


default search action
34th UAI 2018: Monterey, California, USA
- Amir Globerson, Ricardo Silva:

Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018. AUAI Press 2018 - Ze Jin, Xiaohan Yan, David S. Matteson:

Testing for Conditional Mean Independence with Covariates through Martingale Difference Divergence. 1-12 - Fang Liu, Zizhan Zheng, Ness B. Shroff:

Analysis of Thompson Sampling for Graphical Bandits Without the Graphs. 13-22 - Magda Gregorova

, Alexandros Kalousis
, Stéphane Marchand-Maillet:
Structured nonlinear variable selection. 23-32 - Jose M. Peña:

Identification of Strong Edges in AMP Chain Graphs. 33-42 - Siwei Lyu, Yiming Ying:

A Univariate Bound of Area Under ROC. 43-52 - Christian Donner, Manfred Opper:

Efficient Bayesian Inference for a Gaussian Process Density Model. 53-62 - Craig Sherstan, Dylan R. Ashley, Brendan Bennett, Kenny Young, Adam White, Martha White, Richard S. Sutton:

Comparing Direct and Indirect Temporal-Difference Methods for Estimating the Variance of the Return. 63-72 - Ryan Turner, Brady Neal:

How well does your sampler really work? 73-82 - Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha:

Learning Deep Hidden Nonlinear Dynamics from Aggregate Data. 83-92 - Yu-Xiang Wang:

Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain. 93-103 - Sabina Marchetti, Alessandro Antonucci:

Imaginary Kinematics. 104-113 - Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schölkopf:

From Deterministic ODEs to Dynamic Structural Causal Models. 114-123 - Han Zhao, Geoffrey J. Gordon:

Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint. 124-134 - Roy Adams, Benjamin M. Marlin:

Learning Time Series Segmentation Models from Temporally Imprecise Labels. 135-144 - Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:

Multi-Target Optimisation via Bayesian Optimisation and Linear Programming. 145-155 - Sinong Geng, Zhaobin Kuang, Jie Liu, Stephen J. Wright, David Page:

Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error. 156-166 - Shuran Zheng, Bo Waggoner, Yang Liu, Yiling Chen:

Active Information Acquisition for Linear Optimization. 167-176 - Bingyi Kang, Jiashi Feng:

Transferable Meta Learning Across Domains. 177-187 - Ruifei Cui, Perry Groot, Moritz Schauer, Tom Heskes:

Learning the Causal Structure of Copula Models with Latent Variables. 188-197 - Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Tat-Seng Chua, Joemon M. Jose:

fBGD: Learning Embeddings From Positive Unlabeled Data with BGD. 198-207 - Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor:

Soft-Robust Actor-Critic Policy-Gradient. 208-218 - Dmitry Babichev, Francis R. Bach:

Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling. 219-228 - Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:

Discrete Sampling using Semigradient-based Product Mixtures. 229-237 - Somak Aditya, Yezhou Yang, Chitta Baral, Yiannis Aloimonos:

Combining Knowledge and Reasoning through Probabilistic Soft Logic for Image Puzzle Solving. 238-248 - Tom Rainforth:

Nesting Probabilistic Programs. 249-258 - Zilong Tan, Kimberly Roche, Xiang Zhou, Sayan Mukherjee:

Scalable Algorithms for Learning High-Dimensional Linear Mixed Models. 259-268 - Patrick Forré, Joris M. Mooij:

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. 269-278 - Tatiana Shpakova, Francis R. Bach, Anton Osokin:

Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models. 279-289 - Hongyi Ding, Young Lee, Issei Sato, Masashi Sugiyama:

Variational Inference for Gaussian Processes with Panel Count Data. 290-299 - Ricardo Pio Monti, Aapo Hyvärinen:

A unified probabilistic model for learning latent factors and their connectivities from high-dimensional data . 300-309 - Jack K. Fitzsimons, Michael A. Osborne, Stephen J. Roberts, Joseph Francis Fitzsimons:

Improved Stochastic Trace Estimation using Mutually Unbiased Bases. 310-318 - Jiaming Huang, Zhao Li, Vincent W. Zheng, Wen Wen, Yifan Yang, Yuanmi Chen:

Unsupervised Multi-view Nonlinear Graph Embedding. 319-328 - Rafael Pinot, Anne Morvan, Florian Yger, Cédric Gouy-Pailler, Jamal Atif:

Graph-based Clustering under Differential Privacy. 329-338 - Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, Dit-Yan Yeung:

GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. 339-349 - Søren Wengel Mogensen, Daniel Malinsky, Niels Richard Hansen:

Causal Learning for Partially Observed Stochastic Dynamical Systems. 350-360 - Pashupati Hegde, Markus Heinonen, Samuel Kaski:

Variational zero-inflated Gaussian processes with sparse kernels. 361-371 - Alberto García-Durán, Mathias Niepert:

KBlrn: End-to-End Learning of Knowledge Base Representations with Latent, Relational, and Numerical Features. 372-381 - Yuval Atzmon, Gal Chechik:

Probabilistic AND-OR Attribute Grouping for Zero-Shot Learning. 382-392 - Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, Max Welling:

Sylvester Normalizing Flows for Variational Inference. 393-402 - Yunpu Ma, Marcel Hildebrandt, Volker Tresp, Stephan Baier:

Holistic Representations for Memorization and Inference. 403-413 - Anastasios Kyrillidis:

Simple and practical algorithms for 𝓁p-norm low-rank approximation. 414-424 - Arghya Roy Chaudhuri, Shivaram Kalyanakrishnan:

Quantile-Regret Minimisation in Infinitely Many-Armed Bandits. 425-434 - Minyoung Kim, Vladimir Pavlovic

:
Variational Inference for Gaussian Process Models for Survival Analysis. 435-445 - Zhibing Zhao, Haoming Li, Junming Wang, Jeffrey O. Kephart, Nicholas Mattei, Hui Su, Lirong Xia:

A Cost-Effective Framework for Preference Elicitation and Aggregation. 446-456 - Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:

Incremental Learning-to-Learn with Statistical Guarantees. 457-466 - Rémy Degenne, Evrard Garcelon, Vianney Perchet:

Bandits with Side Observations: Bounded vs. Logarithmic Regret. 467-476 - Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh:

Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks. 477-486 - Yizhi Zhu, Oluwasanmi Koyejo:

Clustered Fused Graphical Lasso. 487-496 - David Zheng, Vinson Luo, Jiajun Wu, Joshua B. Tenenbaum:

Unsupervised Learning of Latent Physical Properties Using Perception-Prediction Networks. 497-507 - Difan Zou, Pan Xu, Quanquan Gu:

Subsampled Stochastic Variance-Reduced Gradient Langevin Dynamics. 508-518 - Sebastian Junges

, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter Katoen, Bernd Becker:
Finite-State Controllers of POMDPs using Parameter Synthesis. 519-529 - Ilya Shpitser, Eli Sherman:

Identification of Personalized Effects Associated With Causal Pathways. 530-539 - Subhadeep Karan, Matthew Eichhorn, Blake Hurlburt, Grant Iraci, Jaroslaw Zola:

Fast Counting in Machine Learning Applications. 540-549 - Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, Pushmeet Kohli:

A Dual Approach to Scalable Verification of Deep Networks. 550-559 - Lewis Smith, Yarin Gal:

Understanding Measures of Uncertainty for Adversarial Example Detection. 560-569 - Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij:

Causal Discovery in the Presence of Measurement Error. 570-579 - Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, Joseph E. Gonzalez:

IDK Cascades: Fast Deep Learning by Learning not to Overthink. 580-590 - Vinod Nair, Dj Dvijotham, Iain Dunning, Oriol Vinyals:

Learning Fast Optimizers for Contextual Stochastic Integer Programs. 591-600 - Min Ren, Dabao Zhang:

Differential Analysis of Directed Networks. 601-610 - Reid Bixler, Bert Huang:

Sparse-Matrix Belief Propagation. 611-620 - Amirhossein Meisami, Henry Lam, Chen Dong, Abhishek Pani:

Sequential Learning under Probabilistic Constraints. 621-631 - Filjor Broka, Rina Dechter, Alexander Ihler, Kalev Kask:

Abstraction Sampling in Graphical Models. 632-641 - Steindór Sæmundsson, Katja Hofmann, Marc Peter Deisenroth:

Meta Reinforcement Learning with Latent Variable Gaussian Processes. 642-652 - Junzhe Zhang, Elias Bareinboim:

Non-Parametric Path Analysis in Structural Causal Models. 653-662 - Griffin Lacey, Graham W. Taylor, Shawki Areibi:

Stochastic Layer-Wise Precision in Deep Neural Networks. 663-672 - Razieh Nabi, Phyllis Kanki, Ilya Shpitser:

Estimation of Personalized Effects Associated With Causal Pathways. 673-682 - Touqir Sajed, Wesley Chung, Martha White:

High-confidence error estimates for learned value functions. 683-692 - Tanner Fiez, Shreyas Sekar, Liyuan Zheng, Lillian J. Ratliff:

Combinatorial Bandits for Incentivizing Agents with Dynamic Preferences. 693-703 - Vikas K. Garg, Lin Xiao, Ofer Dekel:

Sparse Multi-Prototype Classification. 704-714 - Nico Piatkowski, Katharina Morik:

Fast Stochastic Quadrature for Approximate Maximum-Likelihood Estimation. 715-724 - Qi Lou, Rina Dechter, Alexander Ihler:

Finite-sample Bounds for Marginal MAP. 725-734 - Ilya Shpitser, Robin J. Evans, Thomas S. Richardson:

Acyclic Linear SEMs Obey the Nested Markov Property. 735-745 - Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, Liqun Chen:

A Unified Particle-Optimization Framework for Scalable Bayesian Sampling. 746-755 - Travis Moore, Weng-Keen Wong:

An Efficient Quantile Spatial Scan Statistic for Finding Unusual Regions in Continuous Spatial Data with Covariates. 756-765 - Yingxue Zhou, Sheng Chen, Arindam Banerjee:

Stable Gradient Descent. 766-775 - Frederick Callaway, Sayan Gul, Paul M. Krueger, Thomas L. Griffiths, Falk Lieder:

Learning to select computations. 776-785 - Kristopher De Asis, Richard S. Sutton:

Per-decision Multi-step Temporal Difference Learning with Control Variates. 786-794 - Xi Tan, Vinayak A. Rao, Jennifer Neville:

The Indian Buffet Hawkes Process to Model Evolving Latent Influences. 795-804 - Aadirupa Saha, Aditya Gopalan:

Battle of Bandits. 805-814 - Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien:

Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields. 815-824 - Ashish Sabharwal, Yexiang Xue:

Adaptive Stratified Sampling for Precision-Recall Estimation. 825-834 - Cristian Guarnizo, Mauricio A. Álvarez:

Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes. 835-844 - Ching-An Cheng, Xinyan Yan, Nolan Wagener, Byron Boots:

Fast Policy Learning through Imitation and Reinforcement. 845-855 - Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, Jakub M. Tomczak:

Hyperspherical Variational Auto-Encoders. 856-865 - Li Chou, Wolfgang Gatterbauer, Vibhav Gogate

:
Dissociation-Based Oblivious Bounds for Weighted Model Counting. 866-875 - Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:

Averaging Weights Leads to Wider Optima and Better Generalization. 876-885 - Gagan Madan, Ankit Anand, Mausam, Parag Singla:

Block-Value Symmetries in Probabilistic Graphical Models. 886-895 - Rahul G. Krishnan, Arjun Khandelwal, Rajesh Ranganath, David A. Sontag:

Max-margin learning with the Bayes factor. 896-905 - Beidi Chen, Anshumali Shrivastava:

Densified Winner Take All (WTA) Hashing for Sparse Datasets. 906-916 - Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate

, Parag Singla:
Lifted Marginal MAP Inference. 917-926 - Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert:

PAC-Reasoning in Relational Domains. 927-936 - Xiaotian Yu, Han Shao, Michael R. Lyu, Irwin King:

Pure Exploration of Multi-Armed Bandits with Heavy-Tailed Payoffs. 937-946 - Adarsh Subbaswamy, Suchi Saria:

Counterfactual Normalization: Proactively Addressing Dataset Shift Using Causal Mechanisms. 947-957 - Pritee Agrawal, Pradeep Varakantham, William Yeoh:

Decentralized Planning for Non-dedicated Agent Teams with Submodular Rewards in Uncertain Environments. 958-967 - Neal Lawton, Greg Ver Steeg, Aram Galstyan:

A Forest Mixture Bound for Block-Free Parallel Inference. 968-977 - Amin Jaber, Jiji Zhang, Elias Bareinboim:

Causal Identification under Markov Equivalence. 978-987 - Luke B. Hewitt, Maxwell I. Nye, Andreea Gane, Tommi S. Jaakkola, Joshua B. Tenenbaum:

The Variational Homoencoder: Learning to learn high capacity generative models from few examples. 988-997 - Aghiles Salah, Hady W. Lauw:

Probabilistic Collaborative Representation Learning for Personalized Item Recommendation. 998-1008 - Aaron Palmer, Dipak K. Dey, Jinbo Bi:

Reforming Generative Autoencoders via Goodness-of-Fit Hypothesis Testing. 1009-1019 - Sihyeon Seong, Yegang Lee, Youngwook Kee, Dongyoon Han, Junmo Kim:

Towards Flatter Loss Surface via Nonmonotonic Learning Rate Scheduling. 1020-1030 - Shengjia Zhao, Jiaming Song, Stefano Ermon:

A Lagrangian Perspective on Latent Variable Generative Models. 1031-1041 - Stephan Eismann, Daniel Levy, Rui Shu, Stefan Bartzsch, Stefano Ermon:

Bayesian optimization and attribute adjustment. 1042-1052 - Junkyu Lee, Alexander Ihler, Rina Dechter:

Join Graph Decomposition Bounds for Influence Diagrams. 1053-1062 - Kun Zhang, Mingming Gong, Joseph D. Ramsey, Kayhan Batmanghelich, Peter Spirtes, Clark Glymour:

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results. 1063-1072

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














