


default search action
24th UAI 2008: Helsinki, Finland
- David A. McAllester, Petri Myllymäki:

UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008. AUAI Press 2008, ISBN 0-9749039-4-9 - Umut A. Acar, Alexander T. Ihler, Ramgopal R. Mettu, Özgür Sümer:

Adaptive inference on general graphical models. 1-8 - Dimitrios Antos, Avi Pfeffer:

Identifying reasoning patterns in games. 9-17 - Vincent Auvray, Louis Wehenkel:

Learning Inclusion-Optimal Chordal Graphs. 18-25 - David Barber:

Clique Matrices for Statistical Graph Decomposition and Parameterising Restricted Positive Definite Matrices. 26-33 - Debarun Bhattacharjya, Ross D. Shachter:

Sensitivity analysis in decision circuits. 34-42 - Liefeng Bo, Cristian Sminchisescu:

Greedy Block Coordinate Descent for Large Scale Gaussian Process Regression. 43-52 - Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy:

CORL: A Continuous-state Offset-dynamics Reinforcement Learner. 53-61 - Zhihong Cai, Manabu Kuroki:

On Identifying Total Effects in the Presence of Latent Variables and Selection bias. 62-69 - Venkat Chandrasekaran, Nathan Srebro, Prahladh Harsha:

Complexity of Inference in Graphical Models. 70-78 - Arthur Choi, Adnan Darwiche:

Approximating the Partition Function by Deleting and then Correcting for Model Edges. 79-87 - Kuzman Ganchev, João Graça, John Blitzer, Ben Taskar:

Multi-View Learning over Structured and Non-Identical Outputs. 88-96 - Botond Cseke, Tom Heskes:

Bounds on the Bethe Free Energy for Gaussian Networks. 97-104 - James Cussens:

Bayesian network learning by compiling to weighted MAX-SAT. 105-112 - A. Philip Dawid, Vanessa Didelez:

Identifying Optimal Sequential Decisions. 113-120 - Cassio P. de Campos, Qiang Ji:

Strategy Selection in Influence Diagrams using Imprecise Probabilities. 121-128 - Gert De Cooman, Filip Hermans, Erik Quaeghebeur:

Sensitivity analysis for finite Markov chains in discrete time. 129-136 - Justin Domke:

Learning Convex Inference of Marginals. 137-144 - John C. Duchi, Stephen Gould, Daphne Koller:

Projected Subgradient Methods for Learning Sparse Gaussians. 145-152 - Quang Duong, Michael P. Wellman, Satinder Singh:

Knowledge Combination in Graphical Multiagent Models. 153-160 - Frederick Eberhardt:

Almost Optimal Intervention Sets for Causal Discovery. 161-168 - Tal El-Hay, Nir Friedman, Raz Kupferman:

Gibbs Sampling in Factorized Continuous-Time Markov Processes. 169-178 - Gal Elidan, Benjamin Packer, Geremy Heitz, Daphne Koller:

Convex Point Estimation using Undirected Bayesian Transfer Hierarchies. 179-186 - Sevan G. Ficici, David C. Parkes, Avi Pfeffer:

Learning and Solving Many-Player Games through a Cluster-Based Representation. 187-195 - Varun Ganapathi, David Vickrey, John C. Duchi, Daphne Koller:

Constrained Approximate Maximum Entropy Learning of Markov Random Fields. 196-203 - Kuzman Ganchev, João Graça, John Blitzer, Ben Taskar:

Multi-View Learning over Structured and Non-Identical Outputs. 204-211 - Vibhav Gogate, Rina Dechter:

AND/OR Importance Sampling. 212-219 - Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Kallista A. Bonawitz, Joshua B. Tenenbaum:

Church: a language for generative models. 220-229 - Amit Gruber, Michal Rosen-Zvi, Yair Weiss:

Latent Topic Models for Hypertext. 230-239 - Peter Grünwald, Joseph Y. Halpern:

A Game-Theoretic Analysis of Updating Sets of Probabilities. 240-247 - Hannaneh Hajishirzi, Eyal Amir:

Sampling First Order Logical Particles. 248-255 - Eric A. Hansen:

Sparse Stochastic Finite-State Controllers for POMDPs. 256-263 - Tamir Hazan, Amnon Shashua:

Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies. 264-273 - Greg Hines, Kate Larson:

Learning When to Take Advice: A Statistical Test for Achieving A Correlated Equilibrium. 274-281 - Patrik O. Hoyer, Aapo Hyvärinen, Richard Scheines, Peter Spirtes, Joseph D. Ramsey, Gustavo Lacerda, Shohei Shimizu:

Causal discovery of linear acyclic models with arbitrary distributions. 282-289 - Jim C. Huang, Brendan J. Frey:

Cumulative distribution networks and the derivative-sum-product algorithm. 290-297 - Bowen Hui, Craig Boutilier:

Toward Experiential Utility Elicitation for Interface Customization. 298-305 - Alejandro Isaza, Csaba Szepesvári, Vadim Bulitko, Russell Greiner:

Speeding Up Planning in Markov Decision Processes via Automatically Constructed Abstraction. 306-314 - Tony Jebara:

Bayesian Out-Trees. 315-324 - Seyoung Kim, Eric P. Xing:

Feature Selection via Block-Regularized Regression. 325-332 - Manabu Kuroki, Zhihong Cai:

On Identifying Total Effects in the Presence of Latent Variables and Selection bias. 333-340 - Branislav Kveton, Milos Hauskrecht:

Partitioned Linear Programming Approximations for MDPs. 341-348 - Johan Kwisthout, Linda C. van der Gaag:

The Computational Complexity of Sensitivity Analysis and Parameter Tuning. 349-356 - Eric B. Laber, Susan A. Murphy:

Small Sample Inference for Generalization Error in Classification Using the CUD Bound. 357-365 - Gustavo Lacerda, Peter Spirtes, Joseph D. Ramsey, Patrik O. Hoyer:

Discovering Cyclic Causal Models by Independent Components Analysis. 366-374 - Gregory Lawrence, Stuart Russell:

Improving Gradient Estimation by Incorporating Sensor Data. 375-382 - Daniel Lowd, Pedro M. Domingos:

Learning Arithmetic Circuits. 383-392 - Marina Meila, Le Bao:

Estimation and clustering with infinite rankings. 393-402 - Kurt T. Miller, Thomas L. Griffiths, Michael I. Jordan:

The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features. 403-410 - David M. Mimno, Andrew McCallum:

Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression. 411-418 - Enrique Munoz de Cote, Michael L. Littman:

A Polynomial-time Nash Equilibrium Algorithm for Repeated Stochastic Games. 419-426 - Ulf H. Nielsen, Jean-Philippe Pellet, André Elisseeff:

Explanation Trees for Causal Bayesian Networks. 427-434 - Mathias Niepert, Dirk Van Gucht, Marc Gyssens:

On the Conditional Independence Implication Problem: A Lattice-Theoretic Approach. 435-443 - Keith Noto, Mark Craven:

Learning Hidden Markov Models for Regression using Path Aggregation. 444-451 - Lars Otten, Rina Dechter:

Bounding Search Space Size via (Hyper)tree Decompositions. 452-459 - Yan Radovilsky, Solomon Eyal Shimony:

Observation Subset Selection as Local Compilation of Performance Profiles. 460-467 - Sebastian Riedel:

Improving the Accuracy and Efficiency of MAP Inference for Markov Logic. 468-475 - Stéphane Ross, Joelle Pineau:

Model-Based Bayesian Reinforcement Learning in Large Structured Domains. 476-483 - Aleksandr Simma, Moisés Goldszmidt, John MacCormick, Paul Barham, Richard Black, Rebecca Isaacs, Richard Mortier:

CT-NOR: Representing and Reasoning About Events in Continuous Time. 484-493 - Tomás Singliar, Denver Dash:

Efficient Inference in Persistent Dynamic Bayesian Networks. 494-502 - David A. Sontag, Talya Meltzer, Amir Globerson, Tommi S. Jaakkola, Yair Weiss:

Tightening LP Relaxations for MAP using Message Passing. 503-510 - Harald Steck:

Learning the Bayesian Network Structure: Dirichlet Prior vs Data. 511-518 - Matthew J. Streeter, Stephen F. Smith:

New Techniques for Algorithm Portfolio Design. 519-527 - Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, Michael H. Bowling:

Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping. 528-536 - Daniel Tarlow, Richard S. Zemel, Brendan J. Frey:

Flexible Priors for Exemplar-based Clustering. 537-545 - Peter A. Thwaites, Jim Q. Smith, Robert G. Cowell:

Propagation using Chain Event Graphs. 546-553 - Jin Tian:

Identifying Dynamic Sequential Plans. 554-561 - Marc Toussaint, Laurent Charlin, Pascal Poupart:

Hierarchical POMDP Controller Optimization by Likelihood Maximization. 562-570 - Jarno Vanhatalo, Aki Vehtari:

Modelling local and global phenomena with sparse Gaussian processes. 571-578 - Chong Wang, David M. Blei, David Heckerman:

Continuous Time Dynamic Topic Models. 579-586 - Max Welling, Yee Whye Teh, Bert Kappen:

Hybrid Variational/Gibbs Collapsed Inference in Topic Models. 587-594 - Ydo Wexler, Christopher Meek:

Inference for Multiplicative Models. 595-602 - Haohai Yu, Robert van Engelen:

Refractor Importance Sampling. 603-611

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














