


default search action
25th ICML 2008: Helsinki, Finland
- William W. Cohen, Andrew McCallum, Sam T. Roweis:

Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008. ACM International Conference Proceeding Series 307, ACM 2008, ISBN 978-1-60558-205-4 - Ryan Prescott Adams, Oliver Stegle:

Gaussian process product models for nonparametric nonstationarity. 1-8 - Cyril Allauzen, Mehryar Mohri, Ameet Talwalkar:

Sequence kernels for predicting protein essentiality. 9-16 - Qi An, Chunping Wang, Ivo Shterev, Eric Wang, Lawrence Carin

, David B. Dunson:
Hierarchical kernel stick-breaking process for multi-task image analysis. 17-24 - Francis R. Bach:

Graph kernels between point clouds. 25-32 - Francis R. Bach:

Bolasso: model consistent Lasso estimation through the bootstrap. 33-40 - Leon Barrett, Srini Narayanan:

Learning all optimal policies with multiple criteria. 41-47 - Charles Bergeron, Jed Zaretzki, Curt M. Breneman, Kristin P. Bennett:

Multiple instance ranking. 48-55 - Steffen Bickel, Jasmina Bogojeska

, Thomas Lengauer, Tobias Scheffer:
Multi-task learning for HIV therapy screening. 56-63 - Michael Biggs, Ali Ghodsi, Stephen A. Vavasis:

Nonnegative matrix factorization via rank-one downdate. 64-71 - Michael H. Bowling, Michael Johanson, Neil Burch, Duane Szafron:

Strategy evaluation in extensive games with importance sampling. 72-79 - Brent Bryan, Jeff G. Schneider:

Actively learning level-sets of composite functions. 80-87 - Francois Caron, Arnaud Doucet:

Sparse Bayesian nonparametric regression. 88-95 - Rich Caruana, Nikolaos Karampatziakis, Ainur Yessenalina:

An empirical evaluation of supervised learning in high dimensions. 96-103 - Bryan Catanzaro, Narayanan Sundaram, Kurt Keutzer:

Fast support vector machine training and classification on graphics processors. 104-111 - Lawrence Cayton:

Fast nearest neighbor retrieval for bregman divergences. 112-119 - Hakan Cevikalp, Bill Triggs, Robi Polikar:

Nearest hyperdisk methods for high-dimensional classification. 120-127 - David L. Chen, Raymond J. Mooney:

Learning to sportscast: a test of grounded language acquisition. 128-135 - Jianhui Chen, Jieping Ye:

Training SVM with indefinite kernels. 136-143 - Adam Coates, Pieter Abbeel, Andrew Y. Ng:

Learning for control from multiple demonstrations. 144-151 - Tom Coleman, James Saunderson

, Anthony Wirth:
Spectral clustering with inconsistent advice. 152-159 - Ronan Collobert, Jason Weston:

A unified architecture for natural language processing: deep neural networks with multitask learning. 160-167 - Andrés Corrada-Emmanuel, Howard J. Schultz:

Autonomous geometric precision error estimation in low-level computer vision tasks. 168-175 - Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, Ashish Rastogi:

Stability of transductive regression algorithms. 176-183 - Koby Crammer, Partha Pratim Talukdar, Fernando C. N. Pereira:

A rate-distortion one-class model and its applications to clustering. 184-191 - John P. Cunningham, Krishna V. Shenoy, Maneesh Sahani:

Fast Gaussian process methods for point process intensity estimation. 192-199 - Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu:

Self-taught clustering. 200-207 - Sanjoy Dasgupta, Daniel J. Hsu:

Hierarchical sampling for active learning. 208-215 - Ofer Dekel, Ohad Shamir:

Learning to classify with missing and corrupted features. 216-223 - Krzysztof Dembczynski

, Wojciech Kotlowski, Roman Slowinski:
Maximum likelihood rule ensembles. 224-231 - Uwe Dick, Peter Haider, Tobias Scheffer:

Learning from incomplete data with infinite imputations. 232-239 - Carlos Diuk, Andre Cohen, Michael L. Littman:

An object-oriented representation for efficient reinforcement learning. 240-247 - Pinar Donmez, Jaime G. Carbonell:

Optimizing estimated loss reduction for active sampling in rank learning. 248-255 - Finale Doshi, Joelle Pineau, Nicholas Roy:

Reinforcement learning with limited reinforcement: using Bayes risk for active learning in POMDPs. 256-263 - Mark Dredze

, Koby Crammer, Fernando Pereira:
Confidence-weighted linear classification. 264-271 - John C. Duchi, Shai Shalev-Shwartz, Yoram Singer, Tushar Chandra:

Efficient projections onto the l1-ball for learning in high dimensions. 272-279 - Charles Dugas, David Gadoury:

Pointwise exact bootstrap distributions of cost curves. 280-287 - Murat Dundar, Matthias Wolf, Sarang Lakare, Marcos Salganicoff, Vikas C. Raykar:

Polyhedral classifier for target detection: a case study: colorectal cancer. 288-295 - Arkady Epshteyn, Adam Vogel, Gerald DeJong:

Active reinforcement learning. 296-303 - Thomas Finley, Thorsten Joachims:

Training structural SVMs when exact inference is intractable. 304-311 - Emily B. Fox, Erik B. Sudderth

, Michael I. Jordan
, Alan S. Willsky:
An HDP-HMM for systems with state persistence. 312-319 - Vojtech Franc

, Sören Sonnenburg:
Optimized cutting plane algorithm for support vector machines. 320-327 - Vojtech Franc, Pavel Laskov, Klaus-Robert Müller

:
Stopping conditions for exact computation of leave-one-out error in support vector machines. 328-335 - Jordan Frank, Shie Mannor

, Doina Precup:
Reinforcement learning in the presence of rare events. 336-343 - Ryan Gomes, Max Welling, Pietro Perona:

Memory bounded inference in topic models. 344-351 - Mehmet Gönen, Ethem Alpaydin:

Localized multiple kernel learning. 352-359 - Geoffrey J. Gordon, Amy Greenwald

, Casey Marks:
No-regret learning in convex games. 360-367 - Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao:

Boosting with incomplete information. 368-375 - Jihun Ham, Daniel D. Lee:

Grassmann discriminant analysis: a unifying view on subspace-based learning. 376-383 - Georg Heigold, Thomas Deselaers, Ralf Schlüter, Hermann Ney:

Modified MMI/MPE: a direct evaluation of the margin in speech recognition. 384-391 - Katherine A. Heller, Sinead Williamson, Zoubin Ghahramani:

Statistical models for partial membership. 392-399 - Steven C. H. Hoi, Rong Jin:

Active kernel learning. 400-407 - Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, S. Sundararajan:

A dual coordinate descent method for large-scale linear SVM. 408-415 - Tuyen N. Huynh, Raymond J. Mooney:

Discriminative structure and parameter learning for Markov logic networks. 416-423 - Aapo Hyvärinen, Shohei Shimizu, Patrik O. Hoyer:

Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity. 424-431 - Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari:

Efficient bandit algorithms for online multiclass prediction. 440-447 - Michael Karlen, Jason Weston, Ayse Erkan, Ronan Collobert:

Large scale manifold transduction. 448-455 - Kristian Kersting, Kurt Driessens:

Non-parametric policy gradients: a unified treatment of propositional and relational domains. 456-463 - Sergey Kirshner, Barnabás Póczos:

ICA and ISA using Schweizer-Wolff measure of dependence. 464-471 - Alexandre Klementiev, Dan Roth, Kevin Small:

Unsupervised rank aggregation with distance-based models. 472-479 - Pushmeet Kohli, Alexander Shekhovtsov

, Carsten Rother, Vladimir Kolmogorov, Philip H. S. Torr:
On partial optimality in multi-label MRFs. 480-487 - J. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, Charles DuHadway:

Space-indexed dynamic programming: learning to follow trajectories. 488-495 - Risi Kondor, Karsten M. Borgwardt

:
The skew spectrum of graphs. 496-503 - Ondrej Kuzelka, Filip Zelezný:

Fast estimation of first-order clause coverage through randomization and maximum likelihood. 504-511 - Yanyan Lan, Tie-Yan Liu, Tao Qin, Zhiming Ma, Hang Li:

Query-level stability and generalization in learning to rank. 512-519 - Niels Landwehr:

Modeling interleaved hidden processes. 520-527 - John Langford, Alexander L. Strehl, Jennifer Wortman:

Exploration scavenging. 528-535 - Hugo Larochelle, Yoshua Bengio:

Classification using discriminative restricted Boltzmann machines. 536-543 - Alessandro Lazaric, Marcello Restelli, Andrea Bonarini

:
Transfer of samples in batch reinforcement learning. 544-551 - Guy Lebanon, Yang Zhao:

Local likelihood modeling of temporal text streams. 552-559 - Lihong Li:

A worst-case comparison between temporal difference and residual gradient with linear function approximation. 560-567 - Lihong Li, Michael L. Littman, Thomas J. Walsh:

Knows what it knows: a framework for self-aware learning. 568-575 - Zhenguo Li, Jianzhuang Liu, Xiaoou Tang:

Pairwise constraint propagation by semidefinite programming for semi-supervised classification. 576-583 - Percy Liang, Michael I. Jordan

:
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. 584-591 - Percy Liang, Hal Daumé III, Dan Klein:

Structure compilation: trading structure for features. 592-599 - Nicolas Loeff, David A. Forsyth, Deepak Ramachandran:

ManifoldBoost: stagewise function approximation for fully-, semi- and un-supervised learning. 600-607 - Philip M. Long, Rocco A. Servedio:

Random classification noise defeats all convex potential boosters. 608-615 - Haiping Lu, Konstantinos N. Plataniotis, Anastasios N. Venetsanopoulos:

Uncorrelated multilinear principal component analysis through successive variance maximization. 616-623 - Zhengdong Lu, Todd K. Leen, Yonghong Huang, Deniz Erdogmus:

A reproducing kernel Hilbert space framework for pairwise time series distances. 624-631 - Takaki Makino, Toshihisa Takagi:

On-line discovery of temporal-difference networks. 632-639 - André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar

, Noah A. Smith, Eric P. Xing:
Nonextensive entropic kernels. 640-647 - Neville Mehta, Soumya Ray, Prasad Tadepalli

, Thomas G. Dietterich:
Automatic discovery and transfer of MAXQ hierarchies. 648-655 - Raghu Meka, Prateek Jain, Constantine Caramanis

, Inderjit S. Dhillon:
Rank minimization via online learning. 656-663 - Francisco S. Melo, Sean P. Meyn, M. Isabel Ribeiro:

An analysis of reinforcement learning with function approximation. 664-671 - Volodymyr Mnih, Csaba Szepesvári, Jean-Yves Audibert:

Empirical Bernstein stopping. 672-679 - M. Pawan Kumar, Philip H. S. Torr:

Efficiently solving convex relaxations for MAP estimation. 680-687 - Shravan Matthur Narayanamurthy, Balaraman Ravindran

:
On the hardness of finding symmetries in Markov decision processes. 688-695 - Siegfried Nijssen

:
Bayes optimal classification for decision trees. 696-703 - Sebastian Nowozin, Gökhan H. Bakir:

A decoupled approach to exemplar-based unsupervised learning. 704-711 - Deirdre B. O'Brien, Maya R. Gupta, Robert M. Gray:

Cost-sensitive multi-class classification from probability estimates. 712-719 - Francesco Orabona, Joseph Keshet, Barbara Caputo:

The projectron: a bounded kernel-based Perceptron. 720-727 - Hua Ouyang, Alexander G. Gray:

Learning dissimilarities by ranking: from SDP to QP. 728-735 - Jean-François Paiement, Yves Grandvalet

, Samy Bengio, Douglas Eck:
A distance model for rhythms. 736-743 - Mark Palatucci, Andrew Carlson:

On the chance accuracies of large collections of classifiers. 744-751 - Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, Michael L. Littman:

An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. 752-759 - Kai Puolamäki, Antti Ajanki, Samuel Kaski:

Learning to learn implicit queries from gaze patterns. 760-767 - Yuting Qi, Dehong Liu, David B. Dunson, Lawrence Carin

:
Multi-task compressive sensing with Dirichlet process priors. 768-775 - Novi Quadrianto

, Alexander J. Smola, Tibério S. Caetano, Quoc V. Le:
Estimating labels from label proportions. 776-783 - Filip Radlinski, Robert Kleinberg, Thorsten Joachims:

Learning diverse rankings with multi-armed bandits. 784-791 - Marc'Aurelio Ranzato, Martin Szummer:

Semi-supervised learning of compact document representations with deep networks. 792-799 - Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright:

Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes. 800-807 - Vikas C. Raykar, Balaji Krishnapuram, Jinbo Bi, Murat Dundar, R. Bharat Rao:

Bayesian multiple instance learning: automatic feature selection and inductive transfer. 808-815 - Joseph Reisinger, Peter Stone, Risto Miikkulainen:

Online kernel selection for Bayesian reinforcement learning. 816-823 - Lu Ren, David B. Dunson, Lawrence Carin

:
The dynamic hierarchical Dirichlet process. 824-831 - Irina Rish, Genady Grabarnik, Guillermo A. Cecchi, Francisco Pereira, Geoffrey J. Gordon:

Closed-form supervised dimensionality reduction with generalized linear models. 832-839 - Saharon Rosset:

Bi-level path following for cross validated solution of kernel quantile regression. 840-847 - Volker Roth

, Bernd Fischer:
The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. 848-855 - Hichem Sahbi, Jean-Yves Audibert, Jaonary Rabarisoa, Renaud Keriven:

Robust matching and recognition using context-dependent kernels. 856-863 - Jun Sakuma, Shigenobu Kobayashi, Rebecca N. Wright:

Privacy-preserving reinforcement learning. 864-871 - Ruslan Salakhutdinov, Iain Murray:

On the quantitative analysis of deep belief networks. 872-879 - Ruslan Salakhutdinov, Andriy Mnih:

Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. 880-887 - Sunita Sarawagi, Rahul Gupta:

Accurate max-margin training for structured output spaces. 888-895 - Purnamrita Sarkar, Andrew W. Moore, Amit Prakash:

Fast incremental proximity search in large graphs. 896-903 - Michael Schnall-Levin, Leonid Chindelevitch

, Bonnie Berger:
Inverting the Viterbi algorithm: an abstract framework for structure design. 904-911 - Matthias W. Seeger, Hannes Nickisch:

Compressed sensing and Bayesian experimental design. 912-919 - Yevgeny Seldin, Naftali Tishby:

Multi-classification by categorical features via clustering. 920-927 - Shai Shalev-Shwartz, Nathan Srebro:

SVM optimization: inverse dependence on training set size. 928-935 - Tao Shi, Mikhail Belkin, Bin Yu:

Data spectroscopy: learning mixture models using eigenspaces of convolution operators. 936-943 - Kilho Shin, Tetsuji Kuboyama

:
A generalization of Haussler's convolution kernel: mapping kernel. 944-951 - Suyash Shringarpure, Eric P. Xing:

mStruct: a new admixture model for inference of population structure in light of both genetic admixing and allele mutations. 952-959 - Christian D. Sigg

, Joachim M. Buhmann:
Expectation-maximization for sparse and non-negative PCA. 960-967 - David Silver, Richard S. Sutton, Martin Müller:

Sample-based learning and search with permanent and transient memories. 968-975 - Vikas Sindhwani, David S. Rosenberg:

An RKHS for multi-view learning and manifold co-regularization. 976-983 - Nataliya Sokolovska, Olivier Cappé, François Yvon:

The asymptotics of semi-supervised learning in discriminative probabilistic models. 984-991 - Le Song, Xinhua Zhang, Alexander J. Smola, Arthur Gretton

, Bernhard Schölkopf:
Tailoring density estimation via reproducing kernel moment matching. 992-999 - Daria Sorokina, Rich Caruana, Mirek Riedewald, Daniel Fink:

Detecting statistical interactions with additive groves of trees. 1000-1007 - Bharath K. Sriperumbudur, Omer A. Lang, Gert R. G. Lanckriet:

Metric embedding for kernel classification rules. 1008-1015 - Jiang Su, Harry Zhang, Charles X. Ling, Stan Matwin:

Discriminative parameter learning for Bayesian networks. 1016-1023 - Liang Sun, Shuiwang Ji

, Jieping Ye:
A least squares formulation for canonical correlation analysis. 1024-1031 - Umar Syed, Michael H. Bowling, Robert E. Schapire:

Apprenticeship learning using linear programming. 1032-1039 - Marie Szafranski, Yves Grandvalet

, Alain Rakotomamonjy:
Composite kernel learning. 1040-1047 - Istvan Szita, András Lörincz:

The many faces of optimism: a unifying approach. 1048-1055 - Akiko Takeda, Masashi Sugiyama:

nu-support vector machine as conditional value-at-risk minimization. 1056-1063 - Tijmen Tieleman:

Training restricted Boltzmann machines using approximations to the likelihood gradient. 1064-1071 - Tsuyoshi Ueno, Motoaki Kawanabe, Takeshi Mori, Shin-ichi Maeda, Shin Ishii:

A semiparametric statistical approach to model-free policy evaluation. 1072-1079 - Raquel Urtasun, David J. Fleet, Andreas Geiger, Jovan Popovic, Trevor Darrell, Neil D. Lawrence

:
Topologically-constrained latent variable models. 1080-1087 - Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, Zoubin Ghahramani:

Beam sampling for the infinite hidden Markov model. 1088-1095 - Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol:

Extracting and composing robust features with denoising autoencoders. 1096-1103 - Vladimir Vovk, Fedor Zhdanov:

Prediction with expert advice for the Brier game. 1104-1111 - Christian Walder

, Kwang In Kim, Bernhard Schölkopf:
Sparse multiscale gaussian process regression. 1112-1119 - Chang Wang, Sridhar Mahadevan:

Manifold alignment using Procrustes analysis. 1120-1127 - Hua-Yan Wang, Qiang Yang, Hong Qin, Hongbin Zha:

Dirichlet component analysis: feature extraction for compositional data. 1128-1135 - Hua-Yan Wang, Qiang Yang, Hongbin Zha:

Adaptive p-posterior mixture-model kernels for multiple instance learning. 1136-1143 - Jun Wang, Tony Jebara, Shih-Fu Chang:

Graph transduction via alternating minimization. 1144-1151 - Wei Wang, Zhi-Hua Zhou:

On multi-view active learning and the combination with semi-supervised learning. 1152-1159 - Kilian Q. Weinberger, Lawrence K. Saul:

Fast solvers and efficient implementations for distance metric learning. 1160-1167 - Jason Weston, Frédéric Ratle, Ronan Collobert:

Deep learning via semi-supervised embedding. 1168-1175 - David Wingate, Satinder Singh:

Efficiently learning linear-linear exponential family predictive representations of state. 1176-1183 - Jason Andrew Wolfe, Aria Haghighi, Dan Klein:

Fully distributed EM for very large datasets. 1184-1191 - Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, Hang Li:

Listwise approach to learning to rank: theory and algorithm. 1192-1199 - Fusun Yaman, Thomas J. Walsh, Michael L. Littman, Marie desJardins:

Democratic approximation of lexicographic preference models. 1200-1207 - Hengshuai Yao, Zhi-Qiang Liu:

Preconditioned temporal difference learning. 1208-1215 - Jin Yu, S. V. N. Vishwanathan, Simon Günter, Nicol N. Schraudolph:

A quasi-Newton approach to non-smooth convex optimization. 1216-1223 - Yisong Yue, Thorsten Joachims:

Predicting diverse subsets using structural SVMs. 1224-1231 - Kai Zhang, Ivor W. Tsang

, James T. Kwok:
Improved Nyström low-rank approximation and error analysis. 1232-1239 - Zhenjie Zhang, Bing Tian Dai

, Anthony K. H. Tung
:
Estimating local optimums in EM algorithm over Gaussian mixture model. 1240-1247 - Bin Zhao, Fei Wang, Changshui Zhang:

Efficient multiclass maximum margin clustering. 1248-1255 - Jun Zhu, Eric P. Xing, Bo Zhang:

Laplace maximum margin Markov networks. 1256-1263

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














