


default search action
21st ICML 2004: Banff, Alberta, Canada
- Carla E. Brodley:

Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series 69, ACM 2004 - Klaus Brinker:

Active learning of label ranking functions. - Tong Zhang:

Solving large scale linear prediction problems using stochastic gradient descent algorithms. - Guy Lebanon, John D. Lafferty:

Hyperplane margin classifiers on the multinomial manifold. - Lourdes Peña Castillo, Stefan Wrobel:

A comparative study on methods for reducing myopia of hill-climbing search in multirelational learning. - Jian Zhang, Yiming Yang:

Probabilistic score estimation with piecewise logistic regression. - Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:

Boosting grammatical inference with confidence oracles. - John D. Lafferty, Xiaojin Zhu, Yan Liu:

Kernel conditional random fields: representation and clique selection. - Remco R. Bouckaert:

Estimating replicability of classifier learning experiments. - Daniel Grossman, Pedro M. Domingos:

Learning Bayesian network classifiers by maximizing conditional likelihood. - Daniil Ryabko:

Online learning of conditionally I.I.D. data. - Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, Yasemin Altun:

Support vector machine learning for interdependent and structured output spaces. - Zhihua Zhang, James T. Kwok, Dit-Yan Yeung:

Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model. - Ankur Agarwal, Bill Triggs:

Learning to track 3D human motion from silhouettes. - Nir Krause, Yoram Singer:

Leveraging the margin more carefully. - Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul:

Learning a kernel matrix for nonlinear dimensionality reduction. - Daan Wierstra, Marco A. Wiering:

Utile distinction hidden Markov models. - Jieping Ye:

Generalized low rank approximations of matrices. - Jieping Ye, Ravi Janardan, Qi Li, Haesun Park:

Feature extraction via generalized uncorrelated linear discriminant analysis. - Hieu Tat Nguyen, Arnold W. M. Smeulders:

Active learning using pre-clustering. - Ulf Brefeld, Tobias Scheffer:

Co-EM support vector learning. - Vincent Conitzer, Tuomas Sandholm:

Communication complexity as a lower bound for learning in games. - Ran Gilad-Bachrach, Amir Navot, Naftali Tishby:

Margin based feature selection - theory and algorithms. - Özgür Simsek, Andrew G. Barto:

Using relative novelty to identify useful temporal abstractions in reinforcement learning. - Wei Chu, Zoubin Ghahramani, David L. Wild:

A graphical model for protein secondary structure prediction. - Shie Mannor, Ishai Menache, Amit Hoze, Uri Klein:

Dynamic abstraction in reinforcement learning via clustering. - George Forman:

A pitfall and solution in multi-class feature selection for text classification. - Odest Chadwicke Jenkins, Maja J. Mataric:

A spatio-temporal extension to Isomap nonlinear dimension reduction. - Aaron D'Souza, Sethu Vijayakumar, Stefan Schaal:

The Bayesian backfitting relevance vector machine. - Michael R. James, Satinder Singh:

Learning and discovery of predictive state representations in dynamical systems with reset. - Mikhail Bilenko, Sugato Basu, Raymond J. Mooney:

Integrating constraints and metric learning in semi-supervised clustering. - Sheng Gao, Wen Wu, Chin-Hui Lee, Tat-Seng Chua:

A MFoM learning approach to robust multiclass multi-label text categorization. - Jianguo Lee, Jingdong Wang, Changshui Zhang, Zhaoqi Bian:

Probabilistic tangent subspace: a unified view. - Eibe Frank, Stefan Kramer:

Ensembles of nested dichotomies for multi-class problems. - Yongdai Kim, Jinseog Kim:

Gradient LASSO for feature selection. - Kaizhu Huang, Haiqin Yang, Irwin King, Michael R. Lyu:

Learning large margin classifiers locally and globally. - Alan Herschtal, Bhavani Raskutti:

Optimising area under the ROC curve using gradient descent. - Robert B. Gramacy, Herbert K. H. Lee, William G. Macready:

Parameter space exploration with Gaussian process trees. - Zhihua Zhang, Dit-Yan Yeung, James T. Kwok:

Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm. - Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang:

Decision trees with minimal costs. - Rong Jin, Huan Liu:

Robust feature induction for support vector machines. - Cristian Sminchisescu, Allan D. Jepson:

Generative modeling for continuous non-linearly embedded visual inference. - Duncan Potts:

Incremental learning of linear model trees. - Saher Esmeir, Shaul Markovitch:

Lookahead-based algorithms for anytime induction of decision trees. - Ofer Dekel, Joseph Keshet, Yoram Singer:

Large margin hierarchical classification. - Jaakko Peltonen

, Janne Sinkkonen, Samuel Kaski:
Sequential information bottleneck for finite data. - Shai Shalev-Shwartz, Yoram Singer, Andrew Y. Ng:

Online and batch learning of pseudo-metrics. - Aleks Jakulin, Ivan Bratko:

Testing the significance of attribute interactions. - Antonio Bahamonde, Gustavo F. Bayón, Jorge Díez, José Ramón Quevedo, Oscar Luaces, Juan José del Coz, Jaime Alonso

, Félix Goyache:
Feature subset selection for learning preferences: a case study. - Jong-Hoon Ahn, Seungjin Choi, Jong-Hoon Oh:

A multiplicative up-propagation algorithm. - Ted Scully, Michael G. Madden, Gerard Lyons:

Coalition calculation in a dynamic agent environment. - Malcolm J. A. Strens

:
Efficient hierarchical MCMC for policy search. - Neil D. Lawrence

, John C. Platt:
Learning to learn with the informative vector machine. - Hisashi Kashima, Yuta Tsuboi:

Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs. - Eduardo F. Morales, Claude Sammut:

Learning to fly by combining reinforcement learning with behavioural cloning. - Prem Melville, Raymond J. Mooney:

Diverse ensembles for active learning. - Roberto Esposito, Lorenza Saitta:

A Monte Carlo analysis of ensemble classification. - Ulrich Rückert, Stefan Kramer:

Towards tight bounds for rule learning. - Evgeniy Gabrilovich, Shaul Markovitch:

Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5. - Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall:

Boosting margin based distance functions for clustering. - Artur Merke, Ralf Schoknecht:

Convergence of synchronous reinforcement learning with linear function approximation. - Hong Chang, Dit-Yan Yeung:

Locally linear metric adaptation for semi-supervised clustering. - Soumya Ray, David Page:

Sequential skewing: an improved skewing algorithm. - Ting Su, Jennifer G. Dy:

Automated hierarchical mixtures of probabilistic principal component analyzers. - Justin Basilico, Thomas Hofmann:

Unifying collaborative and content-based filtering. - César Ferri

, Peter A. Flach
, José Hernández-Orallo:
Delegating classifiers. - Max Welling, Michal Rosen-Zvi, Yee Whye Teh:

Approximate inference by Markov chains on union spaces. - Annalisa Appice, Michelangelo Ceci

, Simon Alan Rawles, Peter A. Flach
:
Redundant feature elimination for multi-class problems. - Nicolas Baskiotis, Michèle Sebag:

C4.5 competence map: a phase transition-inspired approach. - Koby Crammer, Gal Chechik

:
A needle in a haystack: local one-class optimization. - Saharon Rosset:

Model selection via the AUC. - Kristian Kersting, Martijn van Otterlo, Luc De Raedt

:
Bellman goes relational. - Shie Mannor, Duncan Simester, Peng Sun, John N. Tsitsiklis:

Bias and variance in value function estimation. - Rómer Rosales, Kannan Achan, Brendan J. Frey:

Learning to cluster using local neighborhood structure. - Tao Li, Sheng Ma, Mitsunori Ogihara

:
Entropy-based criterion in categorical clustering. - Qingping Tao, Stephen Donald Scott, N. V. Vinodchandran, Thomas Takeo Osugi:

SVM-based generalized multiple-instance learning via approximate box counting. - Anna Goldenberg, Andrew W. Moore:

Tractable learning of large Bayes net structures from sparse data. - Chris H. Q. Ding, Xiaofeng He:

Linearized cluster assignment via spectral ordering. - Chris H. Q. Ding, Xiaofeng He:

K-means clustering via principal component analysis. - Glenn Fung, Murat Dundar, Jinbo Bi, R. Bharat Rao:

A fast iterative algorithm for fisher discriminant using heterogeneous kernels. - Jelle R. Kok, Nikos Vlassis:

Sparse cooperative Q-learning. - Matthew R. Rudary, Satinder Singh, Martha E. Pollack:

Adaptive cognitive orthotics: combining reinforcement learning and constraint-based temporal reasoning. - Steven J. Phillips, Miroslav Dudík, Robert E. Schapire:

A maximum entropy approach to species distribution modeling. - Austin I. Eliazar, Ronald Parr:

Learning probabilistic motion models for mobile robots. - Xiaoli Zhang Fern, Carla E. Brodley:

Solving cluster ensemble problems by bipartite graph partitioning. - Ronan Collobert, Samy Bengio:

Links between perceptrons, MLPs and SVMs. - Sander M. Bohté, Markus Breitenbach, Gregory Z. Grudic:

Nonparametric classification with polynomial MPMC cascades. - Jihun Ham, Daniel D. Lee, Sebastian Mika, Bernhard Schölkopf:

A kernel view of the dimensionality reduction of manifolds. - Yuan (Alan) Qi, Thomas P. Minka, Rosalind W. Picard, Zoubin Ghahramani:

Predictive automatic relevance determination by expectation propagation. - Sharlee Climer

, Weixiong Zhang:
Take a walk and cluster genes: a TSP-based approach to optimal rearrangement clustering. - Alan Fern, Robert Givan:

Relational sequential inference with reliable observations. - Douglas P. Hardin, Ioannis Tsamardinos, Constantin F. Aliferis:

A theoretical characterization of linear SVM-based feature selection. - Charles Sutton, Khashayar Rohanimanesh, Andrew McCallum:

Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. - Eric P. Xing, Roded Sharan, Michael I. Jordan:

Bayesian haplo-type inference via the dirichlet process. - Francis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan:

Multiple kernel learning, conic duality, and the SMO algorithm. - Bianca Zadrozny:

Learning and evaluating classifiers under sample selection bias. - Tony Jebara:

Multi-task feature and kernel selection for SVMs. - Volkan Vural, Jennifer G. Dy:

A hierarchical method for multi-class support vector machines. - Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov:

Training conditional random fields via gradient tree boosting. - Avrim Blum, John D. Lafferty, Mugizi Robert Rwebangira, Rajashekar Reddy:

Semi-supervised learning using randomized mincuts. - Pieter Abbeel, Andrew Y. Ng:

Apprenticeship learning via inverse reinforcement learning. - Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Srujana Merugu:

An information theoretic analysis of maximum likelihood mixture estimation for exponential families. - Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, Alex Ksikes:

Ensemble selection from libraries of models. - Yasemin Altun, Thomas Hofmann, Alexander J. Smola:

Gaussian process classification for segmenting and annotating sequences. - Corinna Cortes, Mehryar Mohri:

Distribution kernels based on moments of counts. - Pengcheng Wu, Thomas G. Dietterich:

Improving SVM accuracy by training on auxiliary data sources. - Benjamin M. Marlin, Richard S. Zemel:

The multiple multiplicative factor model for collaborative filtering. - XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan:

Decentralized detection and classification using kernel methods. - David M. Blei, Michael I. Jordan:

Variational methods for the Dirichlet process. - David Wingate, Kevin D. Seppi:

P3VI: a partitioned, prioritized, parallel value iterator. - Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:

Learning low dimensional predictive representations. - Kristina Toutanova, Christopher D. Manning, Andrew Y. Ng:

Learning random walk models for inducing word dependency distributions. - Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola:

Learning with non-positive kernels. - Benjamin Taskar, Vassil Chatalbashev, Daphne Koller:

Learning associative Markov networks. - Csaba Szepesvári, William D. Smart:

Interpolation-based Q-learning. - Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, Jean-Philippe Vert

:
Extensions of marginalized graph kernels. - Cholwich Nattee, Sukree Sinthupinyo, Masayuki Numao, Takashi Okada:

Learning first-order rules from data with multiple parts: applications on mining chemical compound data. - Moshe Koppel, Jonathan Schler:

Authorship verification as a one-class classification problem.

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














