


default search action
6th FORC 2025: Stanford, CA, USA
- Mark Bun

:
6th Symposium on Foundations of Responsible Computing, FORC 2025, Stanford University, CA, USA, June 4-6, 2025. LIPIcs 329, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2025, ISBN 978-3-95977-367-6 - Front Matter, Table of Contents, Preface, Conference Organization. 0:i-0:x

- Kunal Talwar:

Privacy-Computation Trade-Offs in Private Repetition and Metaselection. 1:1-1:14 - Richard Hladík, Jakub Tetek:

Smooth Sensitivity Revisited: Towards Optimality. 2:1-2:17 - Syomantak Chaudhuri, Thomas A. Courtade:

Private Estimation When Data and Privacy Demands Are Correlated. 3:1-3:20 - Prathamesh Dharangutte, Jie Gao, Shang-En Huang, Fang-Yi Yu:

Hardness and Approximation Algorithms for Balanced Districting Problems. 4:1-4:24 - Avrim Blum, Emily Diana, Kavya Ravichandran, Alexander Tolbert:

Pessimism Traps and Algorithmic Interventions. 5:1-5:19 - Richard Hladík, Jakub Tetek:

Near-Universally-Optimal Differentially Private Minimum Spanning Trees. 6:1-6:19 - Carol Xuan Long, Wael Alghamdi, Alexander Glynn, Yixuan Wu, Flávio P. Calmon:

Kernel Multiaccuracy. 7:1-7:23 - Ashish Goel, Zhihao Jiang, Aleksandra Korolova, Kamesh Munagala, Sahasrajit Sarmasarkar:

Differential Privacy Under Multiple Selections. 8:1-8:25 - Changyu Gao, Andrew Lowy, Xingyu Zhou, Stephen J. Wright:

Optimal Rates for Robust Stochastic Convex Optimization. 9:1-9:21 - Joel Daniel Andersson, Rasmus Pagh, Teresa Anna Steiner, Sahel Torkamani:

Count on Your Elders: Laplace vs Gaussian Noise. 10:1-10:24 - Rishav Chourasia, Uzair Javaid, Biplab Sikdar:

Laplace Transform Interpretation of Differential Privacy. 11:1-11:23 - Charlie Harrison, Pasin Manurangsi:

Infinitely Divisible Noise for Differential Privacy: Nearly Optimal Error in the High ε Regime. 12:1-12:24 - Kristóf Madarász, Marek Pycia:

Cost over Content: Information Choice in Trade (Extended Abstract). 13:1-13:1 - Ira Globus-Harris, Varun Gupta, Michael Kearns, Aaron Roth:

Model Ensembling for Constrained Optimization. 14:1-14:17 - Martin Aumüller, Fabrizio Boninsegna

, Francesco Silvestri:
Differentially Private High-Dimensional Approximate Range Counting, Revisited. 15:1-15:24 - Jason D. Hartline, Yifan Wu, Yunran Yang:

Smooth Calibration and Decision Making. 16:1-16:26 - Flávio P. Calmon, Elbert Du, Cynthia Dwork, Brian Finley, Grigory Franguridi:

Debiasing Functions of Private Statistics in Postprocessing. 17:1-17:18 - Yuxin Liu, M. Amin Rahimian

:
Differentially Private Sequential Learning (Extended Abstract). 18:1-18:6 - Etam Benger, Katrina Ligett:

Mapping the Tradeoffs and Limitations of Algorithmic Fairness. 19:1-19:20 - Santhini K. A., Kamesh Munagala, Meghana Nasre, Govind S. Sankar:

Group Fairness and Multi-Criteria Optimization in School Assignment. 20:1-20:20 - Jabari Hastings, Sigal Oren, Omer Reingold:

OWA for Bipartite Assignments. 21:1-21:20 - Aravind Gollakota, Parikshit Gopalan, Aayush Karan, Charlotte Peale, Udi Wieder:

When Does a Predictor Know Its Own Loss? 22:1-22:22 - Christian Janos Lebeda, Lukas Retschmeier:

The Correlated Gaussian Sparse Histogram Mechanism. 23:1-23:20

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














