification. 591-597 - Carl Edward Rasmussen:

A Practical Monte Carlo Implementation of Bayesian Learning. 598-604 - Stefan Schaal, Christopher G. Atkeson:

From Isolation to Cooperation: An Alternative View of a System of Experts. 605-611 - Stefan C. Kremer:

Finite State Automata that Recurrent Cascade-Correlation Cannot Represent. 612-618 - John Wawrzynek, Krste Asanovic, Brian Kingsbury, James Beck, David Johnson, Nelson Morgan:

SPERT-II: A Vector Microprocessor System and its Application to Large Problems in Backpropagation Training. 619-625 - Steven Gold, Anand Rangarajan:

Softassign versus Softmax: Benchmarks in Combinatorial Optimization. 626-632 - Dimitris I. Tsioutsias, Eric Mjolsness:

A Mulitscale Attentional Framework for Relaxation Neural Networks. 633-639 - Sebastian Thrun:

Is Learning The n-th Thing Any Easier Than Learning The First? 640-646 - Geoffrey G. Towell:

Using Unlabeled Data for Supervised Learning. 647-653 - Jeffrey C. Jackson, Mark Craven:

Learning Sparse Perceptrons. 654-660 - Brendan J. Frey, Geoffrey E. Hinton, Peter Dayan:

Does the Wake-sleep Algorithm Produce Good Density Estimators? 661-667
Implementations
- André van Schaik, Eric Fragnière, Eric A. Vittoz:

Improved Silicon Cochlea using Compatible Lateral Bipolar Transistors. 671-677 - Shih-Chii Liu, Kwabena Boahen:

Adaptive Retina with Center-Surround Receptive Field. 678-684 - Tadashi Shibata, Tsutomu Nakai, Tatsuo Morimoto, Ryu Kaihara, Takeo Yamashita, Tadahiro Ohmi:

Neuron-MOS Temporal Winner Search Hardware for Fully-Parallel Data Processing. 685-691 - R. Timothy Edwards, Gert Cauwenberghs:

Analog VLSI Processor Implementing the Continuous Wavelet Transform. 692-698 - John Lazzaro, John Wawrzynek:

Silicon Models for Auditory Scene Analysis. 699-705 - Ralph Etienne-Cummings, Jan Van der Spiegel, Paul Mueller:

VLSI Model of Primate Visual Smooth Pursuit. 706-712 - Steven Rehfuss, Dan W. Hammerstrom:

Model Matching and SFMD Computation. 713-719 - Giacomo Indiveri, Jörg Kramer, Christof Koch:

Parallel analog VLSI architectures for computation of heading direction and time-to-contact. 720-726
Speech and Signal Processing
- Leslie S. Smith:

Onset-based Sound Segmentation. 729-735 - Yoonsuck Choe, Joseph Sirosh, Risto Miikkulainen:

Laterally Interconnected Self-Organizing Maps in Hand-Written Digit Recognition. 736-742 - Andrew W. Senior, Anthony J. Robinson:

Forward-backward retraining of recurrent neural networks. 743-749 - Dan J. Kershaw, Anthony J. Robinson, Mike Hochberg:

Context-Dependent Classes in a Hybrid Recurrent Network-HMM Speech Recognition System. 750-756 - Shun-ichi Amari, Andrzej Cichocki, Howard Hua Yang:

A New Learning Algorithm for Blind Signal Separation. 757-763 - Bernard Lemarié, Michel Gilloux, Manuel Leroux:

Handwritten Word Recognition using Contextual Hybrid Radial Basis Function Network/Hidden Markov Models. 764-770 - Ethem Alpaydin:

Selective Attention for Handwritten Digit Recognition. 771-777 - Alexander Shustorovich, Christopher W. Thrasher:

Kodak ImagelinkTM OCR Alphanumeric Handprint Module. 778-784 - Steve Lawrence, Ah Chung Tsoi, Andrew D. Back:

The Gamma MLP for Speech Phoneme Recognition. 785-791
Vision
- Suguna Pappu, Steven Gold, Anand Rangarajan:

A Framework for Non-rigid Matching and Correspondence. 795-801 - Ernst Niebur, Christof Koch:

Control of Selective Visual Attention: Modeling the Where Pathway. 802-808 - William R. Softky:

Unsupervised Pixel-prediction. 809-815 - Jonathan A. Marshall, Richard K. Alley, Robert S. Hubbard:

Learning to Predict Visibility and Invisibility from Occlusion Events. 816-822 - Marian Stewart Bartlett, Paul A. Viola, Terrence J. Sejnowski, Beatrice A. Golomb, Jan Larsen, Joseph C. Hager, Paul Ekman:

Classifying Facial Action. 823-829 - Rajesh P. N. Rao, Gregory J. Zelinsky, Mary M. Hayhoe, Dana H. Ballard:

Modeling Saccadic Targeting in Visual Search. 830-836 - Alexander Grunewald:

A model of transparent motion and non-transparent motion aftereffects. 837-843 - Luiz Pessoa, William D. Ross:

A Neural Network Model of 3-D Lightness Perception. 844-850 - Paul A. Viola, Nicol N. Schraudolph, Terrence J. Sejnowski:

Empirical Entropy Manipulation for Real-World Problems. 851-857 - Trevor Darrell, Alex Pentland:

Active Gesture Recognition using Learned Visual Attention. 858-864 - Bartlett W. Mel:

SEEMORE: A View-Based Approach to 3-D Object Recognition Using Multiple Visual Cues. 865-871
Applications
- Henry A. Rowley, Shumeet Baluja, Takeo Kanade:

Human Face Detection in Visual Scenes. 875-881 - Bambang Parmanto, Paul W. Munro, Howard R. Doyle:

Improving Committee Diagnosis with Resampling Techniques. 882-888 - Yoky Matsuoka:

Primitive Manipulation Learning with Connectionism. 889-895 - Peter Stone, Manuela M. Veloso:

Beating a Defender in Robotic Soccer: Memory-Based Learning of a Continuous Function. 896-902 - Enno Littmann, Andrea Drees, Helge J. Ritter:

Visual gesture-based robot guidance with a modular neural system. 903-909 - Marwan A. Jabri, Raymond J. Wang:

A Novel Channel Selection System in Cochlear Implants Using Artificial Neural Network. 910-916 - Anders Krogh, Søren Kamaric Riis:

Prediction of Beta Sheets in Proteins. 917-923 - Thomas Petsche, Angelo Marcantonio, Christian Darken, Stephen Jose Hanson, Gary M. Kuhn, N. Iwan Santoso:

A Neural Network Autoassociator for Induction Motor Failure Prediction. 924-930 - Scott Makeig, Tzyy-Ping Jung, Terrence J. Sejnowski:

Using Feedforward Neural Networks to Monitor Alertness from Changes in EEG Correlation and Coherence. 931-937 - John C. Platt, Timothy P. Allen:

A Neural Network Classifier for the I100 OCR Chip. 938-944 - Samuel P. M. Choi, Dit-Yan Yeung:

Predictive Q-Routing: A Memory-based Reinforcement Learning Approach to Adaptive Traffic Control. 945-951 - Ralph Neuneier:

Optimal Asset Allocation using Adaptive Dynamic Programming. 952-958 - Rich Caruana, Shumeet Baluja, Tom M. Mitchell:

Using the Future to Sort Out the Present: Rankprop and Multitask Learning for Medical Risk Evaluation. 959-965 - Asriel E. Levin:

Stock Selection via Nonlinear Multi-Factor Models. 966-972 - Peter K. Campbell, Michael Dale, Herman L. Ferrá, Adam Kowalczyk:

Experiments with Neural Networks for Real Time Implementation of Control. 973-979 - Alistair Ferguson, Theo Sabisch, Paul Kaye, Laurence C. Dixon, Hamid Bolouri:

High-Speed Airborne Particle Monitoring Using Artificial Neural Networks. 980-986
Control
- Jun Tani, Naohiro Fukumura:

A Dynamical Systems Approach for a Learnable Autonomous Robot. 989-995 - Jefferson A. Coelho Jr., Ramesh K. Sitaraman, Roderic A. Grupen:

Parallel Optimization of Motion Controllers via Policy Iteration. 996-1002 - Marina Meila, Michael I. Jordan:

Learning Fine Motion by Markov Mixtures of Experts. 1003-1009 - Ssu-Hsin Yu, Anuradha M. Annaswamy:

Neural Control for Nonlinear Dynamic Systems. 1010-1016 - Robert H. Crites, Andrew G. Barto:

Improving Elevator Performance Using Reinforcement Learning. 1017-1023 - Wei Zhang, Thomas G. Dietterich:

High-Performance Job-Shop Scheduling With A Time-Delay TD-lambda Network. 1024-1030 - Geoffrey Bruce Jackson, Alan F. Murray:

Competence Acquisition in an Autonomous Mobile Robot using Hardware Neural Techniques. 1031-1037 - Richard S. Sutton:

Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding. 1038-1044 - Benjamin Van Roy, John N. Tsitsiklis:

Stable LInear Approximations to Dynamic Programming for Stochastic Control Problems with Local Transitions. 1045-1051 - Geoffrey J. Gordon:

Stable Fitted Reinforcement Learning. 1052-1058 - Peter Dayan, Satinder Singh:

Improving Policies without Measuring Merits. 1059-1065 - Andrew W. Moore, Jeff G. Schneider:

Memory-based Stochastic Optimization. 1066-1072 - Kenji Doya:

Temporal Difference Learning in Continuous Time and Space. 1073-1079 - Philip N. Sabes, Michael I. Jordan:

Reinforcement Learning by Probability Matching. 1080-1086

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














