


default search action
19th AISTATS 2016: Cadiz, Spain
- Arthur Gretton, Christian C. Robert:

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016. JMLR Workshop and Conference Proceedings 51, JMLR.org 2016
Accepted Papers
- Mario Lucic, Olivier Bachem, Andreas Krause:

Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures. 1-9 - Alexandra Carpentier, Michal Valko:

Revealing Graph Bandits for Maximizing Local Influence. 10-18 - Anastasios Kyrillidis, Bubacarr Bah, Rouzbeh Hasheminezhad, Quoc Tran-Dinh, Luca Baldassarre, Volkan Cevher:

Convex Block-sparse Linear Regression with Expanders - Provably. 19-27 - Daniel Ritchie

, Andreas Stuhlmüller, Noah D. Goodman:
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching. 28-37 - Adrian Weller, Justin Domke:

Clamping Improves TRW and Mean Field Approximations. 38-46 - Adrian Weller, Mark Rowland, David A. Sontag:

Tightness of LP Relaxations for Almost Balanced Models. 47-55 - Chris J. Oates, Mark A. Girolami:

Control Functionals for Quasi-Monte Carlo Integration. 56-65 - Markus Schneider:

Probability Inequalities for Kernel Embeddings in Sampling without Replacement. 66-74 - Nicolas Goix, Anne Sabourin, Stéphan Clémençon:

Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. 75-83 - Yale Chang, Yi Li, A. Adam Ding, Jennifer G. Dy:

A Robust-Equitable Copula Dependence Measure for Feature Selection. 84-92 - Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, Fabrice Clérot:

Random Forest for the Contextual Bandit Problem. 93-101 - Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, Wolfram Burgard:

Inverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics. 102-110 - Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause:

Learning Sparse Additive Models with Interactions in High Dimensions. 111-120 - Megasthenis Asteris, Anastasios Kyrillidis, Dimitris S. Papailiopoulos, Alexandros G. Dimakis:

Bipartite Correlation Clustering: Maximizing Agreements. 121-129 - Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, Dmitry P. Vetrov:

Breaking Sticks and Ambiguities with Adaptive Skip-gram. 130-138 - Kwang-Sung Jun, Kevin G. Jamieson, Robert D. Nowak, Xiaojin Zhu:

Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls. 139-148 - Jonathan Scarlett, Volkan Cevher:

Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices. 149-158 - Lee H. Dicker, Murat A. Erdogdu:

Maximum Likelihood for Variance Estimation in High-Dimensional Linear Models. 159-167 - Daniel Hernández-Lobato, José Miguel Hernández-Lobato:

Scalable Gaussian Process Classification via Expectation Propagation. 168-176 - Lingxiao Wang, Xiang Ren, Quanquan Gu:

Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates. 177-185 - Jincheng Mei, Hao Zhang, Bao-Liang Lu:

On the Reducibility of Submodular Functions. 186-194 - Atsushi Nitanda:

Accelerated Stochastic Gradient Descent for Minimizing Finite Sums. 195-203 - Martin Boissier, Siwei Lyu, Yiming Ying, Ding-Xuan Zhou:

Fast Convergence of Online Pairwise Learning Algorithms. 204-212 - Andreas Svensson, Arno Solin, Simo Särkkä, Thomas B. Schön:

Computationally Efficient Bayesian Learning of Gaussian Process State Space Models. 213-221 - Yaniv Tenzer, Gal Elidan:

Generalized Ideal Parent (GIP): Discovering non-Gaussian Hidden Variables. 222-230 - Alexander G. de G. Matthews, James Hensman, Richard E. Turner, Zoubin Ghahramani:

On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes. 231-239 - Kevin G. Jamieson, Ameet Talwalkar:

Non-stochastic Best Arm Identification and Hyperparameter Optimization. 240-248 - Philipp Moritz, Robert Nishihara, Michael I. Jordan:

A Linearly-Convergent Stochastic L-BFGS Algorithm. 249-258 - Robert Nishihara, David Lopez-Paz, Léon Bottou:

No Regret Bound for Extreme Bandits. 259-267 - Anima Anandkumar, Prateek Jain, Yang Shi, U. N. Niranjan:

Tensor vs. Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations. 268-276 - Sougata Chaudhuri, Ambuj Tewari:

Online Learning to Rank with Feedback at the Top. 277-285 - Christopher Srinivasa, Siamak Ravanbakhsh, Brendan J. Frey:

Survey Propagation beyond Constraint Satisfaction Problems. 286-295 - Balázs Csanád Csáji:

Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models. 296-304 - Vikas K. Garg, Cynthia Rudin, Tommi S. Jaakkola:

CRAFT: ClusteR-specific Assorted Feature selecTion. 305-313 - Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher:

Time-Varying Gaussian Process Bandit Optimization. 314-323 - Weici Hu, Peter I. Frazier:

Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policies. 324-332 - Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David Adametz, Volker Roth:

Bayesian Markov Blanket Estimation. 333-341 - Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John W. Fisher III, Lars Kai Hansen

:
Dreaming More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Augmentation. 342-350 - Ariel Jaffe, Ethan Fetaya, Boaz Nadler, Tingting Jiang, Yuval Kluger:

Unsupervised Ensemble Learning with Dependent Classifiers. 351-360 - Krzysztof Chalupka, Frederick Eberhardt, Pietro Perona:

Multi-Level Cause-Effect Systems. 361-369 - Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. Xing:

Deep Kernel Learning. 370-378 - Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch:

Nearly Optimal Classification for Semimetrics. 379-388 - Chris M. Lloyd, Tom Gunter, Michael A. Osborne, Stephen J. Roberts, Tom Nickson:

Latent Point Process Allocation. 389-397 - Mijung Park, Wittawat Jitkrittum, Dino Sejdinovic:

K2-ABC: Approximate Bayesian Computation with Kernel Embeddings. 398-407 - Jes Frellsen, Ole Winther, Zoubin Ghahramani, Jesper Ferkinghoff-Borg:

Bayesian Generalised Ensemble Markov Chain Monte Carlo. 408-416 - Yan Li, Han Liu, Warren B. Powell:

A Lasso-based Sparse Knowledge Gradient Policy for Sequential Optimal Learning. 417-425 - Renkun Ni, Quanquan Gu:

Optimal Statistical and Computational Rates for One Bit Matrix Completion. 426-434 - Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy:

PAC-Bayesian Bounds based on the Rényi Divergence. 435-444 - Mihai Cucuringu, Ioannis Koutis

, Sanjay Chawla, Gary L. Miller, Richard Peng:
Simple and Scalable Constrained Clustering: a Generalized Spectral Method. 445-454 - Avradeep Bhowmik, Nathan Liu, Erheng Zhong, Badri Narayan Bhaskar, Suju Rajan:

Geometry Aware Mappings for High Dimensional Sparse Factors. 455-463 - Chen-Yu Lee, Patrick W. Gallagher, Zhuowen Tu:

Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree. 464-472 - Chun-Liang Li, Hsuan-Tien Lin, Chi-Jen Lu:

Rivalry of Two Families of Algorithms for Memory-Restricted Streaming PCA. 473-481 - Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha:

Quantization based Fast Inner Product Search. 482-490 - Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:

An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. 491-499 - Jie Shen, Ping Li:

Learning Structured Low-Rank Representation via Matrix Factorization. 500-509 - Zhaohan Daniel Guo, Shayan Doroudi, Emma Brunskill:

A PAC RL Algorithm for Episodic POMDPs. 510-518 - Sujith Ravi, Qiming Diao:

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation. 519-528 - Calvin McCarter, Seyoung Kim:

Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models. 528-537 - Yining Wang, Yu-Xiang Wang, Aarti Singh:

Graph Connectivity in Noisy Sparse Subspace Clustering. 538-546 - Yu Nishiyama, Amir Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song:

The Nonparametric Kernel Bayes Smoother. 547-555 - Asela Gunawardana, Christopher Meek:

Universal Models of Multivariate Temporal Point Processes. 556-563 - Zhitang Chen, Pascal Poupart, Yanhui Geng:

Online Relative Entropy Policy Search using Reproducing Kernel Hilbert Space Embeddings. 573-581 - Muneki Yasuda:

Relationship between PreTraining and Maximum Likelihood Estimation in Deep Boltzmann Machines. 582-590 - Eunice Yuh-Jie Chen, Arthur Choi, Adnan Darwiche:

Enumerating Equivalence Classes of Bayesian Networks using EC Graphs. 591-599 - Quanquan Gu, Zhaoran Wang, Han Liu:

Low-Rank and Sparse Structure Pursuit via Alternating Minimization. 600-609 - Eli A. Meirom, Pavel Kisilev:

NuC-MKL: A Convex Approach to Non Linear Multiple Kernel Learning. 610-619 - Fanhua Shang, Yuanyuan Liu, James Cheng:

Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization. 620-629 - Antoine Rolet, Marco Cuturi, Gabriel Peyré:

Fast Dictionary Learning with a Smoothed Wasserstein Loss. 630-638 - Canh Hao Nguyen, Hiroshi Mamitsuka:

New Resistance Distances with Global Information on Large Graphs. 639-647 - Javier González, Zhenwen Dai, Philipp Hennig, Neil D. Lawrence:

Batch Bayesian Optimization via Local Penalization. 648-657 - Trung Le, Vu Nguyen, Tu Dinh Nguyen, Dinh Q. Phung:

Nonparametric Budgeted Stochastic Gradient Descent. 654-572 - Alexandra Carpentier, Teresa Schlueter:

Learning Relationships between Data Obtained Independently. 658-666 - Heejin Choi, Ofer Meshi, Nathan Srebro:

Fast and Scalable Structural SVM with Slack Rescaling. 667-675 - Simon Bartels, Philipp Hennig:

Probabilistic Approximate Least-Squares. 676-684 - Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau, Daniel Sheldon:

Approximate Inference Using DC Programming For Collective Graphical Models. 685-693 - Yali Wang, Marcus A. Brubaker, Brahim Chaib-draa, Raquel Urtasun:

Sequential Inference for Deep Gaussian Process. 694-703 - Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, David M. Blei:

Variational Tempering. 704-712 - Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang, Eric P. Xing:

On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous Parallel System. 713-722 - Wenzhe Li, Sungjin Ahn, Max Welling:

Scalable MCMC for Mixed Membership Stochastic Blockmodels. 723-731 - Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki:

Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo. 732-740 - Yunchen Pu, Xin Yuan, Andrew Stevens, Chunyuan Li, Lawrence Carin:

A Deep Generative Deconvolutional Image Model. 741-750 - Jialei Wang, Mladen Kolar, Nathan Srebro:

Distributed Multi-Task Learning. 751-760 - Rishit Sheth, Roni Khardon:

A Fixed-Point Operator for Inference in Variational Bayesian Latent Gaussian Models. 761-769 - Sebastian Tschiatschek, Josip Djolonga, Andreas Krause:

Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation. 770-779 - Sangkyun Lee, Damian Brzyski, Malgorzata Bogdan:

Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with Ordered L1-Norm. 780-789 - Javier González, Michael A. Osborne, Neil D. Lawrence:

GLASSES: Relieving The Myopia Of Bayesian Optimisation. 790-799 - Aonan Zhang, San Gultekin, John W. Paisley:

Stochastic Variational Inference for the HDP-HMM. 800-808 - Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:

Stochastic Neural Networks with Monotonic Activation Functions. 809-818 - Xiaowei Hu, Prashanth L. A., András György, Csaba Szepesvári:

(Bandit) Convex Optimization with Biased Noisy Gradient Oracles. 819-828 - Shaobo Han, Xuejun Liao, David B. Dunson, Lawrence Carin:

Variational Gaussian Copula Inference. 829-838 - Guillaume Rabusseau, Borja Balle, Shay B. Cohen:

Low-Rank Approximation of Weighted Tree Automata. 839-847 - Mehryar Mohri, Scott Yang:

Accelerating Online Convex Optimization via Adaptive Prediction. 848-856 - Ye Wang, Antonio Canale, David B. Dunson:

Scalable geometric density estimation. 857-865 - Aghiles Salah, Nicoleta Rogovschi, Mohamed Nadif:

Model-based Co-clustering for High Dimensional Sparse Data. 866-874 - Christina Heinze, Brian McWilliams, Nicolai Meinshausen:

DUAL-LOCO: Distributing Statistical Estimation Using Random Projections. 875-883 - Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, Jeff G. Schneider:

High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models. 884-892 - Julien Pérolat, Bilal Piot, Bruno Scherrer, Olivier Pietquin:

On the Use of Non-Stationary Strategies for Solving Two-Player Zero-Sum Markov Games. 893-901 - Hanxiao Liu, Yiming Yang:

Semi-Supervised Learning with Adaptive Spectral Transform. 902-910 - Iain Murray, Matthew M. Graham:

Pseudo-Marginal Slice Sampling. 911-919 - Vassilis Kalofolias:

How to Learn a Graph from Smooth Signals. 920-929 - Mário A. T. Figueiredo, Robert D. Nowak:

Ordered Weighted L1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects. 930-938 - Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina M. Drugan:

Pareto Front Identification from Stochastic Bandit Feedback. 939-947 - Amirali Abdullah, Ravi Kumar, Andrew McGregor, Sergei Vassilvitskii, Suresh Venkatasubramanian:

Sketching, Embedding and Dimensionality Reduction in Information Theoretic Spaces. 948-956 - Suvrit Sra, Adams Wei Yu, Mu Li, Alexander J. Smola:

AdaDelay: Delay Adaptive Distributed Stochastic Optimization. 957-965 - Manzil Zaheer, Michael L. Wick, Jean-Baptiste Tristan, Alexander J. Smola, Guy L. Steele Jr.:

Exponential Stochastic Cellular Automata for Massively Parallel Inference. 966-975 - Pierre-Alexandre Mattei, Charles Bouveyron, Pierre Latouche:

Globally Sparse Probabilistic PCA. 976-984 - Bo Dai, Niao He, Hanjun Dai, Le Song:

Provable Bayesian Inference via Particle Mirror Descent. 985-994 - Xiaokai Wei, Philip S. Yu:

Unsupervised Feature Selection by Preserving Stochastic Neighbors. 995-1003 - Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter L. Bartlett:

Improved Learning Complexity in Combinatorial Pure Exploration Bandits. 1004-1012 - William Herlands, Andrew Gordon Wilson, Hannes Nickisch, Seth R. Flaxman, Daniel B. Neill, Wilbert Van Panhuis, Eric P. Xing:

Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces. 1013-1021 - Zi Wang, Bolei Zhou, Stefanie Jegelka:

Optimization as Estimation with Gaussian Processes in Bandit Settings. 1022-1031 - Jiaqian Yu, Matthew B. Blaschko:

A Convex Surrogate Operator for General Non-Modular Loss Functions. 1032-1041 - Jialei Wang, Mladen Kolar:

Inference for High-dimensional Exponential Family Graphical Models. 1042-1050 - Changyou Chen, David E. Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin:

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization. 1051-1060 - Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:

Fitting Spectral Decay with the k-Support Norm. 1061-1069 - David Duvenaud, Dougal Maclaurin, Ryan P. Adams:

Early Stopping as Nonparametric Variational Inference. 1070-1077 - Junier B. Oliva, Avinava Dubey, Andrew Gordon Wilson, Barnabás Póczos, Jeff G. Schneider, Eric P. Xing:

Bayesian Nonparametric Kernel-Learning. 1078-1086 - Lun-Kai Hsu, Tudor Achim, Stefano Ermon:

Tight Variational Bounds via Random Projections and I-Projections. 1087-1095 - Kui Tang, Nicholas Ruozzi

, David Belanger, Tony Jebara:
Bethe Learning of Graphical Models via MAP Decoding. 1096-1104 - Veronika Rocková, Gemma E. Moran, Edward I. George:

Determinantal Regularization for Ensemble Variable Selection. 1105-1113 - Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric P. Xing, Dale Schuurmans:

Scalable and Sound Low-Rank Tensor Learning. 1114-1123 - Changwei Hu, Piyush Rai, Lawrence Carin:

Non-negative Matrix Factorization for Discrete Data with Hierarchical Side-Information. 1124-1132 - Changwei Hu, Piyush Rai, Lawrence Carin:

Topic-Based Embeddings for Learning from Large Knowledge Graphs. 1133-1141 - Garrett Bernstein, Daniel Sheldon:

Consistently Estimating Markov Chains with Noisy Aggregate Data. 1142-1150 - Tom Goldstein, Gavin Taylor, Kawika Barabin, Kent Sayre:

Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction. 1151-1158 - Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson:

Improper Deep Kernels. 1159-1167 - Bobak Shahriari, Alexandre Bouchard-Côté, Nando de Freitas:

Unbounded Bayesian Optimization via Regularization. 1168-1176 - Hiroaki Sasaki, Gang Niu, Masashi Sugiyama:

Non-Gaussian Component Analysis with Log-Density Gradient Estimation. 1177-1185 - Tomás Kocák, Gergely Neu, Michal Valko:

Online Learning with Noisy Side Observations. 1186-1194 - Jan-Willem van de Meent, Brooks Paige, David Tolpin, Frank D. Wood:

Black-Box Policy Search with Probabilistic Programs. 1195-1204 - Cong Han Lim, Stephen J. Wright:

Efficient Bregman Projections onto the Permutahedron and Related Polytopes. 1205-1213 - Benito van der Zander, Maciej Liskiewicz:

On Searching for Generalized Instrumental Variables. 1214-1222 - Hanie Sedghi, Majid Janzamin, Anima Anandkumar:

Provable Tensor Methods for Learning Mixtures of Generalized Linear Models. 1223-1231 - Daniel Russo, James Zou:

Controlling Bias in Adaptive Data Analysis Using Information Theory. 1232-1240 - Jean-Francis Roy, Mario Marchand, François Laviolette:

A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees. 1241-1249 - Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani:

Graph Sparsification Approaches for Laplacian Smoothing. 1250-1259 - Ian En-Hsu Yen, Dmitry Malioutov, Abhishek Kumar:

Scalable Exemplar Clustering and Facility Location via Augmented Block Coordinate Descent with Column Generation. 1260-1269 - Xiangli Chen, Mathew Monfort, Anqi Liu, Brian D. Ziebart:

Robust Covariate Shift Regression. 1270-1279 - Cheng Tang, Claire Monteleoni:

On Lloyd's Algorithm: New Theoretical Insights for Clustering in Practice. 1280-1289 - Panos Toulis, Dustin Tran, Edoardo M. Airoldi:

Towards Stability and Optimality in Stochastic Gradient Descent. 1290-1298 - Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau:

Communication Efficient Distributed Agnostic Boosting. 1299-1307 - Matt J. Kusner, Yu Sun, Karthik Sridharan, Kilian Q. Weinberger:

Private Causal Inference. 1308-1317 - Guillaume W. Basse, Aaron Smith, Natesh S. Pillai:

Parallel Markov Chain Monte Carlo via Spectral Clustering. 1318-1327 - Chengtao Li, Stefanie Jegelka, Suvrit Sra:

Efficient Sampling for k-Determinantal Point Processes. 1328-1337 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright:

A Fast and Reliable Policy Improvement Algorithm. 1338-1346 - Zhao Song, Ricardo Henao, David E. Carlson, Lawrence Carin:

Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization. 1347-1355 - Gautam Dasarathy, Aarti Singh, Maria-Florina Balcan, Jong Hyuk Park:

Active Learning Algorithms for Graphical Model Selection. 1356-1364 - Mina Ghashami, Daniel J. Perry, Jeff M. Phillips:

Streaming Kernel Principal Component Analysis. 1365-1374 - Qichao Que, Mikhail Belkin:

Back to the Future: Radial Basis Function Networks Revisited. 1375-1383 - Loïc Landrieu, Guillaume Obozinski:

Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions. 1384-1393 - Daniel Filan, Jan Leike, Marcus Hutter:

Loss Bounds and Time Complexity for Speed Priors. 1394-1402 - Raffaello Camoriano, Tomás Angles, Alessandro Rudi, Lorenzo Rosasco:

NYTRO: When Subsampling Meets Early Stopping. 1403-1411 - Guillaume W. Basse, Hossein Azari Soufiani, Diane Lambert:

Randomization and The Pernicious Effects of Limited Budgets on Auction Experiments. 1412-1420 - Dustin Tran, Minjae Kim, Finale Doshi-Velez:

Spectral M-estimation with Applications to Hidden Markov Models. 1421-1430 - Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:

Chained Gaussian Processes. 1431-1440 - Nedelina Teneva, Pramod Kaushik Mudrakarta, Risi Kondor:

Multiresolution Matrix Compression. 1441-1449 - Adam E. Bloniarz, Ameet Talwalkar, Bin Yu, Christopher Wu:

Supervised Neighborhoods for Distributed Nonparametric Regression. 1450-1459 - Dejiao Zhang, Laura Balzano:

Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation. 1460-1468 - Abdullah Rashwan, Han Zhao, Pascal Poupart:

Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks. 1469-1477 - Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh:

Mondrian Forests for Large-Scale Regression when Uncertainty Matters. 1478-1487 - Jinchun Zhan, Brian Lois, Han Guo, Namrata Vaswani:

Online (and Offline) Robust PCA: Novel Algorithms and Performance Guarantees. 1488-1496 - Yan Kaganovsky, Ikenna Odinaka, David E. Carlson, Lawrence Carin:

Parallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization. 1497-1505 - Amirmohammad Rooshenas, Daniel Lowd:

Discriminative Structure Learning of Arithmetic Circuits. 1506-1514 - Ping Li:

One Scan 1-Bit Compressed Sensing. 1515-1523

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














