default search action
Manfred K. Warmuth
Person information
- affiliation: University of California, Santa Cruz, USA
SPARQL queries
🛈 Please note that only 54% of the records listed on this page have a DOI. Therefore, DOI-based queries can only provide partial results.
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c133]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
Optimal Transport with Tempered Exponential Measures. AAAI 2024: 10838-10846 - [c132]Jacob D. Abernethy, Alekh Agarwal, Teodor Vanislavov Marinov, Manfred K. Warmuth:
A Mechanism for Sample-Efficient In-Context Learning for Sparse Retrieval Tasks. ALT 2024: 3-46 - [i41]Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth:
Tempered Calculus for ML: Application to Hyperbolic Model Embedding. CoRR abs/2402.04163 (2024) - [i40]Manfred K. Warmuth, Wojciech Kotlowski, Matt Jones, Ehsan Amid:
Noise misleads rotation invariant algorithms on sparse targets. CoRR abs/2403.02697 (2024) - 2023
- [j68]Ehsan Amid, Rohan Anil, Christopher Fifty, Manfred K. Warmuth:
Layerwise Bregman Representation Learning of Neural Networks with Applications to Knowledge Distillation. Trans. Mach. Learn. Res. 2023 (2023) - [c131]Ehsan Amid, Richard Nock, Manfred K. Warmuth:
Clustering above Exponential Families with Tempered Exponential Measures. AISTATS 2023: 2994-3017 - [c130]Manfred K. Warmuth, Ehsan Amid:
Open Problem: Learning sparse linear concepts by priming the features. COLT 2023: 5937-5942 - [c129]Richard Nock, Ehsan Amid, Manfred K. Warmuth:
Boosting with Tempered Exponential Measures. NeurIPS 2023 - [i39]Jacob D. Abernethy, Alekh Agarwal, Teodor V. Marinov, Manfred K. Warmuth:
A Mechanism for Sample-Efficient In-Context Learning for Sparse Retrieval Tasks. CoRR abs/2305.17040 (2023) - [i38]Richard Nock, Ehsan Amid, Manfred K. Warmuth:
Boosting with Tempered Exponential Measures. CoRR abs/2306.05487 (2023) - [i37]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
Optimal Transport with Tempered Exponential Measures. CoRR abs/2309.04015 (2023) - [i36]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
The Tempered Hilbert Simplex Distance and Its Application To Non-linear Embeddings of TEMs. CoRR abs/2311.13459 (2023) - 2022
- [j67]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled sample compression schemes and corner peelings for ample and maximum classes. J. Comput. Syst. Sci. 127: 1-28 (2022) - [j66]Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:
Unbiased estimators for random design regression. J. Mach. Learn. Res. 23: 167:1-167:46 (2022) - [c128]Ehsan Amid, Rohan Anil, Manfred K. Warmuth:
LocoProp: Enhancing BackProp via Local Loss Optimization. AISTATS 2022: 9626-9642 - [i35]Ehsan Amid, Rohan Anil, Christopher Fifty, Manfred K. Warmuth:
Step-size Adaptation Using Exponentiated Gradient Updates. CoRR abs/2202.00145 (2022) - [i34]Ehsan Amid, Rohan Anil, Wojciech Kotlowski, Manfred K. Warmuth:
Learning from Randomly Initialized Neural Network Features. CoRR abs/2202.06438 (2022) - [i33]Ehsan Amid, Rohan Anil, Christopher Fifty, Manfred K. Warmuth:
Layerwise Bregman Representation Learning with Applications to Knowledge Distillation. CoRR abs/2209.07080 (2022) - [i32]Ehsan Amid, Richard Nock, Manfred K. Warmuth:
Clustering above Exponential Families with Tempered Exponential Measures. CoRR abs/2211.02765 (2022) - 2021
- [c127]Manfred K. Warmuth, Wojciech Kotlowski, Ehsan Amid:
A case where a spindly two-layer linear network decisively outperforms any neural network with a fully connected input layer. ALT 2021: 1214-1236 - [i31]Negin Majidi, Ehsan Amid, Hossein Talebi, Manfred K. Warmuth:
Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond. CoRR abs/2104.01493 (2021) - [i30]Ehsan Amid, Rohan Anil, Manfred K. Warmuth:
LocoProp: Enhancing BackProp via Local Loss Optimization. CoRR abs/2106.06199 (2021) - 2020
- [c126]Ehsan Amid, Manfred K. Warmuth:
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint. AAAI 2020: 3179-3186 - [c125]Ehsan Amid, Manfred K. Warmuth:
Winnowing with Gradient Descent. COLT 2020: 163-182 - [c124]Hossein Talebi, Ehsan Amid, Peyman Milanfar, Manfred K. Warmuth:
Rank-Smoothed Pairwise Learning In Perceptual Quality Assessment. ICIP 2020: 3413-3417 - [c123]Ehsan Amid, Manfred K. Warmuth:
Reparameterizing Mirror Descent as Gradient Descent. NeurIPS 2020 - [c122]Ehsan Amid, Manfred K. Warmuth:
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models. UAI 2020: 81-90 - [i29]Ehsan Amid, Manfred K. Warmuth:
Interpolating Between Gradient Descent and Exponentiated Gradient Using Reparameterized Gradient Descent. CoRR abs/2002.10487 (2020) - [i28]Manfred K. Warmuth, Wojciech Kotlowski, Ehsan Amid:
A case where a spindly two-layer linear network whips any neural network with a fully connected input layer. CoRR abs/2010.08625 (2020) - [i27]Hossein Talebi, Ehsan Amid, Peyman Milanfar, Manfred K. Warmuth:
Rank-smoothed Pairwise Learning In Perceptual Quality Assessment. CoRR abs/2011.10893 (2020)
2010 – 2019
- 2019
- [j65]Atsuyoshi Nakamura, David P. Helmbold, Manfred K. Warmuth:
Mistake bounds on the noise-free multi-armed bandit game. Inf. Comput. 269 (2019) - [c121]Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:
Correcting the bias in least squares regression with volume-rescaled sampling. AISTATS 2019: 944-953 - [c120]Ehsan Amid, Manfred K. Warmuth, Sriram Srinivasan:
Two-temperature logistic regression based on the Tsallis divergence. AISTATS 2019: 2388-2396 - [c119]Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Holakou Rahmanian, Manfred K. Warmuth:
Online Non-Additive Path Learning under Full and Partial Information. ALT 2019: 274-299 - [c118]Michal Derezinski, Kenneth L. Clarkson, Michael W. Mahoney, Manfred K. Warmuth:
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. COLT 2019: 1050-1069 - [c117]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes. ICALP 2019: 34:1-34:15 - [c116]Michal Kempka, Wojciech Kotlowski, Manfred K. Warmuth:
Adaptive Scale-Invariant Online Algorithms for Learning Linear Models. ICML 2019: 3321-3330 - [c115]Ehsan Amid, Manfred K. Warmuth, Rohan Anil, Tomer Koren:
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences. NeurIPS 2019: 14987-14996 - [i26]Michal Derezinski, Kenneth L. Clarkson, Michael W. Mahoney, Manfred K. Warmuth:
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. CoRR abs/1902.00995 (2019) - [i25]Ehsan Amid, Manfred K. Warmuth:
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models. CoRR abs/1902.04107 (2019) - [i24]Michal Kempka, Wojciech Kotlowski, Manfred K. Warmuth:
Adaptive scale-invariant online algorithms for learning linear models. CoRR abs/1902.07528 (2019) - [i23]Ehsan Amid, Manfred K. Warmuth, Rohan Anil, Tomer Koren:
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences. CoRR abs/1906.03361 (2019) - [i22]Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:
Unbiased estimators for random design regression. CoRR abs/1907.03411 (2019) - [i21]Ehsan Amid, Manfred K. Warmuth:
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint. CoRR abs/1909.04803 (2019) - [i20]Ehsan Amid, Manfred K. Warmuth:
TriMap: Large-scale Dimensionality Reduction Using Triplets. CoRR abs/1910.00204 (2019) - 2018
- [j64]Michal Derezinski, Manfred K. Warmuth:
Reverse Iterative Volume Sampling for Linear Regression. J. Mach. Learn. Res. 19: 23:1-23:39 (2018) - [c114]Michal Derezinski, Manfred K. Warmuth:
Subsampling for Ridge Regression via Regularized Volume Sampling. AISTATS 2018: 716-725 - [c113]Michal Derezinski, Manfred K. Warmuth, Daniel J. Hsu:
Leveraged volume sampling for linear regression. NeurIPS 2018: 2510-2519 - [i19]Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:
Tail bounds for volume sampled linear regression. CoRR abs/1802.06749 (2018) - [i18]Ehsan Amid, Manfred K. Warmuth:
A more globally accurate dimensionality reduction method using triplets. CoRR abs/1803.00854 (2018) - [i17]Sanjay Krishna Gouda, Salil Kanetkar, David Harrison, Manfred K. Warmuth:
Speech Recognition: Keyword Spotting Through Image Recognition. CoRR abs/1803.03759 (2018) - [i16]Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Holakou Rahmanian, Manfred K. Warmuth:
Online Non-Additive Path Learning under Full and Partial Information. CoRR abs/1804.06518 (2018) - [i15]Michal Derezinski, Manfred K. Warmuth:
Reverse iterative volume sampling for linear regression. CoRR abs/1806.01969 (2018) - [i14]Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:
Correcting the bias in least squares regression with volume-rescaled sampling. CoRR abs/1810.02453 (2018) - [i13]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled sample compression schemes and corner peelings for ample and maximum classes. CoRR abs/1812.02099 (2018) - 2017
- [c112]Holakou Rahmanian, Manfred K. Warmuth:
Online Dynamic Programming. NIPS 2017: 2827-2837 - [c111]Michal Derezinski, Manfred K. Warmuth:
Unbiased estimates for linear regression via volume sampling. NIPS 2017: 3084-3093 - [i12]Michal Derezinski, Manfred K. Warmuth:
Unbiased estimates for linear regression via volume sampling. CoRR abs/1705.06908 (2017) - [i11]Ehsan Amid, Manfred K. Warmuth:
Two-temperature logistic regression based on the Tsallis divergence. CoRR abs/1705.07210 (2017) - [i10]Holakou Rahmanian, S. V. N. Vishwanathan, Manfred K. Warmuth:
Online Dynamic Programming. CoRR abs/1706.00834 (2017) - [i9]Michal Derezinski, Manfred K. Warmuth:
Subsampling for Ridge Regression via Regularized Volume Sampling. CoRR abs/1710.05110 (2017) - 2016
- [j63]Jiazhong Nie, Wojciech Kotlowski, Manfred K. Warmuth:
Online PCA with Optimal Regret. J. Mach. Learn. Res. 17: 173:1-173:49 (2016) - [j62]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
Learning rotations with little regret. Mach. Learn. 104(1): 129-148 (2016) - [c110]Shay Moran, Manfred K. Warmuth:
Labeled Compression Schemes for Extremal Classes. ALT 2016: 34-49 - [c109]Atsuyoshi Nakamura, David P. Helmbold, Manfred K. Warmuth:
Noise Free Multi-armed Bandit Game. LATA 2016: 412-423 - [i8]Ehsan Amid, Nikos Vlassis, Manfred K. Warmuth:
t-Exponential Triplet Embedding. CoRR abs/1611.09957 (2016) - 2015
- [c108]Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred K. Warmuth:
Minimax Fixed-Design Linear Regression. COLT 2015: 226-239 - [c107]Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Manfred K. Warmuth:
On-Line Learning Algorithms for Path Experts with Non-Additive Losses. COLT 2015: 424-447 - [c106]Wouter M. Koolen, Manfred K. Warmuth, Dmitry Adamskiy:
Open Problem: Online Sabotaged Shortest Path. COLT 2015: 1764-1766 - [i7]Shay Moran, Manfred K. Warmuth:
Labeled compression schemes for extremal classes. CoRR abs/1506.00165 (2015) - [i6]Wojciech Kotlowski, Manfred K. Warmuth:
PCA with Gaussian perturbations. CoRR abs/1506.04855 (2015) - 2014
- [j61]Manfred K. Warmuth, Wouter M. Koolen, David P. Helmbold:
Combining initial segments of lists. Theor. Comput. Sci. 519: 29-45 (2014) - [j60]Manfred K. Warmuth, Wojciech Kotlowski, Shuisheng Zhou:
Kernelization of matrix updates, when and how? Theor. Comput. Sci. 558: 159-178 (2014) - [c105]Manfred K. Warmuth, Wouter M. Koolen:
Open Problem: Shifting Experts on Easy Data. COLT 2014: 1295-1298 - [c104]Michal Derezinski, Manfred K. Warmuth:
The limits of squared Euclidean distance regularization. NIPS 2014: 2807-2815 - [i5]Manfred K. Warmuth, Dima Kuzmin:
A Bayesian Probability Calculus for Density Matrices. CoRR abs/1408.3100 (2014) - 2013
- [c103]Jiazhong Nie, Wojciech Kotlowski, Manfred K. Warmuth:
Online PCA with Optimal Regrets. ALT 2013: 98-112 - [c102]Wouter M. Koolen, Jiazhong Nie, Manfred K. Warmuth:
Learning a set of directions. COLT 2013: 851-866 - [c101]Jiazhong Nie, Manfred K. Warmuth, S. V. N. Vishwanathan, Xinhua Zhang:
Open Problem: Lower bounds for Boosting with Hadamard Matrices. COLT 2013: 1076-1079 - [i4]Katy S. Azoury, Manfred K. Warmuth:
Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions. CoRR abs/1301.6677 (2013) - [i3]Jiazhong Nie, Wojciech Kotlowski, Manfred K. Warmuth:
On-line PCA with Optimal Regrets. CoRR abs/1306.3895 (2013) - 2012
- [j59]Manfred K. Warmuth, Dima Kuzmin:
Online variance minimization. Mach. Learn. 87(1): 1-32 (2012) - [c100]Manfred K. Warmuth, Wojciech Kotlowski, Shuisheng Zhou:
Kernelization of Matrix Updates, When and How? ALT 2012: 350-364 - [c99]Wouter M. Koolen, Dmitry Adamskiy, Manfred K. Warmuth:
Putting Bayes to sleep. NIPS 2012: 135-143 - 2011
- [c98]Manfred K. Warmuth, Wouter M. Koolen, David P. Helmbold:
Combining Initial Segments of Lists. ALT 2011: 219-233 - [c97]Wouter M. Koolen, Wojciech Kotlowski, Manfred K. Warmuth:
Learning Eigenvectors for Free. NIPS 2011: 945-953 - [c96]Wojciech Kotlowski, Manfred K. Warmuth:
Minimax Algorithm for Learning Rotations. COLT 2011: 821-824 - 2010
- [j58]Manfred K. Warmuth, Dima Kuzmin:
Bayesian generalized probability calculus for density matrices. Mach. Learn. 78(1-2): 63-101 (2010) - [c95]Manfred K. Warmuth:
The Blessing and the Curse of the Multiplicative Updates. ALT 2010: 31 - [c94]Wouter M. Koolen, Manfred K. Warmuth, Jyrki Kivinen:
Hedging Structured Concepts. COLT 2010: 93-105 - [c93]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
Learning Rotations with Little Regret. COLT 2010: 144-154 - [c92]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
On-line Variance Minimization in O(n2) per Trial? COLT 2010: 314-315 - [c91]Manfred K. Warmuth:
The Blessing and the Curse of the Multiplicative Updates. Discovery Science 2010: 382 - [c90]Shuisheng Zhou, Manfred K. Warmuth, Yinli Dong, Feng Ye:
New combination coefficients for AdaBoost algorithms. ICNC 2010: 3194-3198 - [c89]Jacob D. Abernethy, Manfred K. Warmuth:
Repeated Games against Budgeted Adversaries. NIPS 2010: 1-9
2000 – 2009
- 2009
- [j57]David P. Helmbold, Manfred K. Warmuth:
Learning Permutations with Exponential Weights. J. Mach. Learn. Res. 10: 1705-1736 (2009) - [c88]Jacob D. Abernethy, Manfred K. Warmuth:
Minimax Games with Bandits. COLT 2009 - [c87]Manfred K. Warmuth, S. V. N. Vishwanathan:
Tutorial summary: Survey of boosting from an optimization perspective. ICML 2009: 15 - 2008
- [c86]Manfred K. Warmuth, Karen A. Glocer, S. V. N. Vishwanathan:
Entropy Regularized LPBoost. ALT 2008: 256-271 - [c85]Jacob D. Abernethy, Manfred K. Warmuth, Joel Yellin:
When Random Play is Optimal Against an Adversary. COLT 2008: 437-446 - [c84]Adam M. Smith, Manfred K. Warmuth:
Learning Rotations. COLT 2008: 517 - 2007
- [j56]Dima Kuzmin, Manfred K. Warmuth:
Unlabeled Compression Schemes for Maximum Classes. J. Mach. Learn. Res. 8: 2047-2081 (2007) - [c83]David P. Helmbold, Manfred K. Warmuth:
Learning Permutations with Exponential Weights. COLT 2007: 469-483 - [c82]Manfred K. Warmuth:
When Is There a Free Matrix Lunch? COLT 2007: 630-632 - [c81]Dima Kuzmin, Manfred K. Warmuth:
Online kernel PCA with entropic matrix updates. ICML 2007: 465-472 - [c80]Manfred K. Warmuth:
Winnowing subspaces. ICML 2007: 999-1006 - [c79]Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch:
Boosting Algorithms for Maximizing the Soft Margin. NIPS 2007: 1585-1592 - 2006
- [j55]Jyrki Kivinen, Manfred K. Warmuth, Babak Hassibi:
The p-norm generalization of the LMS algorithm for adaptive filtering. IEEE Trans. Signal Process. 54(5): 1782-1793 (2006) - [c78]Manfred K. Warmuth, Dima Kuzmin:
Online Variance Minimization. COLT 2006: 514-528 - [c77]Jacob D. Abernethy, John Langford, Manfred K. Warmuth:
Continuous Experts and the Binning Algorithm. COLT 2006: 544-558 - [c76]Manfred K. Warmuth:
Can Entropic Regularization Be Replaced by Squared Euclidean Distance Plus Additional Linear Constraints. COLT 2006: 653-654 - [c75]Manfred K. Warmuth, Jun Liao, Gunnar Rätsch:
Totally corrective boosting algorithms that maximize the margin. ICML 2006: 1001-1008 - [c74]Manfred K. Warmuth, Dima Kuzmin:
Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension. NIPS 2006: 1481-1488 - [c73]Manfred K. Warmuth, Dima Kuzmin:
A Bayesian Probability Calculus for Density Matrices. UAI 2006 - 2005
- [j54]Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth:
Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. J. Mach. Learn. Res. 6: 995-1018 (2005) - [j53]Gunnar Rätsch, Manfred K. Warmuth:
Efficient Margin Maximizing with Boosting. J. Mach. Learn. Res. 6: 2131-2152 (2005) - [c72]Manfred K. Warmuth, S. V. N. Vishwanathan:
Leaving the Span. COLT 2005: 366-381 - [c71]Dima Kuzmin, Manfred K. Warmuth:
Unlabeled Compression Schemes for Maximum Classes, . COLT 2005: 591-605 - [c70]Dima Kuzmin, Manfred K. Warmuth:
Optimum Follow the Leader Algorithm. COLT 2005: 684-686 - [c69]Manfred K. Warmuth:
A Bayes Rule for Density Matrices. NIPS 2005: 1457-1464 - 2004
- [c68]Manfred K. Warmuth:
The Optimal PAC Algorithm. COLT 2004: 641-642 - [c67]Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth:
Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. NIPS 2004: 1425-1432 - 2003
- [j52]Manfred K. Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta, Christian Lemmen:
Active Learning with Support Vector Machines in the Drug Discovery Process. J. Chem. Inf. Comput. Sci. 43(2): 667-673 (2003) - [j51]Eiji Takimoto, Manfred K. Warmuth:
Path Kernels and Multiplicative Updates. J. Mach. Learn. Res. 4: 773-818 (2003) - [j50]Jürgen Forster, Manfred K. Warmuth:
Relative Loss Bounds for Temporal-Difference Learning. Mach. Learn. 51(1): 23-50 (2003)