


Остановите войну!
for scientists:


default search action
Elad Hazan
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j24]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. TheoretiCS 2 (2023) - [c106]Zhou Lu, Nataly Brukhim, Paula Gradu, Elad Hazan:
Projection-free Adaptive Regret with Membership Oracles. ALT 2023: 1055-1073 - [c105]Paula Gradu, Elad Hazan, Edgar Minasyan:
Adaptive Regret for Control of Time-Varying Dynamics. L4DC 2023: 560-572 - [c104]Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan:
Regret Guarantees for Online Deep Control. L4DC 2023: 1032-1045 - [c103]Gautam Goel, Naman Agarwal, Karan Singh, Elad Hazan:
Best of Both Worlds in Online Control: Competitive Ratio and Policy Regret. L4DC 2023: 1345-1356 - [i95]Xinyi Chen, Elad Hazan:
A Nonstochastic Control Approach to Optimization. CoRR abs/2301.07902 (2023) - [i94]Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, Elad Hazan:
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions. CoRR abs/2302.03764 (2023) - [i93]Y. Jennifer Sun, Stephen Newman, Elad Hazan:
Optimal Rates for Bandit Nonstochastic Control. CoRR abs/2305.15352 (2023) - [i92]Udaya Ghai, Arushi Gupta, Wenhan Xia, Karan Singh, Elad Hazan:
Online Nonstochastic Model-Free Reinforcement Learning. CoRR abs/2305.17552 (2023) - [i91]David Snyder, Meghan Booker, Nathaniel Simon, Wenhan Xia, Daniel Suo, Elad Hazan, Anirudha Majumdar:
Online Learning for Obstacle Avoidance. CoRR abs/2306.08776 (2023) - [i90]Elad Hazan, Nimrod Megiddo:
An Efficient Interior-Point Method for Online Convex Optimization. CoRR abs/2307.11668 (2023) - 2022
- [c102]Udaya Ghai, Udari Madhushani, Naomi Ehrich Leonard, Elad Hazan:
A Regret Minimization Approach to Multi-Agent Control. ICML 2022: 7422-7434 - [c101]Udaya Ghai, Xinyi Chen, Elad Hazan, Alexandre Megretski:
Robust Online Control with Model Misspecification. L4DC 2022: 1163-1175 - [c100]Nataly Brukhim, Elad Hazan, Karan Singh:
A Boosting Approach to Reinforcement Learning. NeurIPS 2022 - [c99]Udaya Ghai, Zhou Lu, Elad Hazan:
Non-convex online learning via algorithmic equivalence. NeurIPS 2022 - [i89]Udaya Ghai, Udari Madhushani, Naomi Ehrich Leonard, Elad Hazan:
A Regret Minimization Approach to Multi-Agent Contro. CoRR abs/2201.13288 (2022) - [i88]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. CoRR abs/2202.07890 (2022) - [i87]Zhou Lu, Wenhan Xia, Sanjeev Arora, Elad Hazan:
Adaptive Gradient Methods with Local Guarantees. CoRR abs/2203.01400 (2022) - [i86]Udaya Ghai, Zhou Lu, Elad Hazan
:
Non-convex online learning via algorithmic equivalence. CoRR abs/2205.15235 (2022) - [i85]Xinyi Chen, Elad Hazan
, Tongyang Li, Zhou Lu, Xinzhao Wang, Rui Yang:
Adaptive Online Learning of Quantum States. CoRR abs/2206.00220 (2022) - [i84]Zhou Lu, Elad Hazan
:
Efficient Adaptive Regret Minimization. CoRR abs/2207.00646 (2022) - [i83]Varun Kanade, Elad Hazan
, Adam Tauman Kalai
:
Partial Matrix Completion. CoRR abs/2208.12063 (2022) - [i82]Elad Hazan, Karan Singh:
Introduction to Online Nonstochastic Control. CoRR abs/2211.09619 (2022) - [i81]Gautam Goel, Naman Agarwal, Karan Singh, Elad Hazan:
Best of Both Worlds in Online Control: Competitive Ratio and Policy Regret. CoRR abs/2211.11219 (2022) - [i80]Zhou Lu, Nataly Brukhim, Paula Gradu, Elad Hazan:
Projection-free Adaptive Regret with Membership Oracles. CoRR abs/2211.12638 (2022) - 2021
- [c98]Nataly Brukhim, Elad Hazan:
Online Boosting with Bandit Feedback. ALT 2021: 397-420 - [c97]Xinyi Chen, Elad Hazan:
Black-Box Control for Linear Dynamical Systems. COLT 2021: 1114-1143 - [c96]Naman Agarwal, Elad Hazan, Anirudha Majumdar, Karan Singh:
A Regret Minimization Approach to Iterative Learning Control. ICML 2021: 100-109 - [c95]Elad Hazan, Karan Singh:
Boosting for Online Convex Optimization. ICML 2021: 4140-4149 - [c94]Udaya Ghai, David Snyder, Anirudha Majumdar, Elad Hazan:
Generating Adversarial Disturbances for Controller Verification. L4DC 2021: 1192-1204 - [c93]Nataly Brukhim, Elad Hazan, Shay Moran, Indraneel Mukherjee, Robert E. Schapire:
Multiclass Boosting and the Cost of Weak Learning. NeurIPS 2021: 3057-3067 - [c92]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. NeurIPS 2021: 15934-15945 - [c91]Noga Alon
, Alon Gonen, Elad Hazan
, Shay Moran
:
Boosting simple learners. STOC 2021: 481-489 - [i79]Daniel Suo, Cyril Zhang, Paula Gradu, Udaya Ghai, Xinyi Chen, Edgar Minasyan, Naman Agarwal, Karan Singh, Julienne LaChance, Tom Zajdel, Manuel Schottdorf, Daniel J. Cohen, Elad Hazan:
Machine Learning for Mechanical Ventilation Control. CoRR abs/2102.06779 (2021) - [i78]Elad Hazan, Karan Singh:
Boosting for Online Convex Optimization. CoRR abs/2102.09305 (2021) - [i77]Paula Gradu, John Hallman, Daniel Suo, Alex Yu, Naman Agarwal, Udaya Ghai, Karan Singh, Cyril Zhang, Anirudha Majumdar, Elad Hazan:
Deluca - A Differentiable Control Library: Environments, Methods, and Benchmarking. CoRR abs/2102.09968 (2021) - [i76]Naman Agarwal, Elad Hazan, Anirudha Majumdar, Karan Singh:
A Regret Minimization Approach to Iterative Learning Control. CoRR abs/2102.13478 (2021) - [i75]Xinyi Chen, Udaya Ghai, Elad Hazan, Alexandre Megretski:
Robust Online Control with Model Misspecification. CoRR abs/2107.07732 (2021) - [i74]Nataly Brukhim, Elad Hazan, Karan Singh:
A Boosting Approach to Reinforcement Learning. CoRR abs/2108.09767 (2021) - [i73]Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan:
Provable Regret Bounds for Deep Online Learning and Control. CoRR abs/2110.07807 (2021) - [i72]Daniel Suo, Cyril Zhang, Paula Gradu, Udaya Ghai, Xinyi Chen, Edgar Minasyan, Naman Agarwal, Karan Singh, Julienne LaChance, Tom Zajdel, Manuel Schottdorf, Daniel J. Cohen, Elad Hazan:
Machine Learning for Mechanical Ventilation Control (Extended Abstract). CoRR abs/2111.10434 (2021) - 2020
- [c90]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. ALT 2020: 386-407 - [c89]Elad Hazan, Sham M. Kakade, Karan Singh:
The Nonstochastic Control Problem. ALT 2020: 408-421 - [c88]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The Gradient Complexity of Linear Regression. COLT 2020: 627-647 - [c87]Elad Hazan, Edgar Minasyan:
Faster Projection-free Online Learning. COLT 2020: 1877-1893 - [c86]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. COLT 2020: 3320-3436 - [c85]Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang:
Extreme Tensoring for Low-Memory Preconditioning. ICLR 2020 - [c84]Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu:
Boosting for Control of Dynamical Systems. ICML 2020: 96-103 - [c83]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. NeurIPS 2020 - [c82]Paula Gradu, John Hallman, Elad Hazan:
Non-Stochastic Control with Bandit Feedback. NeurIPS 2020 - [c81]Orestis Plevrakis, Elad Hazan:
Geometric Exploration for Online Control. NeurIPS 2020 - [i71]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. CoRR abs/2001.09254 (2020) - [i70]Elad Hazan, Edgar Minasyan:
Faster Projection-free Online Learning. CoRR abs/2001.11568 (2020) - [i69]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. CoRR abs/2001.11704 (2020) - [i68]Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, Cyril Zhang:
Disentangling Adaptive Gradient Methods from Learning Rates. CoRR abs/2002.11803 (2020) - [i67]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. CoRR abs/2003.01150 (2020) - [i66]Paula Gradu, Elad Hazan, Edgar Minasyan:
Adaptive Regret for Control of Time-Varying Dynamics. CoRR abs/2007.04393 (2020) - [i65]Xinyi Chen, Elad Hazan:
Black-Box Control for Linear Dynamical Systems. CoRR abs/2007.06650 (2020) - [i64]Nataly Brukhim, Elad Hazan:
Online Boosting with Bandit Feedback. CoRR abs/2007.11975 (2020) - [i63]Paula Gradu, John Hallman, Elad Hazan:
Non-Stochastic Control with Bandit Feedback. CoRR abs/2008.05523 (2020) - [i62]Orestis Plevrakis, Elad Hazan:
Geometric Exploration for Online Control. CoRR abs/2010.13178 (2020) - [i61]Udaya Ghai, David Snyder, Anirudha Majumdar, Elad Hazan:
Generating Adversarial Disturbances for Controller Verification. CoRR abs/2012.06695 (2020)
2010 – 2019
- 2019
- [c80]Brian Bullins, Elad Hazan, Adam Kalai, Roi Livni:
Generalize Across Tasks: Efficient Algorithms for Linear Representation Learning. ALT 2019: 235-246 - [c79]Naman Agarwal, Alon Gonen, Elad Hazan:
Learning in Non-convex Games with an Optimization Oracle. COLT 2019: 18-29 - [c78]Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, Yi Zhang:
Efficient Full-Matrix Adaptive Regularization. ICML 2019: 102-110 - [c77]Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, Karan Singh:
Online Control with Adversarial Disturbances. ICML 2019: 111-119 - [c76]Elad Hazan, Sham M. Kakade, Karan Singh, Abby Van Soest:
Provably Efficient Maximum Entropy Exploration. ICML 2019: 2681-2691 - [c75]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. NeurIPS 2019: 8699-8709 - [c74]Naman Agarwal, Elad Hazan, Karan Singh:
Logarithmic Regret for Online Control. NeurIPS 2019: 10175-10184 - [i60]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. CoRR abs/1902.01903 (2019) - [i59]Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang:
Extreme Tensoring for Low-Memory Preconditioning. CoRR abs/1902.04620 (2019) - [i58]Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, Karan Singh:
Online Control with Adversarial Disturbances. CoRR abs/1902.08721 (2019) - [i57]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. CoRR abs/1905.11311 (2019) - [i56]Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu:
Boosting for Dynamical Systems. CoRR abs/1906.08720 (2019) - [i55]Elad Hazan:
Lecture Notes: Optimization for Machine Learning. CoRR abs/1909.03550 (2019) - [i54]Naman Agarwal, Elad Hazan, Karan Singh:
Logarithmic Regret for Online Control. CoRR abs/1909.05062 (2019) - [i53]Elad Hazan:
Introduction to Online Convex Optimization. CoRR abs/1909.05207 (2019) - [i52]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The gradient complexity of linear regression. CoRR abs/1911.02212 (2019) - [i51]Elad Hazan, Sham M. Kakade, Karan Singh:
The Nonstochastic Control Problem. CoRR abs/1911.12178 (2019) - 2018
- [c73]Naman Agarwal, Elad Hazan:
Lower Bounds for Higher-Order Convex Optimization. COLT 2018: 774-792 - [c72]Elad Hazan, Roi Livni:
Open problem: Improper learning of mixtures of Gaussians. COLT 2018: 3399-3402 - [c71]Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Towards Provable Control for Unknown Linear Dynamical Systems. ICLR (Workshop) 2018 - [c70]Elad Hazan, Adam R. Klivans, Yang Yuan:
Hyperparameter optimization: a spectral approach. ICLR (Poster) 2018 - [c69]Sanjeev Arora, Nadav Cohen, Elad Hazan:
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. ICML 2018: 244-253 - [c68]Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Spectral Filtering for General Linear Dynamical Systems. NeurIPS 2018: 4639-4648 - [c67]Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li:
Online Improper Learning with an Approximation Oracle. NeurIPS 2018: 5657-5665 - [c66]Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, Ashwin Nayak:
Online Learning of Quantum States. NeurIPS 2018: 8976-8986 - [i50]Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Spectral Filtering for General Linear Dynamical Systems. CoRR abs/1802.03981 (2018) - [i49]Sanjeev Arora, Nadav Cohen, Elad Hazan:
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. CoRR abs/1802.06509 (2018) - [i48]Scott Aaronson, Xinyi Chen, Elad Hazan, Ashwin Nayak:
Online Learning of Quantum States. CoRR abs/1802.09025 (2018) - [i47]Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li:
Online Improper Learning with an Approximation Oracle. CoRR abs/1804.07837 (2018) - [i46]Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, Yi Zhang:
The Case for Full-Matrix Adaptive Regularization. CoRR abs/1806.02958 (2018) - [i45]Alon Gonen, Elad Hazan:
Learning in Non-convex Games with an Optimization Oracle. CoRR abs/1810.07362 (2018) - [i44]Elad Hazan, Sham M. Kakade, Karan Singh, Abby Van Soest:
Provably Efficient Maximum Entropy Exploration. CoRR abs/1812.02690 (2018) - 2017
- [j23]Naman Agarwal, Brian Bullins, Elad Hazan:
Second-Order Stochastic Optimization for Machine Learning in Linear Time. J. Mach. Learn. Res. 18: 116:1-116:40 (2017) - [j22]Elad Hazan
, Satyen Kale, Shai Shalev-Shwartz:
Near-Optimal Algorithms for Online Matrix Prediction. SIAM J. Comput. 46(2): 744-773 (2017) - [c65]Elad Hazan, Karan Singh, Cyril Zhang:
Efficient Regret Minimization in Non-Convex Games. ICML 2017: 1433-1441 - [c64]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. NIPS 2017: 6191-6200 - [c63]Elad Hazan, Karan Singh, Cyril Zhang:
Learning Linear Dynamical Systems via Spectral Filtering. NIPS 2017: 6702-6712 - [c62]Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan
, Tengyu Ma:
Finding approximate local minima faster than gradient descent. STOC 2017: 1195-1199 - [i43]Elad Hazan, Adam R. Klivans, Yang Yuan:
Hyperparameter Optimization: A Spectral Approach. CoRR abs/1706.00764 (2017) - [i42]Elad Hazan, Karan Singh, Cyril Zhang:
Efficient Regret Minimization in Non-Convex Games. CoRR abs/1708.00075 (2017) - [i41]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. CoRR abs/1708.02105 (2017) - [i40]Naman Agarwal, Elad Hazan:
Lower Bounds for Higher-Order Convex Optimization. CoRR abs/1710.10329 (2017) - [i39]Elad Hazan, Karan Singh, Cyril Zhang:
Learning Linear Dynamical Systems via Spectral Filtering. CoRR abs/1711.00946 (2017) - 2016
- [j21]Elad Hazan:
Introduction to Online Convex Optimization. Found. Trends Optim. 2(3-4): 157-325 (2016) - [j20]Elad Hazan, Zohar S. Karnin:
Volumetric Spanners: An Efficient Exploration Basis for Learning. J. Mach. Learn. Res. 17: 119:1-119:34 (2016) - [j19]Elad Hazan
, Satyen Kale, Manfred K. Warmuth:
Learning rotations with little regret. Mach. Learn. 104(1): 129-148 (2016) - [j18]Dan Garber, Elad Hazan
:
Sublinear time algorithms for approximate semidefinite programming. Math. Program. 158(1-2): 329-361 (2016) - [j17]Elad Hazan
, Tomer Koren
:
A linear-time algorithm for trust region problems. Math. Program. 158(1-2): 363-381 (2016) - [j16]Dan Garber, Elad Hazan
:
A Linearly Convergent Variant of the Conditional Gradient Algorithm under Strong Convexity, with Applications to Online and Stochastic Optimization. SIAM J. Optim. 26(3): 1493-1528 (2016) - [c61]Elad Hazan, Tomer Koren, Roi Livni, Yishay Mansour:
Online Learning with Low Rank Experts. COLT 2016: 1096-1114 - [c60]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. ICML 2016: 699-707 - [c59]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. ICML 2016: 1263-1271 - [c58]Elad Hazan, Kfir Yehuda Levy, Shai Shalev-Shwartz:
On Graduated Optimization for Stochastic Non-Convex Problems. ICML 2016: 1833-1841 - [c57]Jacob D. Abernethy, Elad Hazan:
Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier. ICML 2016: 2520-2528 - [c56]Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, Aaron Sidford:
Faster Eigenvector Computation via Shift-and-Invert Preconditioning. ICML 2016: 2626-2634 - [c55]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. NIPS 2016: 1606-1614 - [c54]Elad Hazan, Tengyu Ma:
A Non-generative Framework and Convex Relaxations for Unsupervised Learning. NIPS 2016: 3306-3314 - [c53]Brian Bullins, Elad Hazan, Tomer Koren:
The Limits of Learning with Missing Data. NIPS 2016: 3495-3503 - [c52]Elad Hazan
, Tomer Koren:
The computational power of optimization in online learning. STOC 2016: 128-141 - [i38]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. CoRR abs/1602.02101 (2016) - [i37]Naman Agarwal, Brian Bullins, Elad Hazan:
Second Order Stochastic Optimization in Linear Time. CoRR abs/1602.03943 (2016) - [i36]Elad Hazan, Yuanzhi Li:
An optimal algorithm for bandit convex optimization. CoRR abs/1603.04350 (2016) - [i35]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. CoRR abs/1603.05642 (2016) - [i34]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. CoRR abs/1603.05643 (2016) - [i33]Elad Hazan, Tomer Koren, Roi Livni, Yishay Mansour:
Online Learning with Low Rank Experts. CoRR abs/1603.06352 (2016) - [i32]Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, Aaron Sidford:
Faster Eigenvector Computation via Shift-and-Invert Preconditioning. CoRR abs/1605.08754 (2016) - [i31]