


default search action
NIPS 2007: Vancouver, British Columbia, Canada
- John C. Platt, Daphne Koller, Yoram Singer, Sam T. Roweis:

Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007. Curran Associates, Inc. 2008 - Misha B. Ahrens, Maneesh Sahani:

Inferring Elapsed Time from Stochastic Neural Processes. 1-8 - András Antos, Rémi Munos, Csaba Szepesvári:

Fitted Q-iteration in continuous action-space MDPs. 9-16 - Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, John Shawe-Taylor:

Variational Inference for Diffusion Processes. 17-24 - Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil, Yiming Ying:

A Spectral Regularization Framework for Multi-Task Structure Learning. 25-32 - Christopher G. Atkeson, Benjamin J. Stephens:

Random Sampling of States in Dynamic Programming. 33-40 - Jean-Yves Audibert:

Progressive mixture rules are deviation suboptimal. 41-48 - Francis R. Bach, Zaïd Harchaoui:

DIFFRAC: a discriminative and flexible framework for clustering. 49-56 - Marco Barreno, Alvaro A. Cárdenas, J. Doug Tygar:

Optimal ROC Curve for a Combination of Classifiers. 57-64 - Peter L. Bartlett, Elad Hazan, Alexander Rakhlin:

Adaptive Online Gradient Descent. 65-72 - Zafer Barutçuoglu, Philip M. Long, Rocco A. Servedio:

One-Pass Boosting. 73-80 - Ulrik R. Beierholm, Konrad P. Körding, Ladan Shams, Wei Ji Ma:

Comparing Bayesian models for multisensory cue combination without mandatory integration. 81-88 - Pietro Berkes

, Richard E. Turner, Maneesh Sahani:
On Sparsity and Overcompleteness in Image Models. 89-96 - Matthias Bethge, Philipp Berens:

Near-Maximum Entropy Models for Binary Neural Representations of Natural Images. 97-104 - Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, Mark Lee:

Incremental Natural Actor-Critic Algorithms. 105-112 - Benjamin Blankertz, Motoaki Kawanabe, Ryota Tomioka, Friederike U. Hohlefeld, Vadim V. Nikulin, Klaus-Robert Müller:

Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing. 113-120 - David M. Blei, Jon D. McAuliffe:

Supervised Topic Models. 121-128 - John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, Jennifer Wortman:

Learning Bounds for Domain Adaptation. 129-136 - Ben Blum, Michael I. Jordan, David E. Kim, Rhiju Das, Philip Bradley, David Baker:

Feature Selection Methods for Improving Protein Structure Prediction with Rosetta. 137-144 - Edwin V. Bonilla, Kian Ming Adam Chai, Christopher K. I. Williams:

Multi-task Gaussian Process Prediction. 153-160 - Léon Bottou, Olivier Bousquet:

The Tradeoffs of Large Scale Learning. 161-168 - Alexandre Bouchard-Côté, Percy Liang, Thomas L. Griffiths, Dan Klein:

A Probabilistic Approach to Language Change. 169-176 - Sabri Boutemedjet, Djemel Ziou, Nizar Bouguila:

Unsupervised Feature Selection for Accurate Recommendation of High-Dimensional Image Data. 177-184 - Joseph K. Bradley, Robert E. Schapire:

FilterBoost: Regression and Classification on Large Datasets. 185-192 - Lars Buesing, Wolfgang Maass:

Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons. 193-200 - Gertjan J. Burghouts, Arnold W. M. Smeulders, Jan-Mark Geusebroek:

The Distribution Family of Similarity Distances. 201-208 - William M. Campbell, Fred S. Richardson:

Discriminative Keyword Selection Using Support Vector Machines. 209-216 - Ben Carterette, Rosie Jones:

Evaluating Search Engines by Modeling the Relationship Between Relevance and Clicks. 217-224 - Gonzalo Carvajal, Waldo Valenzuela, Miguel E. Figueroa:

Subspace-Based Face Recognition in Analog VLSI. 225-232 - Lawrence Cayton, Sanjoy Dasgupta:

A learning framework for nearest neighbor search. 233-240 - Moran Cerf, Jonathan Harel, Wolfgang Einhäuser, Christof Koch:

Predicting human gaze using low-level saliency combined with face detection. 241-248 - Venkat Chandrasekaran, Jason K. Johnson, Alan S. Willsky:

Adaptive Embedded Subgraph Algorithms using Walk-Sum Analysis. 249-256 - Edward Y. Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu, Hang Cui:

Parallelizing Support Vector Machines on Distributed Computers. 257-264 - Nicolas Chapados, Yoshua Bengio:

Augmented Functional Time Series Representation and Forecasting with Gaussian Processes. 265-272 - Anton Chechetka, Carlos Guestrin:

Efficient Principled Learning of Thin Junction Trees. 273-280 - Ke Chen, Shihai Wang:

Regularized Boost for Semi-Supervised Learning. 281-288 - Yuanhao Chen, Long Zhu, Chenxi Lin, Alan L. Yuille, HongJiang Zhang:

Rapid Inference on a Novel AND/OR graph for Object Detection, Segmentation and Parsing. 289-296 - Hai Leong Chieu, Wee Sun Lee, Yee Whye Teh:

Cooled and Relaxed Survey Propagation for MRFs. 297-304 - Andreas Christmann, Ingo Steinwart:

How SVMs can estimate quantiles and the median. 305-312 - Christoforos Christoforou, Paul Sajda, Lucas C. Parra:

Second Order Bilinear Discriminant Analysis for single trial EEG analysis. 313-320 - Claudia Clopath, André Longtin, Wulfram Gerstner:

An online Hebbian learning rule that performs Independent Component Analysis. 321-328 - John P. Cunningham, Byron M. Yu, Krishna V. Shenoy, Maneesh Sahani:

Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes. 329-336 - Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel:

TrueSkill Through Time: Revisiting the History of Chess. 337-344 - Varsha Dani, Thomas P. Hayes, Sham M. Kakade:

The Price of Bandit Information for Online Optimization. 345-352 - Sanjoy Dasgupta, Daniel J. Hsu, Claire Monteleoni:

A general agnostic active learning algorithm. 353-360 - Justin Dauwels, François B. Vialatte, Tomasz M. Rutkowski, Andrzej Cichocki:

Measuring Neural Synchrony by Message Passing. 361-368 - Nathaniel D. Daw, Aaron C. Courville:

The rat as particle filter. 369-376 - Chuong B. Do, Chuan-Sheng Foo, Andrew Y. Ng:

Efficient multiple hyperparameter learning for log-linear models. 377-384 - Douglas Eck, Paul Lamere, Thierry Bertin-Mahieux, Stephen J. Green:

Automatic Generation of Social Tags for Music Recommendation. 385-392 - Dominik Endres, Mike W. Oram, Johannes E. Schindelin, Peter Földiák:

Bayesian binning beats approximate alternatives: estimating peri-stimulus time histograms. 393-400 - Gwenn Englebienne, Timothy F. Cootes, Magnus Rattray:

A probabilistic model for generating realistic lip movements from speech. 401-408 - Eric Brochu, Nando de Freitas, Abhijeet Ghosh:

Active Preference Learning with Discrete Choice Data. 409-416 - Tim van Erven, Peter Grunwald, Steven de Rooij:

Catching Up Faster in Bayesian Model Selection and Model Averaging. 417-424 - Saher Esmeir, Shaul Markovitch:

Anytime Induction of Cost-sensitive Trees. 425-432 - Vittorio Ferrari, Andrew Zisserman:

Learning Visual Attributes. 433-440 - Pierre W. Ferrez, José del R. Millán:

EEG-Based Brain-Computer Interaction: Improved Accuracy by Automatic Single-Trial Error Detection. 441-448 - Brian Fischer:

Optimal models of sound localization by barn owls. 449-456 - Michael C. Frank, Noah D. Goodman, Joshua B. Tenenbaum:

A Bayesian Framework for Cross-Situational Word-Learning. 457-464 - Peter I. Frazier, Angela J. Yu:

Sequential Hypothesis Testing under Stochastic Deadlines. 465-472 - Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, Nakul Verma:

Learning the structure of manifolds using random projections. 473-480 - Charlie Frogner, Avi Pfeffer:

Discovering Weakly-Interacting Factors in a Complex Stochastic Process. 481-488 - Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, Bernhard Schölkopf:

Kernel Measures of Conditional Dependence. 489-496 - Dashan Gao, Vijay Mahadevan, Nuno Vasconcelos:

The discriminant center-surround hypothesis for bottom-up saliency. 497-504 - Pierre Garrigues, Bruno A. Olshausen:

Learning Horizontal Connections in a Sparse Coding Model of Natural Images. 505-512 - Michael Gashler, Dan Ventura, Tony R. Martinez:

Iterative Non-linear Dimensionality Reduction with Manifold Sculpting. 513-520 - Claudio Gentile, Fabio Vitale, Cristian Brotto:

On higher-order perceptron algorithms. 521-528 - Sebastian Gerwinn, Jakob H. Macke, Matthias W. Seeger, Matthias Bethge:

Bayesian Inference for Spiking Neuron Models with a Sparsity Prior. 529-536 - Sennay Ghebreab, Arnold W. M. Smeulders, Pieter W. Adriaans:

Predicting Brain States from fMRI Data: Incremental Functional Principal Component Regression. 537-544 - Massimiliano Giulioni, Mario Pannunzi, Davide Badoni, Vittorio Dante, Paolo Del Giudice:

A configurable analog VLSI neural network with spiking neurons and self-regulating plastic synapses . 545-552 - Amir Globerson, Tommi S. Jaakkola:

Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations. 553-560 - Judy Goldsmith, Martin Mundhenk:

Competition Adds Complexity. 561-568 - João Graça, Kuzman Ganchev, Ben Taskar:

Expectation Maximization and Posterior Constraints. 569-576 - Alex Graves, Santiago Fernández, Marcus Liwicki, Horst Bunke, Jürgen Schmidhuber:

Unconstrained On-line Handwriting Recognition with Recurrent Neural Networks. 577-584 - Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, Alexander J. Smola:

A Kernel Statistical Test of Independence. 585-592 - Yuhong Guo, Dale Schuurmans:

Discriminative Batch Mode Active Learning. 593-600 - Yuhong Guo, Dale Schuurmans:

Convex Relaxations of Latent Variable Training. 601-608 - Zaïd Harchaoui, Francis R. Bach, Eric Moulines:

Testing for Homogeneity with Kernel Fisher Discriminant Analysis. 609-616 - Zaïd Harchaoui, Céline Lévy-Leduc:

Catching Change-points with Lasso. 617-624 - Elad Hazan, Satyen Kale:

Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria. 625-632 - Jingrui He, Jaime G. Carbonell:

Nearest-Neighbor-Based Active Learning for Rare Category Detection. 633-640 - Chinmay Hegde, Michael B. Wakin, Richard G. Baraniuk:

Random Projections for Manifold Learning. 641-648 - José Miguel Hernández-Lobato, Tjeerd Dijkstra, Tom Heskes:

Regulator Discovery from Gene Expression Time Series of Malaria Parasites: a Hierachical Approach. 649-656 - Peter D. Hoff:

Modeling homophily and stochastic equivalence in symmetric relational data. 657-664 - Matt Hoffman, Arnaud Doucet, Nando de Freitas, Ajay Jasra:

Bayesian Policy Learning with Trans-Dimensional MCMC. 665-672 - Michael P. Holmes, Alexander G. Gray, Charles Lee Isbell Jr.:

Ultrafast Monte Carlo for Statistical Summations. 673-680 - Andrew G. Howard, Tony Jebara:

Learning Monotonic Transformations for Classification. 681-688 - David Hsu, Wee Sun Lee, Nan Rong:

What makes some POMDP problems easy to approximate? 689-696 - Jonathan Huang, Carlos Guestrin, Leonidas J. Guibas:

Efficient Inference for Distributions on Permutations. 697-704 - Marcus Hutter, Shane Legg:

Temporal Difference Updating without a Learning Rate. 705-712 - Tony Jebara, Yingbo Song, Kapil Thadani:

Density Estimation under Independent Similarly Distributed Sampling Assumptions. 713-720 - Michael Johanson, Martin Zinkevich, Michael H. Bowling:

Computing Robust Counter-Strategies. 721-728 - Kyomin Jung, Devavrat Shah:

Local Algorithms for Approximate Inference in Minor-Excluded Graphs. 729-736 - Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, Kiyoshi Asai:

Multi-Task Learning via Conic Programming. 737-744 - Michael J. Kearns, Jinsong Tan, Jennifer Wortman:

Privacy-Preserving Belief Propagation and Sampling. 745-752 - Charles Kemp, Noah D. Goodman, Joshua B. Tenenbaum:

Learning and using relational theories. 753-760 - Sergey Kirshner:

Learning with Tree-Averaged Densities and Distributions. 761-768 - J. Zico Kolter, Pieter Abbeel, Andrew Y. Ng:

Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion. 769-776 - Andreas Krause, H. Brendan McMahan, Carlos Guestrin, Anupam Gupta:

Selecting Observations against Adversarial Objectives. 777-784 - Alex Kulesza, Fernando Pereira:

Structured Learning with Approximate Inference. 785-792 - Krishnan Kumar, Chiru Bhattacharyya, Ramesh Hariharan:

A Randomized Algorithm for Large Scale Support Vector Learning. 793-800 - John D. Lafferty, Larry A. Wasserman:

Statistical Analysis of Semi-Supervised Regression. 801-808 - Yiu Man Lam, Bertram E. Shi:

Extending position/phase-shift tuning to motion energy neurons improves velocity discrimination. 809-816 - John Langford, Tong Zhang:

The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information. 817-824 - Danial Lashkari, Polina Golland:

Convex Clustering with Exemplar-Based Models. 825-832 - Alessandro Lazaric, Marcello Restelli, Andrea Bonarini:

Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods. 833-840 - Guy Lebanon, Yi Mao:

Non-parametric Modeling of Partially Ranked Data. 857-864 - Andrea Lecchini-Visintini, John Lygeros, Jan M. Maciejowski:

Simulated Annealing: Rigorous finite-time guarantees for optimization on continuous domains. 865-872 - Honglak Lee, Chaitanya Ekanadham, Andrew Y. Ng:

Sparse deep belief net model for visual area V2. 873-880 - Robert Legenstein, Dejan Pecevski, Wolfgang Maass:

Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity. 881-888 - Máté Lengyel, Peter Dayan:

Hippocampal Contributions to Control: The Third Way. 889-896 - Ping Li, Trevor Hastie:

A Unified Near-Optimal Estimator For Dimension Reduction in lalpha(0 < alpha <= 2) Using Stable Random Projections. 905-912 - Ping Li, Christopher J. C. Burges, Qiang Wu:

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting. 897-904 - Percy Liang, Dan Klein, Michael I. Jordan:

Agreement-Based Learning. 913-920 - Yuanqing Lin, Jingdong Chen, Youngmoo E. Kim, Daniel D. Lee:

Blind channel identification for speech dereverberation using l1-norm sparse learning. 921-928 - Erik Linstead, Paul Rigor, Sushil Krishna Bajracharya, Cristina Videira Lopes, Pierre Baldi:

Mining Internet-Scale Software Repositories. 929-936 - Qiuhua Liu, Xuejun Liao, Lawrence Carin:

Semi-Supervised Multitask Learning. 937-944 - Philip M. Long, Rocco A. Servedio:

Boosting the Area under the ROC Curve. 945-952 - Zhengdong Lu, Miguel Á. Carreira-Perpiñán, Cristian Sminchisescu:

People Tracking with the Laplacian Eigenmaps Latent Variable Model. 1705-1712 - Ronny Luss, Alexandre d'Aspremont:

Support Vector Machine Classification with Indefinite Kernels. 953-960 - Ulrike von Luxburg, Sébastien Bubeck, Stefanie Jegelka, Michael Kaufmann:

Consistent Minimization of Clustering Objective Functions. 961-968 - Jakob H. Macke, Guenther Zeck, Matthias Bethge:

Receptive Fields without Spike-Triggering. 969-976 - Maryam Mahdaviani, Tanzeem Choudhury:

Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition. 977-984 - M. M. Hassan Mahmud, Sylvian R. Ray:

Transfer Learning using Kolmogorov Complexity: Basic Theory and Empirical Evaluations. 985-992 - Victoria Manfredi, Jim Kurose:

Scan Strategies for Meteorological Radars. 993-1000 - Omer Bobrowski, Ron Meir, Shy Shoham, Yonina C. Eldar:

A neural network implementing optimal state estimation based on dynamic spike train decoding. 145-152 - François G. Meyer, Greg J. Stephens:

Locality and low-dimensions in the prediction of natural experience from fMRI. 1001-1008 - Srinjoy Mitra, Giacomo Indiveri, Stefano Fusi:

Learning to classify complex patterns using a VLSI network of spiking neurons. 1009-1016 - Daichi Mochihashi, Eiichiro Sumita:

The Infinite Markov Model. 1017-1024 - Mehryar Mohri, Afshin Rostamizadeh:

Stability Bounds for Non-i.i.d. Processes. 1025-1032 - Michael Mozer, David Baldwin:

Experience-Guided Search: A Theory of Attentional Control. 1033-1040 - Pawan Kumar Mudigonda, Vladimir Kolmogorov, Philip H. S. Torr:

An Analysis of Convex Relaxations for MAP Estimation. 1041-1048 - Lawrence Murray, Amos J. Storkey:

Continuous Time Particle Filtering for fMRI. 1049-1056 - Andrew Naish-Guzman, Sean B. Holden:

Robust Regression with Twinned Gaussian Processes. 1065-1072 - Andrew Naish-Guzman, Sean B. Holden:

The Generalized FITC Approximation. 1057-1064 - Emre Neftci, Elisabetta Chicca, Giacomo Indiveri, Jean-Jacques E. Slotine, Rodney J. Douglas:

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons. 1073-1080 - David Newman, Arthur U. Asuncion, Padhraic Smyth, Max Welling:

Distributed Inference for Latent Dirichlet Allocation. 1081-1088 - XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan:

Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization. 1089-1096 - Shigeyuki Oba, Motoaki Kawanabe, Klaus-Robert Müller, Shin Ishii:

Heterogeneous Component Analysis. 1097-1104 - Manfred Opper, Guido Sanguinetti:

Variational inference for Markov jump processes. 1105-1112 - Luis E. Ortiz:

CPR for CSPs: A Probabilistic Relaxation of Constraint Propagation. 1113-1120 - Simon Osindero, Geoffrey E. Hinton:

Modeling image patches with a directed hierarchy of Markov random fields. 1121-1128 - Mehul Parsana, Sourangshu Bhattacharya

, Chiru Bhattacharyya, K. R. Ramakrishnan:
Kernels on Attributed Pointsets with Applications. 1129-1136 - Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor:

A Risk Minimization Principle for a Class of Parzen Estimators. 1137-1144 - Robert J. Peters, Laurent Itti:

Congruence between model and human attention reveals unique signatures of critical visual events. 1145-1152 - Slav Petrov, Dan Klein:

Discriminative Log-Linear Grammars with Latent Variables. 1153-1160 - Jonathan W. Pillow, Peter E. Latham:

Neural characterization in partially observed populations of spiking neurons. 1161-1168 - John C. Platt, Emre Kiciman, David A. Maltz:

Fast Variational Inference for Large-scale Internet Diagnosis. 1169-1176 - Ali Rahimi, Benjamin Recht:

Random Features for Large-Scale Kernel Machines. 1177-1184 - Marc'Aurelio Ranzato, Y-Lan Boureau, Yann LeCun:

Sparse Feature Learning for Deep Belief Networks. 1185-1192 - Vinayak A. Rao, Marc W. Howard:

Retrieved context and the discovery of semantic structure. 1193-1200 - Pradeep Ravikumar, Han Liu, John D. Lafferty, Larry A. Wasserman:

SpAM: Sparse Additive Models. 1201-1208 - Vikas C. Raykar, Harald Steck, Balaji Krishnapuram, Cary Dehing-Oberije, Philippe Lambin:

On Ranking in Survival Analysis: Bounds on the Concordance Index. 1209-1216 - Michael Ross, Andrew Cohen:

GRIFT: A graphical model for inferring visual classification features from human data. 1217-1224 - Stéphane Ross, Brahim Chaib-draa, Joelle Pineau:

Bayes-Adaptive POMDPs. 1225-1232 - Stéphane Ross, Joelle Pineau, Brahim Chaib-draa:

Theoretical Analysis of Heuristic Search Methods for Online POMDPs. 1233-1240 - Nicolas Le Roux, Yoshua Bengio, Pascal Lamblin, Marc Joliveau, Balázs Kégl:

Learning the 2-D Topology of Images. 841-848 - Nicolas Le Roux, Pierre-Antoine Manzagol, Yoshua Bengio:

Topmoumoute Online Natural Gradient Algorithm. 849-856 - Bryan C. Russell, Antonio Torralba, Ce Liu, Robert Fergus, William T. Freeman:

Object Recognition by Scene Alignment. 1241-1248 - Ruslan Salakhutdinov, Andriy Mnih:

Probabilistic Matrix Factorization. 1257-1264 - Ruslan Salakhutdinov, Geoffrey E. Hinton:

Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes. 1249-1256 - Adam Sanborn, Thomas L. Griffiths:

Markov Chain Monte Carlo with People. 1265-1272 - Sujay Sanghavi, Dmitry M. Malioutov, Alan S. Willsky:

Linear programming analysis of loopy belief propagation for weighted matching. 1273-1280 - Sujay Sanghavi, Devavrat Shah, Alan S. Willsky:

Message Passing for Max-weight Independent Set. 1281-1288 - Burr Settles, Mark Craven, Soumya Ray:

Multiple-Instance Active Learning. 1289-1296 - Ohad Shamir, Naftali Tishby:

Cluster Stability for Finite Samples. 1297-1304 - Tatyana O. Sharpee:

Better than least squares: comparison of objective functions for estimating linear-nonlinear models. 1305-1312 - Madhusudana V. S. Shashanka, Bhiksha Raj, Paris Smaragdis:

Sparse Overcomplete Latent Variable Decomposition of Counts Data. 1313-1320 - Daniel Sheldon, M. A. Saleh Elmohamed, Dexter Kozen:

Collective Inference on Markov Models for Modeling Bird Migration. 1321-1328 - Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon:

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems. 1329-1336 - Leonid Sigal, Alexandru O. Balan, Michael J. Black:

Combined discriminative and generative articulated pose and non-rigid shape estimation. 1337-1344 - Ricardo Bezerra de Andrade e Silva, Wei Chu, Zoubin Ghahramani:

Hidden Common Cause Relations in Relational Learning. 1345-1352 - Vikas Singh, Lopamudra Mukherjee, Jiming Peng, Jinhui Xu:

Ensemble Clustering using Semidefinite Programming. 1353-1360 - Kaushik Sinha, Mikhail Belkin:

The Value of Labeled and Unlabeled Examples when the Model is Imperfect. 1361-1368 - Fabian H. Sinz, Olivier Chapelle, Alekh Agarwal, Bernhard Schölkopf:

An Analysis of Inference with the Universum. 1369-1376 - Alexander J. Smola, S. V. N. Vishwanathan, Quoc V. Le:

Bundle Methods for Machine Learning. 1377-1384 - Le Song, Alexander J. Smola, Karsten M. Borgwardt, Arthur Gretton:

Colored Maximum Variance Unfolding. 1385-1392 - David A. Sontag, Tommi S. Jaakkola:

New Outer Bounds on the Marginal Polytope. 1393-1400 - Devarajan Sridharan, Brian Percival, John V. Arthur, Kwabena Boahen:

An in-silico Neural Model of Dynamic Routing through Neuronal Coherence. 1401-1408 - Alan Stocker, Eero P. Simoncelli:

A Bayesian Model of Conditioned Perception. 1409-1416 - Alexander L. Strehl, Michael L. Littman:

Online Linear Regression and Its Application to Model-Based Reinforcement Learning. 1417-1424 - Erik B. Sudderth, Martin J. Wainwright, Alan S. Willsky:

Loop Series and Bethe Variational Bounds in Attractive Graphical Models. 1425-1432 - Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, Motoaki Kawanabe:

Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation. 1433-1440 - Özgür Sümer, Umut A. Acar, Alexander Ihler, Ramgopal R. Mettu

:
Efficient Bayesian Inference for Dynamically Changing Graphs. 1441-1448 - Umar Syed, Robert E. Schapire:

A Game-Theoretic Approach to Apprenticeship Learning. 1449-1456 - Marie Szafranski, Yves Grandvalet, Pierre Morizet-Mahoudeaux:

Hierarchical Penalization. 1457-1464 - Yuval Tassa, Tom Erez, William D. Smart:

Receding Horizon Differential Dynamic Programming. 1465-1472 - Yee Whye Teh, Hal Daumé III, Daniel M. Roy:

Bayesian Agglomerative Clustering with Coalescents. 1473-1480 - Yee Whye Teh, Kenichi Kurihara, Max Welling:

Collapsed Variational Inference for HDP. 1481-1488 - Choon Hui Teo, Amir Globerson, Sam T. Roweis, Alexander J. Smola:

Convex Learning with Invariances. 1489-1496 - Gerald Tesauro, Rajarshi Das, Hoi Y. Chan, Jeffrey O. Kephart, David W. Levine, Freeman L. Rawson III, Charles Lefurgy:

Managing Power Consumption and Performance of Computing Systems Using Reinforcement Learning. 1497-1504 - Ambuj Tewari, Peter L. Bartlett:

Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs. 1505-1512 - Michalis K. Titsias:

The Infinite Gamma-Poisson Feature Model. 1513-1520 - Kristina Toutanova, Mark Johnson:

A Bayesian LDA-based model for semi-supervised part-of-speech tagging. 1521-1528 - Duan Tran, David A. Forsyth:

Configuration Estimates Improve Pedestrian Finding. 1529-1536 - Eric K. C. Tsang, Bertram Emil Shi:

Estimating disparity with confidence from energy neurons. 1537-1544 - Richard E. Turner, Maneesh Sahani:

Modeling Natural Sounds with Modulation Cascade Processes. 1545-1552 - Jakob Verbeek, Bill Triggs:

Scene Segmentation with CRFs Learned from Partially Labeled Images. 1553-1560 - Christian Walder, Olivier Chapelle:

Learning with Transformation Invariant Kernels. 1561-1568 - Tao Wang, Daniel J. Lizotte, Michael H. Bowling, Dale Schuurmans:

Stable Dual Dynamic Programming. 1569-1576 - Xiaogang Wang, Eric Grimson:

Spatial Latent Dirichlet Allocation. 1577-1584 - Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch:

Boosting Algorithms for Maximizing the Soft Margin. 1585-1592 - Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, Alexander J. Smola:

COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking . 1593-1600 - Max Welling, Ian Porteous, Evgeniy Bart:

Infinite State Bayes-Nets for Structured Domains. 1601-1608 - Ben H. Williams, Marc Toussaint, Amos J. Storkey:

Modelling motion primitives and their timing in biologically executed movements. 1609-1616 - David Wingate, Satinder Singh:

Exponential Family Predictive Representations of State. 1617-1624 - David P. Wipf, Srikantan S. Nagarajan:

A New View of Automatic Relevance Determination. 1625-1632 - John Wright, Yangyu Tao, Zhouchen Lin, Yi Ma, Heung-Yeung Shum:

Classification via Minimum Incremental Coding Length (MICL). 1633-1640 - Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael R. Lyu:

Efficient Convex Relaxation for Transductive Support Vector Machine. 1641-1648 - Jieping Ye, Zheng Zhao, Mingrui Wu:

Discriminative K-means for Clustering. 1649-1656 - Kai Yu, Wei Chu:

Gaussian Process Models for Link Analysis and Transfer Learning. 1657-1664 - Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, Harald Steck, R. Bharat Rao:

Bayesian Co-Training. 1665-1672 - Alan L. Yuille, Hongjing Lu:

The Noisy-Logical Distribution and its Application to Causal Inference. 1673-1680 - Cha Zhang, Paul A. Viola:

Multiple-Instance Pruning For Learning Efficient Cascade Detectors. 1681-1688 - Bing Zhao, Eric P. Xing:

HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation. 1689-1696 - Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, Gordon Sun:

A General Boosting Method and its Application to Learning Ranking Functions for Web Search. 1697-1704 - Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:

Compressed Regression. 1713-1720 - Shenghuo Zhu, Kai Yu, Yihong Gong:

Predictive Matrix-Variate t Models. 1721-1728 - Martin Zinkevich, Michael Johanson, Michael H. Bowling, Carmelo Piccione:

Regret Minimization in Games with Incomplete Information. 1729-1736

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














