default search action
Yee Whye Teh
Person information
- affiliation: University of Oxford, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j24]Mrinank Sharma, Tom Rainforth, Yee Whye Teh, Vincent Fortuin:
Incorporating Unlabelled Data into Bayesian Neural Networks. Trans. Mach. Learn. Res. 2024 (2024) - [c155]Ning Miao, Yee Whye Teh, Tom Rainforth:
SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning. ICLR 2024 - [c154]Michalis K. Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, Jörg Bornschein:
Kalman Filter for Online Classification of Non-Stationary Data. ICLR 2024 - [c153]Shengzhuang Chen, Jihoon Tack, Yunqiao Yang, Yee Whye Teh, Jonathan Richard Schwarz, Ying Wei:
Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts. ICML 2024 - [c152]Leo Klarner, Tim G. J. Rudner, Garrett M. Morris, Charlotte M. Deane, Yee Whye Teh:
Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design. ICML 2024 - [c151]Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David B. Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne, Tim G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, Ruqi Zhang:
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI. ICML 2024 - [c150]Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, Jakob Nicolaus Foerster:
EvIL: Evolution Strategies for Generalisable Imitation Learning. ICML 2024 - [i124]Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David B. Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne, Tim G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, Ruqi Zhang:
Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI. CoRR abs/2402.00809 (2024) - [i123]Anya Sims, Cong Lu, Yee Whye Teh:
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning. CoRR abs/2402.12527 (2024) - [i122]Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George-Cristian Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando de Freitas, Caglar Gulcehre:
Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models. CoRR abs/2402.19427 (2024) - [i121]Amal Rannen-Triki, Jörg Bornschein, Razvan Pascanu, Marcus Hutter, András György, Alexandre Galashov, Yee Whye Teh, Michalis K. Titsias:
Revisiting Dynamic Evaluation: Online Adaptation for Large Language Models. CoRR abs/2403.01518 (2024) - [i120]Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, Jonathan Richard Schwarz:
Online Adaptation of Language Models with a Memory of Amortized Contexts. CoRR abs/2403.04317 (2024) - [i119]Shengzhuang Chen, Jihoon Tack, Yunqiao Yang, Yee Whye Teh, Jonathan Richard Schwarz, Ying Wei:
Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts. CoRR abs/2403.08477 (2024) - [i118]Aleksandar Botev, Soham De, Samuel L. Smith, Anushan Fernando, George-Cristian Muraru, Ruba Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Sertan Girgin, Olivier Bachem, Alek Andreev, Kathleen Kenealy, Thomas Mesnard, Cassidy Hardin, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Armand Joulin, Noah Fiedel, Evan Senter, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, David Budden, Arnaud Doucet, Sharad Vikram, Adam Paszke, Trevor Gale, Sebastian Borgeaud, Charlie Chen, Andy Brock, Antonia Paterson, Jenny Brennan, Meg Risdal, Raj Gundluru, Nesh Devanathan, Paul Mooney, Nilay Chauhan, Phil Culliton, Luiz GUStavo Martins, Elisa Bandy, David Huntsperger, Glenn Cameron, Arthur Zucker, Tris Warkentin, Ludovic Peran, Minh Giang, Zoubin Ghahramani, Clément Farabet, Koray Kavukcuoglu, Demis Hassabis, Raia Hadsell, Yee Whye Teh, Nando de Frietas:
RecurrentGemma: Moving Past Transformers for Efficient Open Language Models. CoRR abs/2404.07839 (2024) - [i117]Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, Jakob Nicolaus Foerster:
EvIL: Evolution Strategies for Generalisable Imitation Learning. CoRR abs/2406.11905 (2024) - [i116]Leo Klarner, Tim G. J. Rudner, Garrett M. Morris, Charlotte M. Deane, Yee Whye Teh:
Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design. CoRR abs/2407.11942 (2024) - [i115]Leo Zhang, Kianoosh Ashouritaklimi, Yee Whye Teh, Rob Cornish:
SymDiff: Equivariant Diffusion via Stochastic Symmetrisation. CoRR abs/2410.06262 (2024) - [i114]Guneet S. Dhillon, Xingjian Shi, Yee Whye Teh, Alex Smola:
L3Ms - Lagrange Large Language Models. CoRR abs/2410.21533 (2024) - 2023
- [j23]Jörg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan Chaudhry, Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuan Feng, Jiajun Shen, Sylvestre-Alvise Rebuffi, Kitty Stacpoole, Diego de Las Casas, Will Hawkins, Angeliki Lazaridou, Yee Whye Teh, Andrei A. Rusu, Razvan Pascanu, Marc'Aurelio Ranzato:
Nevis'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research. J. Mach. Learn. Res. 24: 308:1-308:77 (2023) - [j22]Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, Yee Whye Teh:
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations. Trans. Mach. Learn. Res. 2023 (2023) - [j21]Francisca Vasconcelos, Bobby He, Nalini M. Singh, Yee Whye Teh:
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography. Trans. Mach. Learn. Res. 2023 (2023) - [c149]Alexandre Galashov, Jovana Mitrovic, Dhruva Tirumala, Yee Whye Teh, Timothy Nguyen, Arslan Chaudhry, Razvan Pascanu:
Continually learning representations at scale. CoLLAs 2023: 534-547 - [c148]Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L. Smith, Yee Whye Teh:
Deep Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation. ICLR 2023 - [c147]Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Razvan Pascanu, Jonathan Godwin:
Pre-training via Denoising for Molecular Property Prediction. ICLR 2023 - [c146]Leo Klarner, Tim G. J. Rudner, Michael Reutlinger, Torsten Schindler, Garrett M. Morris, Charlotte M. Deane, Yee Whye Teh:
Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions. ICML 2023: 17176-17197 - [c145]Ning Miao, Tom Rainforth, Emile Mathieu, Yann Dubois, Yee Whye Teh, Adam Foster, Hyunjik Kim:
Learning Instance-Specific Augmentations by Capturing Local Invariances. ICML 2023: 24720-24736 - [c144]Jonathan Richard Schwarz, Jihoon Tack, Yee Whye Teh, Jaeho Lee, Jinwoo Shin:
Modality-Agnostic Variational Compression of Implicit Neural Representations. ICML 2023: 30342-30364 - [c143]Jin Xu, Emilien Dupont, Kaspar Märtens, Thomas Rainforth, Yee Whye Teh:
Deep Stochastic Processes via Functional Markov Transition Operators. NeurIPS 2023 - [c142]Cong Lu, Philip J. Ball, Yee Whye Teh, Jack Parker-Holder:
Synthetic Experience Replay. NeurIPS 2023 - [c141]Emile Mathieu, Vincent Dutordoir, Michael J. Hutchinson, Valentin De Bortoli, Yee Whye Teh, Richard E. Turner:
Geometric Neural Diffusion Processes. NeurIPS 2023 - [i113]Jonathan Richard Schwarz, Jihoon Tack, Yee Whye Teh, Jaeho Lee, Jinwoo Shin:
Modality-Agnostic Variational Compression of Implicit Neural Representations. CoRR abs/2301.09479 (2023) - [i112]Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L. Smith, Yee Whye Teh:
Deep Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation. CoRR abs/2302.10322 (2023) - [i111]Mrinank Sharma, Tom Rainforth, Yee Whye Teh, Vincent Fortuin:
Incorporating Unlabelled Data into Bayesian Neural Networks. CoRR abs/2304.01762 (2023) - [i110]Jin Xu, Emilien Dupont, Kaspar Märtens, Tom Rainforth, Yee Whye Teh:
Deep Stochastic Processes via Functional Markov Transition Operators. CoRR abs/2305.15574 (2023) - [i109]Michalis K. Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, Jörg Bornschein:
Kalman Filter for Online Classification of Non-Stationary Data. CoRR abs/2306.08448 (2023) - [i108]Emile Mathieu, Vincent Dutordoir, Michael J. Hutchinson, Valentin De Bortoli, Yee Whye Teh, Richard E. Turner:
Geometric Neural Diffusion Processes. CoRR abs/2307.05431 (2023) - [i107]Leo Klarner, Tim G. J. Rudner, Michael Reutlinger, Torsten Schindler, Garrett M. Morris, Charlotte M. Deane, Yee Whye Teh:
Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions. CoRR abs/2307.15073 (2023) - [i106]Ning Miao, Yee Whye Teh, Tom Rainforth:
SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning. CoRR abs/2308.00436 (2023) - [i105]Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, Yarin Gal:
Tractable Function-Space Variational Inference in Bayesian Neural Networks. CoRR abs/2312.17199 (2023) - [i104]Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, Yarin Gal:
Continual Learning via Sequential Function-Space Variational Inference. CoRR abs/2312.17210 (2023) - 2022
- [j20]Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess:
Behavior Priors for Efficient Reinforcement Learning. J. Mach. Learn. Res. 23: 221:1-221:68 (2022) - [j19]Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, Arnaud Doucet:
COIN++: Neural Compression Across Modalities. Trans. Mach. Learn. Res. 2022 (2022) - [j18]Jonathan Schwarz, Yee Whye Teh:
Meta-Learning Sparse Compression Networks. Trans. Mach. Learn. Res. 2022 (2022) - [c140]Emilien Dupont, Yee Whye Teh, Arnaud Doucet:
Generative Models as Distributions of Functions. AISTATS 2022: 2989-3015 - [c139]Saeid Naderiparizi, Adam Scibior, Andreas Munk, Mehrdad Ghadiri, Atilim Gunes Baydin, Bradley J. Gram-Hansen, Christian A. Schröder de Witt, Robert Zinkov, Philip H. S. Torr, Tom Rainforth, Yee Whye Teh, Frank Wood:
Amortized Rejection Sampling in Universal Probabilistic Programming. AISTATS 2022: 8392-8412 - [c138]Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jörg Bornschein, Claudia Clopath, Yee Whye Teh, Razvan Pascanu:
When Does Re-initialization Work? ICBINB 2022: 12-26 - [c137]Ning Miao, Emile Mathieu, Siddharth N, Yee Whye Teh, Tom Rainforth:
On Incorporating Inductive Biases into VAEs. ICLR 2022 - [c136]Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, Yarin Gal:
Continual Learning via Sequential Function-Space Variational Inference. ICML 2022: 18871-18887 - [c135]Valentin De Bortoli, Emile Mathieu, Michael J. Hutchinson, James Thornton, Yee Whye Teh, Arnaud Doucet:
Riemannian Score-Based Generative Modelling. NeurIPS 2022 - [c134]Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, Yarin Gal:
Tractable Function-Space Variational Inference in Bayesian Neural Networks. NeurIPS 2022 - [c133]Muhammad Faaiz Taufiq, Jean-Francois Ton, Rob Cornish, Yee Whye Teh, Arnaud Doucet:
Conformal Off-Policy Prediction in Contextual Bandits. NeurIPS 2022 - [c132]Cian Naik, François Caron, Judith Rousseau, Yee Whye Teh, Konstantina Palla:
Bayesian Nonparametrics for Sparse Dynamic Networks. ECML/PKDD (5) 2022: 191-206 - [i103]Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, Arnaud Doucet:
COIN++: Data Agnostic Neural Compression. CoRR abs/2201.12904 (2022) - [i102]Valentin De Bortoli, Emile Mathieu, Michael J. Hutchinson, James Thornton, Yee Whye Teh, Arnaud Doucet:
Riemannian Score-Based Generative Modeling. CoRR abs/2202.02763 (2022) - [i101]Francisca Vasconcelos, Bobby He, Nalini M. Singh, Yee Whye Teh:
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography. CoRR abs/2202.10847 (2022) - [i100]Jonathan Richard Schwarz, Yee Whye Teh:
Meta-Learning Sparse Compression Networks. CoRR abs/2205.08957 (2022) - [i99]Ning Miao, Emile Mathieu, Yann Dubois, Tom Rainforth, Yee Whye Teh, Adam Foster, Hyunjik Kim:
Learning Instance-Specific Data Augmentations. CoRR abs/2206.00051 (2022) - [i98]Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Razvan Pascanu, Jonathan Godwin:
Pre-training via Denoising for Molecular Property Prediction. CoRR abs/2206.00133 (2022) - [i97]Muhammad Faaiz Taufiq, Jean-Francois Ton, Robert Cornish, Yee Whye Teh, Arnaud Doucet:
Conformal Off-Policy Prediction in Contextual Bandits. CoRR abs/2206.04405 (2022) - [i96]Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, Yee Whye Teh:
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations. CoRR abs/2206.04779 (2022) - [i95]Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jörg Bornschein, Claudia Clopath, Yee Whye Teh, Razvan Pascanu:
When Does Re-initialization Work? CoRR abs/2206.10011 (2022) - [i94]James Thornton, Michael J. Hutchinson, Emile Mathieu, Valentin De Bortoli, Yee Whye Teh, Arnaud Doucet:
Riemannian Diffusion Schrödinger Bridge. CoRR abs/2207.03024 (2022) - [i93]Jörg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan Chaudhry, Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuang Feng, Jiajun Shen, Sylvestre-Alvise Rebuffi, Kitty Stacpoole, Diego de Las Casas, Will Hawkins, Angeliki Lazaridou, Yee Whye Teh, Andrei A. Rusu, Razvan Pascanu, Marc'Aurelio Ranzato:
NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research. CoRR abs/2211.11747 (2022) - [i92]Tim G. J. Rudner, Cong Lu, Michael A. Osborne, Yarin Gal, Yee Whye Teh:
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations. CoRR abs/2212.13936 (2022) - 2021
- [j17]Qi Wang, Vinayak Rao, Yee Whye Teh:
An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions. J. Comput. Graph. Stat. 30(2): 297-311 (2021) - [j16]Chris J. Maddison, Daniel Paulin, Yee Whye Teh, Arnaud Doucet:
Dual Space Preconditioning for Gradient Descent. SIAM J. Optim. 31(1): 991-1016 (2021) - [c131]Jean-Francois Ton, Lucian Chan, Yee Whye Teh, Dino Sejdinovic:
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings. AISTATS 2021: 1099-1107 - [c130]Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, Yee Whye Teh:
Robust Pruning at Initialization. ICLR 2021 - [c129]Peter Holderrieth, Michael J. Hutchinson, Yee Whye Teh:
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes. ICML 2021: 4297-4307 - [c128]Michael J. Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, Hyunjik Kim:
LieTransformer: Equivariant Self-Attention for Lie Groups. ICML 2021: 4533-4543 - [c127]Siu Lun Chau, Jean-Francois Ton, Javier González, Yee Whye Teh, Dino Sejdinovic:
BayesIMP: Uncertainty Quantification for Causal Data Fusion. NeurIPS 2021: 3466-3477 - [c126]Jin Xu, Hyunjik Kim, Thomas Rainforth, Yee Whye Teh:
Group Equivariant Subsampling. NeurIPS 2021: 5934-5946 - [c125]Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C. Holmes, Frank Hutter, Yee Whye Teh:
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift. NeurIPS 2021: 7898-7911 - [c124]Michael J. Hutchinson, Alexander Terenin, Viacheslav Borovitskiy, So Takao, Yee Whye Teh, Marc Peter Deisenroth:
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels. NeurIPS 2021: 17160-17169 - [c123]Tim G. J. Rudner, Cong Lu, Michael A. Osborne, Yarin Gal, Yee Whye Teh:
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations. NeurIPS 2021: 28376-28389 - [c122]Emile Mathieu, Adam Foster, Yee Whye Teh:
On Contrastive Representations of Stochastic Processes. NeurIPS 2021: 28823-28835 - [c121]Jonathan Schwarz, Siddhant M. Jayakumar, Razvan Pascanu, Peter E. Latham, Yee Whye Teh:
Powerpropagation: A sparsity inducing weight reparameterisation. NeurIPS 2021: 28889-28903 - [i91]Emilien Dupont, Yee Whye Teh, Arnaud Doucet:
Generative Models as Distributions of Functions. CoRR abs/2102.04776 (2021) - [i90]Emilien Dupont, Adam Golinski, Milad Alizadeh, Yee Whye Teh, Arnaud Doucet:
COIN: COmpression with Implicit Neural representations. CoRR abs/2103.03123 (2021) - [i89]Siu Lun Chau, Jean-François Ton, Javier González, Yee Whye Teh, Dino Sejdinovic:
BayesIMP: Uncertainty Quantification for Causal Data Fusion. CoRR abs/2106.03477 (2021) - [i88]Jin Xu, Hyunjik Kim, Tom Rainforth, Yee Whye Teh:
Group Equivariant Subsampling. CoRR abs/2106.05886 (2021) - [i87]Emile Mathieu, Adam Foster, Yee Whye Teh:
On Contrastive Representations of Stochastic Processes. CoRR abs/2106.10052 (2021) - [i86]Ning Miao, Emile Mathieu, N. Siddharth, Yee Whye Teh, Tom Rainforth:
InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via Intermediary Latents. CoRR abs/2106.13746 (2021) - [i85]Jonathan Schwarz, Siddhant M. Jayakumar, Razvan Pascanu, Peter E. Latham, Yee Whye Teh:
Powerpropagation: A sparsity inducing weight reparameterisation. CoRR abs/2110.00296 (2021) - [i84]Michael J. Hutchinson, Alexander Terenin, Viacheslav Borovitskiy, So Takao, Yee Whye Teh, Marc Peter Deisenroth:
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Equivariant Projected Kernels. CoRR abs/2110.14423 (2021) - 2020
- [j15]Benjamin Bloem-Reddy, Yee Whye Teh:
Probabilistic Symmetries and Invariant Neural Networks. J. Mach. Learn. Res. 21: 90:1-90:61 (2020) - [c120]Adam Foster, Martin Jankowiak, Matthew O'Meara, Yee Whye Teh, Tom Rainforth:
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments. AISTATS 2020: 2959-2969 - [c119]Giuseppe Di Benedetto, Francois Caron, Yee Whye Teh:
Non-exchangeable feature allocation models with sublinear growth of the feature sizes. AISTATS 2020: 3208-3218 - [c118]Siddhant M. Jayakumar, Wojciech M. Czarnecki, Jacob Menick, Jonathan Schwarz, Jack W. Rae, Simon Osindero, Yee Whye Teh, Tim Harley, Razvan Pascanu:
Multiplicative Interactions and Where to Find Them. ICLR 2020 - [c117]Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, Yee Whye Teh:
Functional Regularisation for Continual Learning with Gaussian Processes. ICLR 2020 - [c116]Umut Simsekli, Lingjiong Zhu, Yee Whye Teh, Mert Gürbüzbalaban:
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise. ICML 2020: 8970-8980 - [c115]Joost van Amersfoort, Lewis Smith, Yee Whye Teh, Yarin Gal:
Uncertainty Estimation Using a Single Deep Deterministic Neural Network. ICML 2020: 9690-9700 - [c114]Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh:
MetaFun: Meta-Learning with Iterative Functional Updates. ICML 2020: 10617-10627 - [c113]Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth:
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. ICML 2020: 11534-11545 - [c112]Bobby He, Balaji Lakshminarayanan, Yee Whye Teh:
Bayesian Deep Ensembles via the Neural Tangent Kernel. NeurIPS 2020 - [c111]Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh:
Bootstrapping neural processes. NeurIPS 2020 - [c110]Mrinank Sharma, Sören Mindermann, Jan Markus Brauner, Gavin Leech, Anna B. Stephenson, Tomas Gavenciak, Jan Kulveit, Yee Whye Teh, Leonid Chindelevitch, Yarin Gal:
How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? NeurIPS 2020 - [i83]Umut Simsekli, Lingjiong Zhu, Yee Whye Teh, Mert Gürbüzbalaban:
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise. CoRR abs/2002.05685 (2020) - [i82]Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, Yee Whye Teh:
Pruning untrained neural networks: Principles and Analysis. CoRR abs/2002.08797 (2020) - [i81]Joost van Amersfoort, Lewis Smith, Yee Whye Teh, Yarin Gal:
Simple and Scalable Epistemic Uncertainty Estimation Using a Single Deep Deterministic Neural Network. CoRR abs/2003.02037 (2020) - [i80]Giuseppe Di Benedetto, François Caron, Yee Whye Teh:
Non-exchangeable feature allocation models with sublinear growth of the feature sizes. CoRR abs/2003.13491 (2020) - [i79]Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C. Holmes, Frank Hutter, Yee Whye Teh:
Neural Ensemble Search for Performant and Calibrated Predictions. CoRR abs/2006.08573 (2020) - [i78]Bobby He, Balaji Lakshminarayanan, Yee Whye Teh:
Bayesian Deep Ensembles via the Neural Tangent Kernel. CoRR abs/2007.05864 (2020) - [i77]Bryn Elesedy, Varun Kanade, Yee Whye Teh:
Lottery Tickets in Linear Models: An Analysis of Iterative Magnitude Pruning. CoRR abs/2007.08243 (2020) - [i76]Mrinank Sharma, Sören Mindermann, Jan Markus Brauner, Gavin Leech, Anna B. Stephenson, Tomas Gavenciak, Jan Kulveit, Yee Whye Teh, Leonid Chindelevitch, Yarin Gal:
On the robustness of effectiveness estimation of nonpharmaceutical interventions against COVID-19 transmission. CoRR abs/2007.13454 (2020) - [i75]Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh:
Bootstrapping Neural Processes. CoRR abs/2008.02956 (2020) - [i74]Alexandre Galashov, Jakub Sygnowski, Guillaume Desjardins, Jan Humplik, Leonard Hasenclever, Rae Jeong, Yee Whye Teh, Nicolas Heess:
Importance Weighted Policy Learning and Adaption. CoRR abs/2009.04875 (2020) - [i73]Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess:
Behavior Priors for Efficient Reinforcement Learning. CoRR abs/2010.14274 (2020) - [i72]Ari Pakman, Yueqi Wang, Yoonho Lee, Pallab Basu, Juho Lee, Yee Whye Teh, Liam Paninski:
Attentive Clustering Processes. CoRR abs/2010.15727 (2020) - [i71]Peter Holderrieth, Michael J. Hutchinson, Yee Whye Teh:
Equivariant Conditional Neural Processes. CoRR abs/2011.12916 (2020) - [i70]Michael J. Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, Hyunjik Kim:
LieTransformer: Equivariant self-attention for Lie Groups. CoRR abs/2012.10885 (2020)
2010 – 2019
- 2019
- [c109]Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye Teh, Razvan Pascanu, Nicolas Heess:
Information asymmetry in KL-regularized RL. ICLR (Poster) 2019 - [c108]Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh:
Attentive Neural Processes. ICLR (Poster) 2019 - [c107]Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, Nicolas Heess:
Neural Probabilistic Motor Primitives for Humanoid Control.