


default search action
24. COLT 2011: Budapest, Hungary
- Sham M. Kakade, Ulrike von Luxburg:

COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11, 2011, Budapest, Hungary. JMLR Proceedings 19, JMLR.org 2011 - Sham M. Kakade, Ulrike von Luxburg:

Preface. COLT 2011 - Yasin Abbasi-Yadkori, Csaba Szepesvári:

Regret Bounds for the Adaptive Control of Linear Quadratic Systems. 1-26 - Jacob D. Abernethy, Peter L. Bartlett, Elad Hazan:

Blackwell Approachability and No-Regret Learning are Equivalent. 27-46 - Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan:

Competitive Closeness Testing. 47-68 - Alekh Agarwal, John C. Duchi, Peter L. Bartlett, Clément Levrard:

Oracle inequalities for computationally budgeted model selection. 69-86 - Kareem Amin, Michael J. Kearns, Umar Syed:

Bandits, Query Learning, and the Haystack Dimension. 87-106 - Jean-Yves Audibert, Sébastien Bubeck, Gábor Lugosi:

Minimax Policies for Combinatorial Prediction Games. 107-132 - Gábor Bartók, Dávid Pál, Csaba Szepesvári:

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments. 133-154 - Kamalika Chaudhuri, Daniel J. Hsu:

Sample Complexity Bounds for Differentially Private Learning. 155-186 - Laëtitia Comminges, Arnak S. Dalalyan:

Tight conditions for consistent variable selection in high dimensional nonparametric regression. 187-206 - Amit Daniely, Sivan Sabato, Shai Ben-David, Shai Shalev-Shwartz:

Multiclass Learnability and the ERM principle. 207-232 - Tim van Erven, Mark D. Reid, Robert C. Williamson:

Mixability is Bayes Risk Curvature Relative to Log Loss. 233-252 - Vitaly Feldman:

Distribution-Independent Evolvability of Linear Threshold Functions. 253-272 - Vitaly Feldman, Homin K. Lee, Rocco A. Servedio:

Lower Bounds and Hardness Amplification for Learning Shallow Monotone Formulas. 273-292 - Dean P. Foster, Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari:

Complexity-Based Approach to Calibration with Checking Rules. 293-314 - Rina Foygel, Nathan Srebro:

Concentration-Based Guarantees for Low-Rank Matrix Reconstruction. 315-340 - Wei Gao, Zhi-Hua Zhou:

On the Consistency of Multi-Label Learning. 341-358 - Aurélien Garivier, Olivier Cappé:

The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond. 359-376 - Sébastien Gerchinovitz:

Sparsity Regret Bounds for Individual Sequences in Online Linear Regression. 377-396 - Peter Grünwald, John Smith Jones, Jane de Winter, Élouise Smith:

Safe Learning: bridging the gap between Bayes, MDL and statistical learning theory via empirical convexity. 397-420 - Elad Hazan, Satyen Kale:

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. 421-436 - Michael Kallweit, Hans Ulrich Simon:

A Close Look to Margin Complexity and Related Parameters. 437-456 - Wojciech Kotlowski, Peter Grünwald:

Maximum Likelihood vs. Sequential Normalized Maximum Likelihood in On-line Density Estimation. 457-476 - Ping Li, Cun-Hui Zhang:

A New Algorithm for Compressed Counting with Applications in Shannon Entropy Estimation in Dynamic Data. 477-496 - Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz:

A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences. 497-514 - Shie Mannor, Vianney Perchet, Gilles Stoltz:

Robust approachability and regret minimization in games with partial monitoring. 515-536 - Indraneel Mukherjee, Cynthia Rudin, Robert E. Schapire:

The Rate of Convergence of Adaboost. 537-558 - Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari:

Online Learning: Beyond Regret. 559-594 - Philippe Rigollet, Xin Tong:

Neyman-Pearson classification under a strict constraint. 595-614 - Cynthia Rudin, Benjamin Letham, Ansaf Salleb-Aouissi, Eugene Kogan, David Madigan:

Sequential Event Prediction with Association Rules. 615-634 - Joseph Salmon, Arnak S. Dalalyan:

Optimal aggregation of affine estimators. 635-660 - Ohad Shamir, Shai Shalev-Shwartz:

Collaborative Filtering with the Trace Norm: Learning, Bounding, and Transducing. 661-678 - Aleksandrs Slivkins:

Contextual Bandits with Similarity Information. 679-702 - Ingo Steinwart:

Adaptive Density Level Set Clustering. 703-738 - István Szita, Csaba Szepesvári:

Agnostic KWIK learning and efficient approximate reinforcement learning. 739-772 - Daniel Vainsencher, Shie Mannor, Alfred M. Bruckstein:

The Sample Complexity of Dictionary Learning. 773-788 - Liu Yang, Steve Hanneke, Jaime G. Carbonell:

Identifiability of Priors from Bounded Sample Sizes with Applications to Transfer Learning. 789-806
Open problems
- Jacob D. Abernethy, Shie Mannor:

Does an Efficient Calibrated Forecasting Strategy Exist? 809-812 - Peter D. Grünwald, Wojciech Kotlowski:

Bounds on Individual Risk for Log-loss Predictors. 813-816 - Elad Hazan, Satyen Kale:

A simple multi-armed bandit algorithm with optimal variation-bounded regret. 817-820 - Wojciech Kotlowski, Manfred K. Warmuth:

Minimax Algorithm for Learning Rotations. 821-824 - Loizos Michael:

Missing Information Impediments to Learnability. 825-828 - Aleksandrs Slivkins:

Monotone multi-armed bandit allocations. 829-834

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














