


default search action
18th COLT 2005: Bertinoro, Italy
- Peter Auer, Ron Meir:

Learning Theory, 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005, Proceedings. Lecture Notes in Computer Science 3559, Springer 2005, ISBN 3-540-26556-2
Learning to Rank
- Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis:

Ranking and Scoring Using Empirical Risk Minimization. 1-15 - Shivani Agarwal, Dan Roth:

Learnability of Bipartite Ranking Functions. 16-31 - Shivani Agarwal, Partha Niyogi:

Stability and Generalization of Bipartite Ranking Algorithms. 32-47 - Koby Crammer, Yoram Singer:

Loss Bounds for Online Category Ranking. 48-62
Boosting
- Cynthia Rudin, Corinna Cortes, Mehryar Mohri, Robert E. Schapire:

Margin-Based Ranking Meets Boosting in the Middle. 63-78 - Philip M. Long, Rocco A. Servedio:

Martingale Boosting. 79-94 - Boaz Leskes:

The Value of Agreement, a New Boosting Algorithm. 95-110
Unlabeled Data, Multiclass Classification
- Maria-Florina Balcan, Avrim Blum:

A PAC-Style Model for Learning from Labeled and Unlabeled Data. 111-126 - Matti Kääriäinen:

Generalization Error Bounds Using Unlabeled Data. 127-142 - Ambuj Tewari, Peter L. Bartlett

:
On the Consistency of Multiclass Classification Methods. 143-157 - John Langford, Alina Beygelzimer:

Sensitive Error Correcting Output Codes. 158-172
Online Learning I
- Tong Zhang:

Data Dependent Concentration Bounds for Sequential Prediction Algorithms. 173-187 - Yuri Kalnishkan, Michael V. Vyugin:

The Weak Aggregating Algorithm and Weak Mixability. 188-203 - András György, Tamás Linder, Gábor Lugosi:

Tracking the Best of Many Experts. 204-216 - Nicolò Cesa-Bianchi, Yishay Mansour, Gilles Stoltz:

Improved Second-Order Bounds for Prediction with Expert Advice. 217-232
Online Learning II
- Baruch Awerbuch, Robert D. Kleinberg:

Competitive Collaborative Learning. 233-248 - Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni

:
Analysis of Perceptron-Based Active Learning. 249-263 - Shai Shalev-Shwartz, Yoram Singer:

A New Perspective on an Old Perceptron Algorithm. 264-278
Support Vector Machines
- Ingo Steinwart

, Clint Scovel:
Fast Rates for Support Vector Machines. 279-294 - Vladimir Koltchinskii, Olexandra Beznosova:

Exponential Convergence Rates in Classification. 295-307 - Nikolas List, Hans Ulrich Simon

:
General Polynomial Time Decomposition Algorithms. 308-322
Kernels and Embeddings
- Petros Drineas, Michael W. Mahoney:

Approximating a Gram Matrix for Improved Kernel-Based Learning. 323-337 - Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:

Learning Convex Combinations of Continuously Parameterized Basic Kernels. 338-352 - Shahar Mendelson:

On the Limitations of Embedding Methods. 353-365 - Manfred K. Warmuth, S. V. N. Vishwanathan:

Leaving the Span. 366-381
Inductive Inference
- Lorenzo Carlucci, Sanjay Jain, Efim B. Kinber, Frank Stephan:

Variations on U-Shaped Learning. 382-397 - Wei Luo

, Oliver Schulte:
Mind Change Efficient Learning. 398-412 - Eric Martin, Arun Sharma:

On a Syntactic Characterization of Classification with a Mind Change Bound. 413-428
Unsupervised Learning
- Shahar Mendelson, Alain Pajor:

Ellipsoid Approximation Using Random Vectors. 429-443 - Ravindran Kannan, Hadi Salmasian, Santosh S. Vempala:

The Spectral Method for General Mixture Models. 444-457 - Dimitris Achlioptas, Frank McSherry:

On Spectral Learning of Mixtures of Distributions. 458-469 - Matthias Hein, Jean-Yves Audibert, Ulrike von Luxburg:

From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians. 470-485 - Mikhail Belkin, Partha Niyogi:

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods. 486-500
Generalization Bounds
- Polina Golland, Feng Liang, Sayan Mukherjee, Dmitry Panchenko:

Permutation Tests for Classification. 501-515 - Tong Zhang:

Localized Upper and Lower Bounds for Some Estimation Problems. 516-530 - András Antos:

Improved Minimax Bounds on the Test and Training Distortion of Empirically Designed Vector Quantizers. 531-544 - Nathan Srebro, Adi Shraibman:

Rank, Trace-Norm and Max-Norm. 545-560
Query Learning, Attribute Efficiency, Compression Schemes
- Dana Angluin, Jiang Chen:

Learning a Hidden Hypergraph. 561-575 - Vitaly Feldman:

On Attribute Efficient and Non-adaptive Learning of Parities and DNF Expressions. 576-590 - Dima Kuzmin, Manfred K. Warmuth:

Unlabeled Compression Schemes for Maximum Classes, . 591-605
Economics and Game Theory
- Sham M. Kakade, Michael J. Kearns:

Trading in Markovian Price Models. 606-620 - Avrim Blum, Yishay Mansour:

From External to Internal Regret. 621-636
Separation Results for Learning Models
- Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan:

Separating Models of Learning from Correlated and Uncorrelated Data. 637-651 - Peter Grünwald, Steven de Rooij:

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes. 652-667 - Frank J. Balbach:

Teaching Classes with High Teaching Dimension Using Few Examples. 668-683
Open Problems
- Dima Kuzmin, Manfred K. Warmuth:

Optimum Follow the Leader Algorithm. 684-686 - John Langford:

The Cross Validation Problem. 687-688 - Wei Luo

:
Compute Inclusion Depth of a Pattern. 689-690

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














