


default search action
Journal of Machine Learning Research, Volume 10
Volume 10, 2009
- Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin:

Exploring Strategies for Training Deep Neural Networks. 1-40 - Changsung Kang, Jin Tian:

Markov Properties for Linear Causal Models with Correlated Errors. 41-70 - M. Pawan Kumar, Vladimir Kolmogorov, Philip H. S. Torr:

An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs. 71-106 - Yuesheng Xu, Haizhang Zhang:

Refinement of Reproducing Kernels. 107-140 - Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, Bogong Li:

Subgroup Analysis via Recursive Partitioning. 141-158 - Abhik Shah, Peter J. Woolf:

Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data. 159-162 - Vitaly Feldman:

On The Power of Membership Queries in Agnostic Learning. 163-182 - Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, R. Bharat Rao:

Using Local Dependencies within Batches to Improve Large Margin Classifiers. 183-206 - Kilian Q. Weinberger, Lawrence K. Saul:

Distance Metric Learning for Large Margin Nearest Neighbor Classification. 207-244 - Sylvain Arlot, Pascal Massart:

Data-driven Calibration of Penalties for Least-Squares Regression. 245-279 - Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni:

Analysis of Perceptron-Based Active Learning. 281-299 - Facundo Bromberg, Dimitris Margaritis:

Improving the Reliability of Causal Discovery from Small Data Sets Using Argumentation. 301-340 - Brian Kulis, Mátyás A. Sustik, Inderjit S. Dhillon:

Low-Rank Kernel Learning with Bregman Matrix Divergences. 341-376 - Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb:

Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining. 377-403 - Hugo Jair Escalante, Manuel Montes-y-Gómez, Luis Enrique Sucar:

Particle Swarm Model Selection. 405-440 - Shivani Agarwal, Partha Niyogi:

Generalization Bounds for Ranking Algorithms via Algorithmic Stability. 441-474 - Junning Li, Z. Jane Wang:

Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm. 475-514 - Barnabás Póczos, András Lörincz:

Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques. 515-554 - Tong Zhang:

On the Consistency of Feature Selection using Greedy Least Squares Regression. 555-568 - Shie Mannor, John N. Tsitsiklis, Jia Yuan Yu:

Online Learning with Sample Path Constraints. 569-590 - Pradip Ghanty, Samrat Paul, Nikhil R. Pal:

NEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM. 591-622 - Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk:

Scalable Collaborative Filtering Approaches for Large Recommender Systems. 623-656 - Sébastien Bubeck, Ulrike von Luxburg:

Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions. 657-698 - Tyler J. VanderWeele, James M. Robins:

Properties of Monotonic Effects on Directed Acyclic Graphs. 699-718 - Junhui Wang, Xiaotong Shen, Wei Pan:

On Efficient Large Margin Semisupervised Learning: Method and Theory. 719-742 - Francis Maes:

Nieme: Large-Scale Energy-Based Models. 743-746 - Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, Luca Cazzanti:

Similarity-based Classification: Concepts and Algorithms. 747-776 - John Langford, Lihong Li, Tong Zhang:

Sparse Online Learning via Truncated Gradient. 777-801 - Jacob D. Abernethy, Francis R. Bach, Theodoros Evgeniou, Jean-Philippe Vert:

A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization. 803-826 - Alon Zakai, Yaacov Ritov:

Consistency and Localizability. 827-856 - Leslie Foster, Alex Waagen, Nabeela Aijaz, Michael Hurley, Apolonio Luis, Joel Rinsky, Chandrika Satyavolu, Michael J. Way, Paul R. Gazis, Ashok Srivastava:

Stable and Efficient Gaussian Process Calculations. 857-882 - Holger Höfling, Robert Tibshirani:

Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods. 883-906 - Jan Ramon, Siegfried Nijssen:

Polynomial-Delay Enumeration of Monotonic Graph Classes. 907-929 - Thomas Abeel, Yves Van de Peer, Yvan Saeys:

Java-ML: A Machine Learning Library. 931-934 - André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, Mário A. T. Figueiredo:

Nonextensive Information Theoretic Kernels on Measures. 935-975 - Wenxin Jiang:

On Uniform Deviations of General Empirical Risks with Unboundedness, Dependence, and High Dimensionality. 977-996 - Jonathan Huang, Carlos Guestrin, Leonidas J. Guibas:

Fourier Theoretic Probabilistic Inference over Permutations. 997-1070 - José M. Peña, Roland Nilsson, Johan Björkegren, Jesper Tegnér:

An Algorithm for Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity. 1071-1094 - Leonid Kontorovich, Boaz Nadler:

Universal Kernel-Based Learning with Applications to Regular Languages. 1095-1129 - Hui Li, Xuejun Liao, Lawrence Carin:

Multi-task Reinforcement Learning in Partially Observable Stochastic Environments. 1131-1186 - Ricardo Bezerra de Andrade e Silva, Zoubin Ghahramani:

The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models. 1187-1238 - Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia:

Incorporating Functional Knowledge in Neural Networks. 1239-1262 - Ulrich Paquet, Ole Winther, Manfred Opper:

Perturbation Corrections in Approximate Inference: Mixture Modelling Applications. 1263-1304 - Stijn Goedertier, David Martens, Jan Vanthienen, Bart Baesens:

Robust Process Discovery with Artificial Negative Events. 1305-1340 - Eugene Tuv, Alexander Borisov, George C. Runger, Kari Torkkola:

Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination. 1341-1366 - Marc Boullé:

A Parameter-Free Classification Method for Large Scale Learning. 1367-1385 - Troy Raeder, Nitesh V. Chawla:

Model Monitor (M2): Evaluating, Comparing, and Monitoring Models. 1387-1390 - Takafumi Kanamori, Shohei Hido, Masashi Sugiyama:

A Least-squares Approach to Direct Importance Estimation. 1391-1445 - Dao-Hong Xiang, Ding-Xuan Zhou:

Classification with Gaussians and Convex Loss. 1447-1468 - Jean Hausser, Korbinian Strimmer:

Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks. 1469-1484 - Huan Xu, Constantine Caramanis, Shie Mannor:

Robustness and Regularization of Support Vector Machines. 1485-1510 - Nikolai Slobodianik, Dmitry Yu. Zaporozhets, Neal Madras:

Strong Limit Theorems for the Bayesian Scoring Criterion in Bayesian Networks. 1511-1526 - Raanan Yehezkel, Boaz Lerner:

Bayesian Network Structure Learning by Recursive Autonomy Identification. 1527-1570 - Yuehua Xu, Alan Fern, Sung Wook Yoon:

Learning Linear Ranking Functions for Beam Search with Application to Planning. 1571-1610 - Shaowei Lin, Bernd Sturmfels, Zhiqiang Xu:

Marginal Likelihood Integrals for Mixtures of Independence Models. 1611-1631 - Matthew E. Taylor, Peter Stone:

Transfer Learning for Reinforcement Learning Domains: A Survey. 1633-1685 - Eitan Greenshtein, Junyong Park:

Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification. 1687-1704 - David P. Helmbold, Manfred K. Warmuth:

Learning Permutations with Exponential Weights. 1705-1736 - Antoine Bordes, Léon Bottou, Patrick Gallinari:

SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent. 1737-1754 - Davis E. King:

Dlib-ml: A Machine Learning Toolkit. 1755-1758 - Halbert White, Karim Chalak:

Settable Systems: An Extension of Pearl's Causal Model with Optimization, Equilibrium, and Learning. 1759-1799 - David Newman, Arthur U. Asuncion, Padhraic Smyth, Max Welling:

Distributed Algorithms for Topic Models. 1801-1828 - Babak Shahbaba, Radford M. Neal:

Nonlinear Models Using Dirichlet Process Mixtures. 1829-1850 - Roberto Esposito, Daniele Paolo Radicioni:

CarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning. 1851-1880 - Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, Lev Reyzin:

Learning Acyclic Probabilistic Circuits Using Test Paths. 1881-1911 - Zeeshan Syed, Piotr Indyk, John V. Guttag:

Learning Approximate Sequential Patterns for Classification. 1913-1936 - Kristian Woodsend, Jacek Gondzio:

Hybrid MPI/OpenMP Parallel Linear Support Vector Machine Training. 1937-1953 - Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy:

Provably Efficient Learning with Typed Parametric Models. 1955-1988 - Jie Chen, Haw-ren Fang, Yousef Saad:

Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection. 1989-2012 - Jianqing Fan, Richard Samworth, Yichao Wu:

Ultrahigh Dimensional Feature Selection: Beyond The Linear Model. 2013-2038 - Dirk Gorissen, Tom Dhaene, Filip De Turck:

Evolutionary Model Type Selection for Global Surrogate Modeling. 2039-2078 - Luciana Ferrer, M. Kemal Sönmez, Elizabeth Shriberg:

An Anticorrelation Kernel for Subsystem Training in Multiple Classifier Systems. 2079-2114 - Christian Rieger, Barbara Zwicknagl:

Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods. 2115-2132 - Brian Tanner, Adam White:

RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments. 2133-2136 - Steffen Bickel, Michael Brückner, Tobias Scheffer:

Discriminative Learning Under Covariate Shift. 2137-2155 - Vojtech Franc, Sören Sonnenburg:

Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization. 2157-2192 - Cynthia Rudin, Robert E. Schapire:

Margin-based Ranking and an Equivalence between AdaBoost and RankBoost. 2193-2232 - Cynthia Rudin:

The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List. 2233-2271 - Juan José del Coz, Jorge Díez, Antonio Bahamonde:

Learning Nondeterministic Classifiers. 2273-2293 - Han Liu, John D. Lafferty, Larry A. Wasserman:

The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. 2295-2328 - Mathias Drton, Michael Eichler, Thomas S. Richardson:

Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors. 2329-2348 - Novi Quadrianto, Alexander J. Smola, Tibério S. Caetano, Quoc V. Le:

Estimating Labels from Label Proportions. 2349-2374 - Lisa Hellerstein, Bernard Rosell, Eric Bach, Soumya Ray, David Page:

Exploiting Product Distributions to Identify Relevant Variables of Correlation Immune Functions. 2374-2411 - Alexander L. Strehl, Lihong Li, Michael L. Littman:

Reinforcement Learning in Finite MDPs: PAC Analysis. 2413-2444 - Vladimir Vovk, Fedor Zhdanov:

Prediction With Expert Advice For The Brier Game. 2445-2471 - Saharon Rosset:

Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression. 2473-2505 - Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:

When Is There a Representer Theorem? Vector Versus Matrix Regularizers. 2507-2529 - Jun Zhu, Eric P. Xing:

Maximum Entropy Discrimination Markov Networks. 2531-2569 - Omid Madani, Michael Connor, Wiley Greiner:

Learning When Concepts Abound. 2571-2613 - Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander J. Smola, S. V. N. Vishwanathan:

Hash Kernels for Structured Data. 2615-2637 - Jens Lehmann

:
DL-Learner: Learning Concepts in Description Logics. 2639-2642 - Francesco Orabona, Joseph Keshet, Barbara Caputo:

Bounded Kernel-Based Online Learning. 2643-2666 - Brijnesh J. Jain, Klaus Obermayer:

Structure Spaces. 2667-2714 - Adam R. Klivans, Philip M. Long, Rocco A. Servedio:

Learning Halfspaces with Malicious Noise. 2715-2740 - Haizhang Zhang, Yuesheng Xu, Jun Zhang:

Reproducing Kernel Banach Spaces for Machine Learning. 2741-2775 - Luke K. McDowell, Kalyan Moy Gupta, David W. Aha:

Cautious Collective Classification. 2777-2836 - Gilles Blanchard, Étienne Roquain:

Adaptive False Discovery Rate Control under Independence and Dependence. 2837-2871 - Ting Hu, Ding-Xuan Zhou:

Online Learning with Samples Drawn from Non-identical Distributions. 2873-2898 - John C. Duchi, Yoram Singer:

Efficient Online and Batch Learning Using Forward Backward Splitting. 2899-2934 - Asela Gunawardana, Guy Shani:

A Survey of Accuracy Evaluation Metrics of Recommendation Tasks. 2935-2962

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














