


default search action
30th ALT 2019: Chicago, Illinois, USA
- Aurélien Garivier, Satyen Kale:

Algorithmic Learning Theory, ALT 2019, 22-24 March 2019, Chicago, Illinois, USA. Proceedings of Machine Learning Research 98, PMLR 2019 - Aurélien Garivier, Satyen Kale:

Algorithmic Learning Theory 2019: Preface. 1-2 - Hasan Abasi, Nader H. Bshouty:

On Learning Graphs with Edge-Detecting Queries. 3-30 - Karim T. Abou-Moustafa, Csaba Szepesvári:

An Exponential Efron-Stein Inequality for Lq Stable Learning Rules. 31-63 - Mastane Achab, Anna Korba, Stéphan Clémençon:

Dimensionality Reduction and (Bucket) Ranking: a Mass Transportation Approach. 64-93 - Juliette Achdou, Joseph Lam-Weil, Alexandra Carpentier, Gilles Blanchard:

A minimax near-optimal algorithm for adaptive rejection sampling. 94-126 - Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, Kiran Vodrahalli:

Attribute-efficient learning of monomials over highly-correlated variables. 127-161 - Idan Attias, Aryeh Kontorovich, Yishay Mansour:

Improved Generalization Bounds for Robust Learning. 162-183 - Peter L. Bartlett, Victor Gabillon, Michal Valko:

A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption. 184-206 - Nader H. Bshouty, Catherine A. Haddad-Zaknoon:

Adaptive Exact Learning of Decision Trees from Membership Queries. 207-234 - Brian Bullins, Elad Hazan, Adam Kalai, Roi Livni:

Generalize Across Tasks: Efficient Algorithms for Linear Representation Learning. 235-246 - Nicolò Cesa-Bianchi, Tommaso Cesari, Vianney Perchet:

Dynamic Pricing with Finitely Many Unknown Valuations. 247-273 - Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Holakou Rahmanian, Manfred K. Warmuth:

Online Non-Additive Path Learning under Full and Partial Information. 274-299 - Andrew Cotter, Heinrich Jiang, Karthik Sridharan:

Two-Player Games for Efficient Non-Convex Constrained Optimization. 300-332 - Amit Daniely, Yishay Mansour:

Competitive ratio vs regret minimization: achieving the best of both worlds. 333-368 - Alexander Durgin, Brendan Juba:

Hardness of Improper One-Sided Learning of Conjunctions For All Uniformly Falsifiable CSPs. 369-382 - Ekaterina B. Fokina, Timo Kötzing, Luca San Mauro:

Limit Learning Equivalence Structures. 383-403 - Pierre Gaillard, Sébastien Gerchinovitz, Malo Huard, Gilles Stoltz:

Uniform regret bounds over Rd for the sequential linear regression problem with the square loss. 404-432 - Peter D. Grünwald, Nishant A. Mehta:

A tight excess risk bound via a unified PAC-Bayesian-Rademacher-Shtarkov-MDL complexity. 433-465 - Steve Hanneke, Aryeh Kontorovich, Menachem Sadigurschi:

Sample Compression for Real-Valued Learners. 466-488 - Steve Hanneke, Aryeh Kontorovich:

A Sharp Lower Bound for Agnostic Learning with Sample Compression Schemes. 489-505 - David G. Kirkpatrick, Hans Ulrich Simon, Sandra Zilles:

Optimal Collusion-Free Teaching. 506-528 - Tor Lattimore, Csaba Szepesvári:

Cleaning up the neighborhood: A full classification for adversarial partial monitoring. 529-556 - Gábor Lugosi, Gergely Neu, Julia Olkhovskaya:

Online Influence Maximization with Local Observations. 557-580 - Saeed Mahloujifar, Mohammad Mahmoody:

Can Adversarially Robust Learning LeverageComputational Hardness? 581-609 - Odalric-Ambrym Maillard:

Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds. 610-632 - Ido Nachum, Amir Yehudayoff:

Average-Case Information Complexity of Learning. 633-646 - Mohamed Ndaoud:

Interplay of minimax estimation and minimax support recovery under sparsity. 647-668 - Frank Nussbaum, Joachim Giesen:

Ising Models with Latent Conditional Gaussian Variables. 669-681 - Henry W. J. Reeve, Ata Kabán:

Exploiting geometric structure in mixture proportion estimation with generalised Blanchard-Lee-Scott estimators. 682-699 - Aadirupa Saha, Aditya Gopalan:

PAC Battling Bandits in the Plackett-Luce Model. 700-737 - Clayton Scott:

A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation. 738-761 - Xuedong Shang, Emilie Kaufmann, Michal Valko:

General parallel optimization a without metric. 762-787 - Or Sheffet:

Old Techniques in Differentially Private Linear Regression. 788-826 - Ivan Stelmakh, Nihar B. Shah, Aarti Singh:

PeerReview4All: Fair and Accurate Reviewer Assignment in Peer Review. 827-855 - Weiran Wang, Nathan Srebro:

Stochastic Nonconvex Optimization with Large Minibatches. 856-881 - Jun-Kun Wang, Chi-Jen Lu, Shou-De Lin:

Online Linear Optimization with Sparsity Constraints. 882-896 - Di Wang, Adam D. Smith, Jinhui Xu:

Noninteractive Locally Private Learning of Linear Models via Polynomial Approximations. 897-902 - Geoffrey Wolfer, Aryeh Kontorovich:

Minimax Learning of Ergodic Markov Chains. 903-929

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














