default search action
Hongseok Yang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j28]Nathanael L. Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean K. Moss, Daniel M. Roy, Sam Staton, Hongseok Yang:
Probabilistic Programming Interfaces for Random Graphs: Markov Categories, Graphons, and Nominal Sets. Proc. ACM Program. Lang. 8(POPL): 1819-1849 (2024) - [c87]Hyunsu Kim, Yegon Kim, Hongseok Yang, Juho Lee:
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts. ICML 2024 - [c86]Taeyoung Kim, Hongseok Yang:
An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network. ICML 2024 - [i36]Hyunsu Kim, Yegon Kim, Hongseok Yang, Juho Lee:
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts. CoRR abs/2407.04271 (2024) - 2023
- [j27]Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, Francois Caron:
Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility. J. Mach. Learn. Res. 24: 289:1-289:78 (2023) - [j26]Wonyeol Lee, Xavier Rival, Hongseok Yang:
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference. Proc. ACM Program. Lang. 7(POPL): 335-366 (2023) - [c85]Hyunsu Kim, Hyungi Lee, Hongseok Yang, Juho Lee:
Regularizing Towards Soft Equivariance Under Mixed Symmetries. ICML 2023: 16712-16727 - [c84]Seokin Seo, HyeongJoo Hwang, Hongseok Yang, Kee-Eung Kim:
Regularized Behavior Cloning for Blocking the Leakage of Past Action Information. NeurIPS 2023 - [i35]Francois Caron, Fadhel Ayed, Paul Jung, Hoil Lee, Juho Lee, Hongseok Yang:
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning. CoRR abs/2302.01002 (2023) - [i34]Hyunsu Kim, Hyungi Lee, Hongseok Yang, Juho Lee:
Regularizing Towards Soft Equivariance Under Mixed Symmetries. CoRR abs/2306.00356 (2023) - [i33]Tien Dat Nguyen, Jinwoo Kim, Hongseok Yang, Seunghoon Hong:
Learning Symmetrization for Equivariance with Orbit Distance Minimization. CoRR abs/2311.07143 (2023) - [i32]Taeyoung Kim, Hongseok Yang:
An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network. CoRR abs/2312.03386 (2023) - [i31]Nathanael L. Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean K. Moss, Daniel M. Roy, Sam Staton, Hongseok Yang:
Probabilistic programming interfaces for random graphs: Markov categories, graphons, and nominal sets. CoRR abs/2312.17127 (2023) - 2022
- [c83]Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok Yang, Kee-Eung Kim:
DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations. ICLR 2022 - [c82]Hyungi Lee, Eunggu Yun, Hongseok Yang, Juho Lee:
Scale Mixtures of Neural Network Gaussian Processes. ICLR 2022 - [c81]Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation. NeurIPS 2022 - [c80]Sangho Lim, Eun-Gyeol Oh, Hongseok Yang:
Learning Symmetric Rules with SATNet. NeurIPS 2022 - [i30]Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
LobsDICE: Offline Imitation Learning from Observation via Stationary Distribution Correction Estimation. CoRR abs/2202.13536 (2022) - [i29]Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, François Caron:
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility. CoRR abs/2205.08187 (2022) - [i28]Sangho Lim, Eun-Gyeol Oh, Hongseok Yang:
Learning Symmetric Rules with SATNet. CoRR abs/2206.13998 (2022) - [i27]Wonyeol Lee, Xavier Rival, Hongseok Yang:
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference. CoRR abs/2208.10530 (2022) - 2021
- [j25]Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, Marek Zawirski:
Specification and space complexity of collaborative text editing. Theor. Comput. Sci. 855: 141-160 (2021) - [c79]David Tolpin, Yuan Zhou, Tom Rainforth, Hongseok Yang:
Probabilistic Programs with Stochastic Conditioning. ICML 2021: 10312-10323 - [i26]Gwonsoo Che, Hongseok Yang:
Meta-Learning an Inference Algorithm for Probabilistic Programs. CoRR abs/2103.00737 (2021) - [i25]Paul Jung, Hoil Lee, Jiho Lee, Hongseok Yang:
α-Stable convergence of heavy-tailed infinitely-wide neural networks. CoRR abs/2106.11064 (2021) - [i24]Hyungi Lee, Eunggu Yun, Hongseok Yang, Juho Lee:
Scale Mixtures of Neural Network Gaussian Processes. CoRR abs/2107.01408 (2021) - 2020
- [j24]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
Towards verified stochastic variational inference for probabilistic programs. Proc. ACM Program. Lang. 4(POPL): 16:1-16:33 (2020) - [c78]Hyoungjin Lim, Gwonsoo Che, Wonyeol Lee, Hongseok Yang:
Differentiable Algorithm for Marginalising Changepoints. AAAI 2020: 4828-4835 - [c77]Geon-Hyeong Kim, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
Variational Inference for Sequential Data with Future Likelihood Estimates. ICML 2020: 5296-5305 - [c76]Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth:
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. ICML 2020: 11534-11545 - [c75]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
On Correctness of Automatic Differentiation for Non-Differentiable Functions. NeurIPS 2020 - [i23]David Tolpin, Yuan Zhou, Hongseok Yang:
Stochastically Differentiable Probabilistic Programs. CoRR abs/2003.00704 (2020) - [i22]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
On Correctness of Automatic Differentiation for Non-Differentiable Functions. CoRR abs/2006.06903 (2020) - [i21]David Tolpin, Yuan Zhou, Hongseok Yang:
Probabilistic Programs with Stochastic Conditioning. CoRR abs/2010.00282 (2020) - [i20]David Tolpin, Yuan Zhou, Hongseok Yang:
Bayesian Policy Search for Stochastic Domains. CoRR abs/2010.00284 (2020)
2010 – 2019
- 2019
- [c74]Geon-hyeong Kim, Youngsoo Jang, Jongmin Lee, Wonseok Jeon, Hongseok Yang, Kee-Eung Kim:
Trust Region Sequential Variational Inference. ACML 2019: 1033-1048 - [c73]Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood:
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. AISTATS 2019: 148-157 - [c72]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Resource-aware program analysis via online abstraction coarsening. ICSE 2019: 94-104 - [c71]Hongseok Yang:
Some Semantic Issues in Probabilistic Programming Languages (Invited Talk). FSCD 2019: 4:1-4:6 - [i19]Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood:
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. CoRR abs/1903.02482 (2019) - [i18]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
Towards Verified Stochastic Variational Inference for Probabilistic Programs. CoRR abs/1907.08827 (2019) - [i17]Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth:
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. CoRR abs/1910.13324 (2019) - [i16]Hyoungjin Lim, Gwonsoo Che, Wonyeol Lee, Hongseok Yang:
Differentiable Algorithm for Marginalising Changepoints. CoRR abs/1911.09839 (2019) - 2018
- [j23]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Learning analysis strategies for octagon and context sensitivity from labeled data generated by static analyses. Formal Methods Syst. Des. 53(2): 189-220 (2018) - [j22]Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, Zoubin Ghahramani:
Denotational validation of higher-order Bayesian inference. Proc. ACM Program. Lang. 2(POPL): 60:1-60:29 (2018) - [j21]Kihong Heo, Hakjoo Oh, Hongseok Yang, Kwangkeun Yi:
Adaptive Static Analysis via Learning with Bayesian Optimization. ACM Trans. Program. Lang. Syst. 40(4): 14:1-14:37 (2018) - [c70]Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, Daniel M. Roy:
The Beta-Bernoulli process and algebraic effects. ICALP 2018: 141:1-141:15 - [c69]Tom Rainforth, Robert Cornish, Hongseok Yang, Andrew Warrington:
On Nesting Monte Carlo Estimators. ICML 2018: 4264-4273 - [c68]Wonyeol Lee, Hangyeol Yu, Hongseok Yang:
Reparameterization Gradient for Non-differentiable Models. NeurIPS 2018: 5558-5568 - [i15]Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, Daniel M. Roy:
The Beta-Bernoulli process and algebraic effects. CoRR abs/1802.09598 (2018) - [i14]Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Hongseok Yang, Frank D. Wood:
Discontinuous Hamiltonian Monte Carlo for Probabilistic Programs. CoRR abs/1804.03523 (2018) - [i13]Wonyeol Lee, Hangyeol Yu, Hongseok Yang:
Reparameterization Gradient for Non-differentiable Models. CoRR abs/1806.00176 (2018) - [i12]Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, Frank Wood:
An Introduction to Probabilistic Programming. CoRR abs/1809.10756 (2018) - 2017
- [j20]Kwonsoo Chae, Hakjoo Oh, Kihong Heo, Hongseok Yang:
Automatically generating features for learning program analysis heuristics for C-like languages. Proc. ACM Program. Lang. 1(OOPSLA): 101:1-101:25 (2017) - [c67]Hongseok Yang:
Probabilistic Programming (Invited Talk). CONCUR 2017: 3:1-3:1 - [c66]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Algebraic Laws for Weak Consistency. CONCUR 2017: 26:1-26:18 - [c65]Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang:
A convenient category for higher-order probability theory. LICS 2017: 1-12 - [e2]Hongseok Yang:
Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Lecture Notes in Computer Science 10201, Springer 2017, ISBN 978-3-662-54433-4 [contents] - [i11]Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang:
A Convenient Category for Higher-Order Probability Theory. CoRR abs/1701.02547 (2017) - [i10]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Algebraic Laws for Weak Consistency. CoRR abs/1702.06028 (2017) - [i9]Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, Zoubin Ghahramani:
Denotational validation of higher-order Bayesian inference. CoRR abs/1711.03219 (2017) - 2016
- [j19]Hila Peleg, Sharon Shoham, Eran Yahav, Hongseok Yang:
Symbolic automata for representing big code. Acta Informatica 53(4): 327-356 (2016) - [j18]Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, Kwangkeun Yi:
Selective X-Sensitive Analysis Guided by Impact Pre-Analysis. ACM Trans. Program. Lang. Syst. 38(2): 6:1-6:45 (2016) - [c64]Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, Marc Shapiro:
The CISE tool: proving weakly-consistent applications correct. PaPoC@EuroSys 2016: 2:1-2:3 - [c63]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. IFL 2016: 6:1-6:12 - [c62]Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, Ohad Kammar:
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. LICS 2016: 525-534 - [c61]Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, Marek Zawirski:
Specification and Complexity of Collaborative Text Editing. PODC 2016: 259-268 - [c60]Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, Marc Shapiro:
'Cause I'm strong enough: reasoning about consistency choices in distributed systems. POPL 2016: 371-384 - [c59]Radu Grigore, Hongseok Yang:
Abstraction refinement guided by a learnt probabilistic model. POPL 2016: 485-498 - [c58]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Learning a Variable-Clustering Strategy for Octagon from Labeled Data Generated by a Static Analysis. SAS 2016: 237-256 - [i8]Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, Frank D. Wood:
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. CoRR abs/1601.04943 (2016) - [i7]Mike Wu, Yura N. Perov, Frank D. Wood, Hongseok Yang:
Spreadsheet Probabilistic Programming. CoRR abs/1606.04216 (2016) - [i6]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. CoRR abs/1608.05263 (2016) - [i5]Kwonsoo Chae, Hakjoo Oh, Kihong Heo, Hongseok Yang:
Automatically generating features for learning program analysis heuristics. CoRR abs/1612.09394 (2016) - 2015
- [c57]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. AISTATS 2015 - [c56]Alexey Gotsman, Hongseok Yang:
Composite Replicated Data Types. ESOP 2015: 585-609 - [c55]Hakjoo Oh, Hongseok Yang, Kwangkeun Yi:
Learning a strategy for adapting a program analysis via bayesian optimisation. OOPSLA 2015: 572-588 - [c54]Ghila Castelnuovo, Mayur Naik, Noam Rinetzky, Mooly Sagiv, Hongseok Yang:
Modularity in Lattices: A Case Study on the Correspondence Between Top-Down and Bottom-Up Analysis. SAS 2015: 252-274 - [c53]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Transaction Chopping for Parallel Snapshot Isolation. DISC 2015: 388-404 - [i4]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. CoRR abs/1501.06769 (2015) - [i3]Radu Grigore, Hongseok Yang:
Abstraction Refinement Guided by a Learnt Probabilistic Model. CoRR abs/1511.01874 (2015) - 2014
- [c52]Ravi Mangal, Mayur Naik, Hongseok Yang:
A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join. ESOP 2014: 513-533 - [c51]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Parameterised Linearisability. ICALP (2) 2014: 98-109 - [c50]Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, Hongseok Yang:
On abstraction refinement for program analyses in Datalog. PLDI 2014: 239-248 - [c49]Xin Zhang, Ravi Mangal, Mayur Naik, Hongseok Yang:
Hybrid top-down and bottom-up interprocedural analysis. PLDI 2014: 249-258 - [c48]Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, Kwangkeun Yi:
Selective context-sensitivity guided by impact pre-analysis. PLDI 2014: 475-484 - [c47]Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, Marek Zawirski:
Replicated data types: specification, verification, optimality. POPL 2014: 271-284 - 2013
- [j17]Alexey Gotsman, Hongseok Yang:
Linearizability with Ownership Transfer. Log. Methods Comput. Sci. 9(3) (2013) - [j16]Alexey Gotsman, Hongseok Yang:
Modular verification of preemptive OS kernels. J. Funct. Program. 23(4): 452-514 (2013) - [j15]Jan Schwinghammer, Lars Birkedal, François Pottier, Bernhard Reus, Kristian Støvring, Hongseok Yang:
A step-indexed Kripke model of hidden state. Math. Struct. Comput. Sci. 23(1): 1-54 (2013) - [c46]Alexey Gotsman, Noam Rinetzky, Hongseok Yang:
Verifying Concurrent Memory Reclamation Algorithms with Grace. ESOP 2013: 249-269 - [c45]Xin Zhang, Mayur Naik, Hongseok Yang:
Finding optimum abstractions in parametric dataflow analysis. PLDI 2013: 365-376 - [c44]Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, Hongseok Yang:
Views: compositional reasoning for concurrent programs. POPL 2013: 287-300 - [c43]Hila Peleg, Sharon Shoham, Eran Yahav, Hongseok Yang:
Symbolic Automata for Static Specification Mining. SAS 2013: 63-83 - 2012
- [j14]Jacob Thamsborg, Lars Birkedal, Hongseok Yang:
Two for the Price of One: Lifting Separation Logic Assertions. Log. Methods Comput. Sci. 8(3) (2012) - [j13]Oukseh Lee, Hongseok Yang, Rasmus Petersen:
A divide-and-conquer approach for analysing overlaid data structures. Formal Methods Syst. Des. 41(1): 4-24 (2012) - [c42]Alexey Gotsman, Hongseok Yang:
Linearizability with Ownership Transfer. CONCUR 2012: 256-271 - [c41]Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, Hongseok Yang:
Concurrent Library Correctness on the TSO Memory Model. ESOP 2012: 87-107 - [c40]Mayur Naik, Hongseok Yang, Ghila Castelnuovo, Mooly Sagiv:
Abstractions from tests. POPL 2012: 373-386 - [c39]Saswat Anand, Mayur Naik, Mary Jean Harrold, Hongseok Yang:
Automated concolic testing of smartphone apps. SIGSOFT FSE 2012: 59 - [c38]Alexey Gotsman, Madanlal Musuvathi, Hongseok Yang:
Show No Weakness: Sequentially Consistent Specifications of TSO Libraries. DISC 2012: 31-45 - 2011
- [j12]Jan Schwinghammer, Lars Birkedal, Bernhard Reus, Hongseok Yang:
Nested Hoare Triples and Frame Rules for Higher-order Store. Log. Methods Comput. Sci. 7(3) (2011) - [j11]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58(6): 26:1-26:66 (2011) - [c37]Oukseh Lee, Hongseok Yang, Rasmus Petersen:
Program Analysis for Overlaid Data Structures. CAV 2011: 592-608 - [c36]Alexey Gotsman, Hongseok Yang:
Liveness-Preserving Atomicity Abstraction. ICALP (2) 2011: 453-465 - [c35]Alexey Gotsman, Hongseok Yang:
Modular verification of preemptive OS kernels. ICFP 2011: 404-417 - [c34]Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, Hongseok Yang:
Step-indexed kripke models over recursive worlds. POPL 2011: 119-132 - [e1]Hongseok Yang:
Programming Languages and Systems - 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, December 5-7, 2011. Proceedings. Lecture Notes in Computer Science 7078, Springer 2011, ISBN 978-3-642-25317-1 [contents] - 2010
- [j10]Ivana Filipovic, Peter W. O'Hearn, Noah Torp-Smith, Hongseok Yang:
Blaming the client: on data refinement in the presence of pointers. Formal Aspects Comput. 22(5): 547-583 (2010) - [j9]Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for concurrent objects. Theor. Comput. Sci. 411(51-52): 4379-4398 (2010) - [c33]Aziem Chawdhary, Hongseok Yang:
Metric Spaces and Termination Analyses. APLAS 2010: 156-171 - [c32]Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier, Bernhard Reus:
A Semantic Foundation for Hidden State. FoSSaCS 2010: 2-17
2000 – 2009
- 2009
- [j8]Peter W. O'Hearn, Hongseok Yang, John C. Reynolds:
Separation and information hiding. ACM Trans. Program. Lang. Syst. 31(3): 11:1-11:50 (2009) - [c31]Jan Schwinghammer, Lars Birkedal, Bernhard Reus, Hongseok Yang:
Nested Hoare Triples and Frame Rules for Higher-Order Store. CSL 2009: 440-454 - [c30]Hongseok Yang:
Automatic Verification of Heap-Manipulating Programs Using Separation Logic. CSR 2009: 25 - [c29]Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009: 252-266 - [c28]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Compositional shape analysis by means of bi-abduction. POPL 2009: 289-300 - 2008
- [j7]Lars Birkedal, Hongseok Yang:
Relational Parametricity and Separation Logic. Log. Methods Comput. Sci. 4(2) (2008) - [c27]Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O'Hear