


default search action
22. NIPS 2009: Vancouver, British Columbia, Canada
- Yoshua Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, Aron Culotta:

Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2009, ISBN 9781615679119 - Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:

Information-theoretic lower bounds on the oracle complexity of convex optimization. 1-9 - Nir Ailon, Ragesh Jaiswal, Claire Monteleoni:

Streaming k-means approximation. 10-18 - Martin Allen, Shlomo Zilberstein:

Complexity of Decentralized Control: Special Cases. 19-27 - Massih-Reza Amini, Nicolas Usunier, Cyril Goutte:

Learning from Multiple Partially Observed Views - an Application to Multilingual Text Categorization. 28-36 - Roy Anati, Kostas Daniilidis:

Constructing Topological Maps using Markov Random Fields and Loop-Closure Detection. 37-45 - Sylvain Arlot, Francis R. Bach:

Data-driven calibration of linear estimators with minimal penalties. 46-54 - Raman Arora:

On Learning Rotations. 55-63 - Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko Sadamasa, Yanjun Qi, Corinna Cortes, Mehryar Mohri:

Polynomial Semantic Indexing. 64-72 - Cosmin Adrian Bejan, Matthew Titsworth, Andrew Hickl, Sanda M. Harabagiu:

Nonparametric Bayesian Models for Unsupervised Event Coreference Resolution. 73-81 - Samy Bengio, Fernando C. N. Pereira, Yoram Singer, Dennis Strelow:

Group Sparse Coding. 82-89 - Philipp Berens, Sebastian Gerwinn, Alexander S. Ecker, Matthias Bethge:

Neurometric function analysis of population codes. 90-98 - James Bergstra, Yoshua Bengio:

Slow, Decorrelated Features for Pretraining Complex Cell-like Networks. 99-107 - Pietro Berkes

, Ben White, József Fiser:
No evidence for active sparsification in the visual cortex. 108-116 - Wei Bian, Dacheng Tao:

Manifold Regularization for SIR with Rate Root-n Convergence. 117-125 - Matthew B. Blaschko, Jacquelyn A. Shelton, Andreas M. Bartels:

Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity. 126-134 - Liefeng Bo, Cristian Sminchisescu:

Efficient Match Kernel between Sets of Features for Visual Recognition. 135-143 - Alexandre Bouchard-Côté, Slav Petrov, Dan Klein:

Randomized Pruning: Efficiently Calculating Expectations in Large Dynamic Programs. 144-152 - Christos Boutsidis, Michael W. Mahoney, Petros Drineas

:
Unsupervised Feature Selection for the $k$-means Clustering Problem. 153-161 - Jake V. Bouvrie, Lorenzo Rosasco, Tomaso A. Poggio:

On Invariance in Hierarchical Models. 162-170 - Romain Brasselet, Roland S. Johansson, Angelo Arleo:

Optimal context separation of spiking haptic signals by second-order somatosensory neurons. 180-188 - Michael Brückner, Tobias Scheffer:

Nash Equilibria of Static Prediction Games. 171-179 - Samuel Rota Bulò, Marcello Pelillo:

A Game-Theoretic Approach to Hypergraph Clustering. 1571-1579 - Keith Bush, Joelle Pineau:

Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability. 189-197 - Chenghui Cai, Xuejun Liao, Lawrence Carin:

Learning to Explore and Exploit in POMDPs. 198-206 - William M. Campbell, Zahi N. Karam, Douglas E. Sturim:

Speaker Comparison with Inner Product Discriminant Functions. 207-215 - Peter Carbonetto, Matthew King, Firas Hamze:

A Stochastic approximation method for inference in probabilistic graphical models. 216-224 - Francois Caron, Arnaud Doucet:

Bayesian Nonparametric Models on Decomposable Graphs. 225-233 - Daniel R. Cavagnaro, Mark A. Pitt, Jay I. Myung:

Adaptive Design Optimization in Experiments with People. 234-242 - Lawrence Cayton:

Efficient Bregman Range Search. 243-251 - Guillermo A. Cecchi, Irina Rish, Benjamin Thyreau, Bertrand Thirion, Marion Plaze, Marie-Laure Paillère-Martinot, Catherine Martelli, Jean-Luc Martinot, Jean-Baptiste Poline:

Discriminative Network Models of Schizophrenia. 252-260 - Volkan Cevher:

Learning with Compressible Priors. 261-269 - Kian Ming Adam Chai:

Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes. 279-287 - Barry Chai, Dirk B. Walther, Diane M. Beck, Li Fei-Fei:

Exploring Functional Connectivities of the Human Brain using Multivariate Information Analysis. 270-278 - Jonathan D. Chang, Jordan L. Boyd-Graber, Sean Gerrish, Chong Wang, David M. Blei:

Reading Tea Leaves: How Humans Interpret Topic Models. 288-296 - Kamalika Chaudhuri, Yoav Freund, Daniel J. Hsu:

A Parameter-free Hedging Algorithm. 297-305 - Gal Chechik, Uri Shalit, Varun Sharma, Samy Bengio:

An Online Algorithm for Large Scale Image Similarity Learning. 306-314 - Ye Chen, Michael Kapralov

, Dmitry Pavlov, John F. Canny:
Factor Modeling for Advertisement Targeting. 324-332 - Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, Hang Li:

Ranking Measures and Loss Functions in Learning to Rank. 315-323 - Tat-Jun Chin, Hanzi Wang, David Suter:

The Ordered Residual Kernel for Robust Motion Subspace Clustering. 333-341 - Youngmin Cho, Lawrence K. Saul:

Kernel Methods for Deep Learning. 342-350 - Arthur Choi, Adnan Darwiche:

Approximating MAP by Compensating for Structural Relaxations. 351-359 - Stéphan Clémençon, Nicolas Vayatis, Marine Depecker:

AUC optimization and the two-sample problem. 360-368 - Ruben Coen Cagli, Peter Dayan, Odelia Schwartz:

Statistical Models of Linear and Nonlinear Contextual Interactions in Early Visual Processing. 369-377 - Bryan R. Conroy, Benjamin D. Singer, James V. Haxby, Peter J. Ramadge:

fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity. 378-386 - Pierre-Arnaud Coquelin, Romain Deguest, Rémi Munos:

Sensitivity analysis in HMMs with application to likelihood maximization. 387-395 - Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh:

Learning Non-Linear Combinations of Kernels. 396-404 - Aaron C. Courville, Douglas Eck, Yoshua Bengio:

An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism. 405-413 - Koby Crammer, Alex Kulesza, Mark Dredze:

Adaptive Regularization of Weight Vectors. 414-422 - Benjamin J. Culpepper, Bruno A. Olshausen:

Learning transport operators for image manifolds. 423-431 - Marco Cuturi, Jean-Philippe Vert, Alexandre d'Aspremont:

White Functionals for Anomaly Detection in Dynamical Systems. 432-440 - Arnak S. Dalalyan, Renaud Keriven:

L1-Penalized Robust Estimation for a Class of Inverse Problems Arising in Multiview Geometry. 441-449 - Ofer Dekel:

Distribution-Calibrated Hierarchical Classification. 450-458 - Liam Mac Dermed, Charles L. Isbell Jr.:

Solving Stochastic Games. 1186-1194 - Vijay V. Desai, Vivek F. Farias, Ciamac Cyrus Moallemi:

A Smoothed Approximate Linear Program. 459-467 - Laura Dietz, Valentin Dallmeier, Andreas Zeller, Tobias Scheffer:

Localizing Bugs in Program Executions with Graphical Models. 468-476 - Finale Doshi-Velez:

The Infinite Partially Observable Markov Decision Process. 477-485 - Lan Du, Lu Ren, David B. Dunson, Lawrence Carin:

A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation. 486-494 - John C. Duchi, Yoram Singer:

Efficient Learning using Forward-Backward Splitting. 495-503 - Benjamin Van Durme, Ashwin Lall:

Streaming Pointwise Mutual Information. 1892-1900 - Vivek F. Farias, Srikanth Jagabathula, Devavrat Shah:

A Data-Driven Approach to Modeling Choice. 504-512 - Siamac Fazli, Cristian Grozea, Márton Danóczy, Benjamin Blankertz, Florin Popescu, Klaus-Robert Müller:

Subject independent EEG-based BCI decoding. 513-521 - Rob Fergus, Yair Weiss, Antonio Torralba:

Semi-Supervised Learning in Gigantic Image Collections. 522-530 - Sanja Fidler, Marko Boben, Ales Leonardis:

Evaluating multi-class learning strategies in a generative hierarchical framework for object detection. 531-539 - Alyson K. Fletcher, Sundeep Rangan:

Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis. 540-548 - Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:

Sharing Features among Dynamical Systems with Beta Processes. 549-557 - Mario Fritz, Michael J. Black, Gary R. Bradski, Sergey Karayev, Trevor Darrell:

An Additive Latent Feature Model for Transparent Object Recognition. 558-566 - Menachem Fromer, Amir Globerson:

An LP View of the M-best MAP problem. 567-575 - Yusuke Fujiwara, Yoichi Miyawaki, Yukiyasu Kamitani:

Estimating image bases for visual image reconstruction from human brain activity. 576-584 - Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, Jiawei Han:

Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models. 585-593 - Eric K. Garcia, Maya R. Gupta:

Lattice Regression. 594-602 - Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Sara Shanian:

From PAC-Bayes Bounds to KL Regularization. 603-610 - Samuel Gershman, Ed Vul, Joshua B. Tenenbaum:

Perceptual Multistability as Markov Chain Monte Carlo Inference. 611-619 - Marcel van Gerven, Botond Cseke, Robert Oostenveld, Tom Heskes:

Bayesian Source Localization with the Multivariate Laplace Prior. 1901-1909 - Sebastian Gerwinn, Philipp Berens, Matthias Bethge:

A joint maximum-entropy model for binary neural population patterns and continuous signals. 620-628 - Sennay Ghebreab, H. Steven Scholte, Victor A. F. Lamme, Arnold W. M. Smeulders:

A Biologically Plausible Model for Rapid Natural Scene Identification. 629-637 - Jacob Goldberger, Amir Leshem:

A Gaussian Tree Approximation for Integer Least-Squares. 638-645 - Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee, Andrew Y. Ng:

Measuring Invariances in Deep Networks. 646-654 - Stephen Gould, Tianshi Gao, Daphne Koller:

Region-based Segmentation and Object Detection. 655-663 - João Graça, Kuzman Ganchev, Ben Taskar, Fernando C. N. Pereira:

Posterior vs Parameter Sparsity in Latent Variable Models. 664-672 - Arthur Gretton, Kenji Fukumizu, Zaïd Harchaoui, Bharath K. Sriperumbudur:

A Fast, Consistent Kernel Two-Sample Test. 673-681 - Marco Grzegorczyk, Dirk Husmeier:

Non-stationary continuous dynamic Bayesian networks. 682-690 - Andrew Guillory, Jeff A. Bilmes:

Label Selection on Graphs. 691-699 - Elad Hazan, Satyen Kale:

Beyond Convexity: Online Submodular Minimization. 700-708 - Elad Hazan, Satyen Kale:

On Stochastic and Worst-case Models for Investing. 709-717 - Matthias Hein:

Robust Nonparametric Regression with Metric-Space Valued Output. 718-726 - Katherine A. Heller, Adam Sanborn, Nick Chater:

Hierarchical Learning of Dimensional Biases in Human Categorization. 727-735 - Ricardo Henao, Ole Winther:

Bayesian Sparse Factor Models and DAGs Inference and Comparison. 736-744 - Jean Honorio, Luis E. Ortiz, Dimitris Samaras, Nikos Paragios, Rita Z. Goldstein:

Sparse and Locally Constant Gaussian Graphical Models. 745-753 - Chun-Nan Hsu, Yu-Ming Chang, Han-Shen Huang, Yuh-Jye Lee:

Periodic Step Size Adaptation for Single Pass On-line Learning. 763-771 - Daniel J. Hsu, Sham M. Kakade, John Langford, Tong Zhang:

Multi-Label Prediction via Compressed Sensing. 772-780 - Anne S. Hsu, Thomas L. Griffiths:

Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning. 754-762 - Chonghai Hu, James T. Kwok, Weike Pan:

Accelerated Gradient Methods for Stochastic Optimization and Online Learning. 781-789 - Tao Hu, Anthony M. Leonardo, Dmitri B. Chklovskii:

Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME). 790-798 - Jonathan Huang, Carlos Guestrin:

Riffled Independence for Ranked Data. 799-807 - Shuai Huang, Jing Li, Liang Sun, Jun Liu, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman, Jieping Ye:

Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data. 808-816 - Marcus Hutter:

Discrete MDL Predicts in Total Variation. 817-825 - Alexander Ihler, Andrew J. Frank, Padhraic Smyth:

Particle-based Variational Inference for Continuous Systems. 826-834 - Tomoharu Iwata, Takeshi Yamada, Naonori Ueda:

Modeling Social Annotation Data with Content Relevance using a Topic Model. 835-843 - Jagarlapudi Saketha Nath, G. Dinesh, Raman Sankaran, Chiranjib Bhattacharyya, Aharon Ben-Tal, K. R. Ramakrishnan:

On the Algorithmics and Applications of a Mixed-norm based Kernel Learning Formulation. 844-852 - Alan Jern, Kai-min Chang, Charles Kemp:

Bayesian Belief Polarization. 853-861 - Rong Jin, Shijun Wang, Yang Zhou:

Regularized Distance Metric Learning: Theory and Algorithm. 862-870 - Kyomin Jung, Pushmeet Kohli, Devavrat Shah:

Local Rules for Global MAP: When Do They Work ? 871-879 - Adam Kalai, Varun Kanade:

Potential-Based Agnostic Boosting. 880-888 - Yi-Hao Kao, Benjamin Van Roy, Xiang Yan:

Directed Regression. 889-897 - Ashish Kapoor, Eric Horvitz:

Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition. 898-906 - Masayuki Karasuyama, Ichiro Takeuchi:

Multiple Incremental Decremental Learning of Support Vector Machines. 907-915 - Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, Jeff A. Bilmes:

Submodularity Cuts and Applications. 916-924 - Charles Kemp, Alan Jern, Fei Xu:

Individuation, Identification and Object Discovery. 925-933 - Charles Kemp, Alan Jern:

Abstraction and Relational learning. 934-942 - Charles Kemp:

Quantification and the language of thought. 943-951 - Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh:

Matrix Completion from Noisy Entries. 952-960 - Kwang In Kim, Florian Steinke, Matthias Hein:

Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction. 979-987 - Gunhee Kim, Antonio Torralba:

Unsupervised Detection of Regions of Interest Using Iterative Link Analysis. 961-969 - Jong Kyoung Kim, Seungjin Choi:

Clustering sequence sets for motif discovery. 970-978 - Stefan Klampfl, Wolfgang Maass:

Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks. 988-996 - Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Pavel Laskov, Klaus-Robert Müller, Alexander Zien:

Efficient and Accurate Lp-Norm Multiple Kernel Learning. 997-1005 - Mladen Kolar, Le Song, Eric P. Xing:

Sparsistent Learning of Varying-coefficient Models with Structural Changes. 1006-1014 - George Dimitri Konidaris, Andrew G. Barto:

Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining. 1015-1023 - Samory Kpotufe:

Fast, smooth and adaptive regression in metric spaces. 1024-1032 - Dilip Krishnan, Rob Fergus:

Fast Image Deconvolution using Hyper-Laplacian Priors. 1033-1041 - Brian Kulis, Trevor Darrell:

Learning to Hash with Binary Reconstructive Embeddings. 1042-1050 - M. Pawan Kumar, Daphne Koller:

Learning a Small Mixture of Trees. 1051-1059 - Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:

Ensemble Nystrom Method. 1060-1068 - Marc Lanctot, Kevin Waugh, Martin Zinkevich, Michael H. Bowling:

Monte Carlo Sampling for Regret Minimization in Extensive Games. 1078-1086 - Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:

Inter-domain Gaussian Processes for Sparse Inference using Inducing Features. 1087-1095 - Honglak Lee, Peter T. Pham, Yan Largman, Andrew Y. Ng:

Unsupervised feature learning for audio classification using convolutional deep belief networks. 1096-1104 - Robert Legenstein, Steven M. Chase, Andrew B. Schwartz, Wolfgang Maass:

Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning. 1105-1113 - Marius Leordeanu, Martial Hebert, Rahul Sukthankar:

An Integer Projected Fixed Point Method for Graph Matching and MAP Inference. 1114-1122 - Wu-Jun Li, Dit-Yan Yeung, Zhihua Zhang:

Probabilistic Relational PCA. 1123-1131 - Percy Liang, Francis R. Bach, Guillaume Bouchard, Michael I. Jordan:

Asymptotically Optimal Regularization in Smooth Parametric Models. 1132-1140 - Han Liu, Xi Chen:

Nonparametric Greedy Algorithms for the Sparse Learning Problem. 1141-1149 - Aurélie C. Lozano, Grzegorz Swirszcz, Naoki Abe:

Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction. 1150-1158 - Hongjing Lu, Matthew Weiden, Alan L. Yuille:

Modeling the spacing effect in sequential category learning. 1159-1167 - Jie Luo, Barbara Caputo, Vittorio Ferrari:

Who's Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation. 1168-1176 - Jaakko Luttinen, Alexander Ilin:

Variational Gaussian-process factor analysis for modeling spatio-temporal data. 1177-1185 - Jörg Lücke, Richard E. Turner, Maneesh Sahani, Marc Henniges:

Occlusive Components Analysis. 1069-1077 - Jakob H. Macke, Sebastian Gerwinn, Leonard E. White, Matthias Kaschube, Matthias Bethge:

Bayesian estimation of orientation preference maps. 1195-1203 - Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, Richard S. Sutton:

Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation. 1204-1212 - Odalric-Ambrym Maillard, Rémi Munos:

Compressed Least-Squares Regression. 1213-1221 - Tomasz Malisiewicz, Alexei A. Efros:

Beyond Categories: The Visual Memex Model for Reasoning About Object Relationships. 1222-1230 - Gideon Mann, Ryan T. McDonald, Mehryar Mohri, Nathan Silberman, Dan Walker:

Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models. 1231-1239 - Dimitris Margaritis:

Toward Provably Correct Feature Selection in Arbitrary Domains. 1240-1248 - Andrew McCallum, Karl Schultz, Sameer Singh:

FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs. 1249-1257 - Raghu Meka, Prateek Jain, Inderjit S. Dhillon:

Matrix Completion from Power-Law Distributed Samples. 1258-1266 - Yicong Meng, Bertram E. Shi:

Extending Phase Mechanism to Differential Motion Opponency for Motion Pop-out. 1267-1275 - Kurt T. Miller, Thomas L. Griffiths, Michael I. Jordan:

Nonparametric Latent Feature Models for Link Prediction. 1276-1284 - Baback Moghaddam, Benjamin M. Marlin, Mohammad Emtiyaz Khan, Kevin P. Murphy:

Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models. 1285-1293 - Finale Doshi-Velez, David A. Knowles, Shakir Mohamed, Zoubin Ghahramani:

Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process. 1294-1302 - Andrea Montanari, Jose Ayres Pereira:

Which graphical models are difficult to learn? 1303-1311 - Tetsuro Morimura, Eiji Uchibe, Junichiro Yoshimoto, Kenji Doya:

A Generalized Natural Actor-Critic Algorithm. 1312-1320 - Michael Mozer, Harold Pashler, Nicholas Cepeda, Robert V. Lindsey, Ed Vul:

Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory. 1321-1329 - Boaz Nadler, Nathan Srebro, Xueyuan Zhou:

Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data. 1330-1338 - Vinod Nair, Geoffrey E. Hinton:

3D Object Recognition with Deep Belief Nets. 1339-1347 - Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, Bin Yu:

A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers. 1348-1356 - Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass:

STDP enables spiking neurons to detect hidden causes of their inputs. 1357-1365 - Robert D. Nowak:

Noisy Generalized Binary Search. 1366-1374 - Arno Onken, Steffen Grünewälder, Klaus Obermayer:

Correlation Coefficients are Insufficient for Analyzing Spike Count Dependencies. 1383-1391 - Peter Orbanz:

Construction of Nonparametric Bayesian Models from Parametric Bayes Equations. 1392-1400 - Tom Y. Ouyang, Randall Davis:

Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition. 1401-1409 - Arkadas Ozakin, Alexander G. Gray:

Submanifold density estimation. 1375-1382 - Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell:

Zero-shot Learning with Semantic Output Codes. 1410-1418 - Jian Peng, Liefeng Bo, Jinbo Xu:

Conditional Neural Fields. 1419-1427 - Alessandro Perina, Marco Cristani, Umberto Castellani, Vittorio Murino, Nebojsa Jojic:

Free energy score space. 1428-1436 - Theodore J. Perkins:

Maximum likelihood trajectories for continuous-time Markov chains. 1437-1445 - Marek Petrik, Shlomo Zilberstein:

Robust Value Function Approximation Using Bilinear Programming. 1446-1454 - James Petterson, Tibério S. Caetano, Julian J. McAuley, Jin Yu:

Exponential Family Graph Matching and Ranking. 1455-1463 - Jean-Pascal Pfister, Peter Dayan, Máté Lengyel:

Know Thy Neighbour: A Normative Theory of Synaptic Depression. 1464-1472 - Jonathan W. Pillow:

Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models. 1473-1481 - Hamed Pirsiavash, Deva Ramanan, Charless C. Fowlkes:

Bilinear classifiers for visual recognition. 1482-1490 - Novi Quadrianto, James Petterson, Alexander J. Smola:

Distribution Matching for Transduction. 1500-1508 - Novi Quadrianto, Tibério S. Caetano, John Lim, Dale Schuurmans:

Convex Relaxation of Mixture Regression with Efficient Algorithms. 1491-1499 - Maxim Raginsky, Svetlana Lazebnik:

Locality-sensitive binary codes from shift-invariant kernels. 1509-1517 - Piyush Rai, Hal Daumé III:

Multi-Label Prediction via Sparse Infinite CCA. 1518-1526 - Parikshit Ram, Dongryeol Lee, Hua Ouyang, Alexander G. Gray:

Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions. 1536-1544 - Parikshit Ram, Dongryeol Lee, William B. March, Alexander G. Gray:

Linear-time Algorithms for Pairwise Statistical Problems. 1527-1535 - Sundeep Rangan, Alyson K. Fletcher, Vivek K. Goyal:

Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing. 1545-1553 - Vinayak A. Rao, Yee Whye Teh:

Spatial Normalized Gamma Processes. 1554-1562 - Garvesh Raskutti, Martin J. Wainwright, Bin Yu:

Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness. 1563-1570 - Bryan C. Russell, Alexei A. Efros, Josef Sivic, Bill Freeman, Andrew Zisserman:

Segmenting Scenes by Matching Image Composites. 1580-1588 - Kate Saenko, Trevor Darrell:

Filtering Abstract Senses From Image Search Results. 1589-1597 - Ruslan Salakhutdinov, Geoffrey E. Hinton:

Replicated Softmax: an Undirected Topic Model. 1607-1614 - Ruslan Salakhutdinov:

Learning in Markov Random Fields using Tempered Transitions. 1598-1606 - Joseph Schlecht, Kobus Barnard:

Learning models of object structure. 1615-1623 - Mikkel N. Schmidt:

Linearly constrained Bayesian matrix factorization for blind source separation. 1624-1632 - Matthias W. Seeger:

Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing. 1633-1641 - Guy Shani, Christopher Meek:

Improving Existing Fault Recovery Policies. 1642-1650 - Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel:

Positive Semidefinite Metric Learning with Boosting. 1651-1659 - Nino Shervashidze, Karsten M. Borgwardt:

Fast subtree kernels on graphs. 1660-1668 - Lei Shi, Thomas L. Griffiths:

Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling. 1669-1677 - Natasha Singh-Miller, Michael Collins:

Learning Label Embeddings for Nearest-Neighbor Multi-class Classification with an Application to Speech Recognition. 1678-1686 - Kaushik Sinha, Mikhail Belkin:

Semi-supervised Learning using Sparse Eigenfunction Bases. 1687-1695 - Fabian H. Sinz, Eero P. Simoncelli, Matthias Bethge:

Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions. 1696-1704 - Paris Smaragdis, Madhusudana V. S. Shashanka, Bhiksha Raj:

A Sparse Non-Parametric Approach for Single Channel Separation of Known Sounds. 1705-1713 - Richard Socher, Samuel Gershman, Adler J. Perotte, Per B. Sederberg, David M. Blei, Kenneth A. Norman:

A Bayesian Analysis of Dynamics in Free Recall. 1714-1722 - Peter Sollich, Matthew Urry, Camille Coti:

Kernels and learning curves for Gaussian process regression on random graphs. 1723-1731 - Le Song, Mladen Kolar, Eric P. Xing:

Time-Varying Dynamic Bayesian Networks. 1732-1740 - Henning Sprekeler, Guillaume Hennequin, Wulfram Gerstner:

Code-specific policy gradient rules for spiking neurons. 1741-1749 - Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Gert R. G. Lanckriet, Bernhard Schölkopf:

Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions. 1750-1758 - Bharath K. Sriperumbudur, Gert R. G. Lanckriet:

On the Convergence of the Concave-Convex Procedure. 1759-1767 - Ingo Steinwart, Andreas Christmann:

Fast Learning from Non-i.i.d. Observations. 1768-1776 - Ian H. Stevenson, Konrad P. Körding:

Structural inference affects depth perception in the context of potential occlusion. 1777-1784 - Mark Steyvers, Michael D. Lee, Brent Miller, Pernille Hemmer:

The Wisdom of Crowds in the Recollection of Order Information. 1785-1793 - Matthew J. Streeter, Daniel Golovin, Andreas Krause:

Online Learning of Assignments. 1794-1802 - Amarnag Subramanya, Jeff A. Bilmes:

Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification. 1803-1811 - Liang Sun, Jun Liu, Jianhui Chen, Jieping Ye:

Efficient Recovery of Jointly Sparse Vectors. 1812-1820 - Ilya Sutskever, Ruslan Salakhutdinov, Joshua B. Tenenbaum:

Modelling Relational Data using Bayesian Clustered Tensor Factorization. 1821-1828 - Umar Syed, Aleksandrs Slivkins, Nina Mishra:

Adapting to the Shifting Intent of Search Queries. 1829-1837 - Yee Whye Teh, Dilan Görür:

Indian Buffet Processes with Power-law Behavior. 1838-1846 - Robert E. Tillman, Arthur Gretton, Peter Spirtes:

Nonlinear directed acyclic structure learning with weakly additive noise models. 1847-1855 - Emanuel Todorov:

Compositionality of optimal control laws. 1856-1864 - Srinivas C. Turaga, Kevin L. Briggman, Moritz Helmstaedter, Winfried Denk, H. Sebastian Seung:

Maximin affinity learning of image segmentation. 1865-1873 - Tomer D. Ullman, Chris L. Baker, Owen Macindoe, Owain Evans, Noah D. Goodman, Joshua B. Tenenbaum:

Help or Hinder: Bayesian Models of Social Goal Inference. 1874-1882 - Hamed Valizadegan, Rong Jin, Ruofei Zhang, Jianchang Mao:

Learning to Rank by Optimizing NDCG Measure. 1883-1891 - Jarno Vanhatalo, Pasi Jylänki, Aki Vehtari:

Gaussian process regression with Student-t likelihood. 1910-1918 - Wolf Vanpaemel:

Measuring model complexity with the prior predictive. 1919-1927 - Andrea Vedaldi, Andrew Zisserman:

Structured output regression for detection with partial truncation. 1928-1936 - Joel Veness, David Silver, William T. B. Uther, Alan Blair:

Bootstrapping from Game Tree Search. 1937-1945 - Shobha Venkataraman, Avrim Blum, Dawn Song, Subhabrata Sen, Oliver Spatscheck:

Tracking Dynamic Sources of Malicious Activity at Internet Scale. 1946-1954 - Ed Vul, Michael C. Frank, George A. Alvarez, Joshua B. Tenenbaum:

Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. 1955-1963 - Hanna M. Wallach, David M. Mimno, Andrew McCallum:

Rethinking LDA: Why Priors Matter. 1973-1981 - Chong Wang, David M. Blei:

Variational Inference for the Nested Chinese Restaurant Process. 1990-1998 - Yang Wang, Gholamreza Haffari, Shaojun Wang, Greg Mori:

A Rate Distortion Approach for Semi-Supervised Conditional Random Fields. 2008-2016 - Chong Wang, David M. Blei:

Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process. 1982-1989 - Liwei Wang:

Sufficient Conditions for Agnostic Active Learnable. 1999-2007 - Yusuke Watanabe, Kenji Fukumizu:

Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation. 2017-2025 - Kevin Waugh, Nolan Bard, Michael H. Bowling:

Strategy Grafting in Extensive Games. 2026-2034 - Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, Javier R. Movellan:

Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise. 2035-2043 - Michael L. Wick, Khashayar Rohanimanesh, Sameer Singh, Andrew McCallum:

Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference. 2044-2052 - Matthew H. Wilder, Matt Jones, Michael Mozer:

Sequential effects reflect parallel learning of multiple environmental regularities. 2053-2061 - Robert C. Wilson, Leif H. Finkel:

A Neural Implementation of the Kalman Filter. 2062-2070 - David P. Wipf, Srikantan S. Nagarajan:

Sparse Estimation Using General Likelihoods and Non-Factorial Priors. 2071-2079 - John Wright, Arvind Ganesh, Shankar R. Rao, YiGang Peng, Yi Ma:

Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization. 2080-2088 - Xiao-Ming Wu, Anthony Man-Cho So, Zhenguo Li, Shuo-Yen Robert Li:

Fast Graph Laplacian Regularized Kernel Learning via Semidefinite-Quadratic-Linear Programming. 1964-1972 - Lei Wu, Rong Jin, Steven C. H. Hoi, Jianke Zhu, Nenghai Yu:

Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering. 2089-2097 - Fen Xia, Tie-Yan Liu, Hang Li:

Statistical Consistency of Top-k Ranking. 2098-2106 - Zhen James Xiang, Yongxin Taylor Xi, Uri Hasson, Peter J. Ramadge:

Boosting with Spatial Regularization. 2107-2115 - Lin Xiao:

Dual Averaging Method for Regularized Stochastic Learning and Online Optimization. 2116-2124 - Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael R. Lyu, Zhirong Yang:

Adaptive Regularization for Transductive Support Vector Machine. 2125-2133 - Feng Yan, Ningyi Xu, Yuan (Alan) Qi:

Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units. 2134-2142 - Zhi Yang, Qi Zhao, Edward W. Keefer, Wentai Liu:

Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording. 2160-2168 - Shuang-Hong Yang, Hongyuan Zha, Bao-Gang Hu:

Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora. 2143-2150 - Xiaolin Yang, Seyoung Kim, Eric P. Xing:

Heterogeneous multitask learning with joint sparsity constraints. 2151-2159 - Zhirong Yang, Irwin King, Zenglin Xu, Erkki Oja:

Heavy-Tailed Symmetric Stochastic Neighbor Embedding. 2169-2177 - Hengshuai Yao, Richard S. Sutton, Shalabh Bhatnagar, Diao Dongcui, Csaba Szepesvári:

Multi-Step Dyna Planning for Policy Evaluation and Control. 2187-2195 - Bangpeng Yao, Dirk B. Walther, Diane M. Beck, Li Fei-Fei:

Hierarchical Mixture of Classification Experts Uncovers Interactions between Brain Regions. 2178-2186 - Nan Ye, Wee Sun Lee, Hai Leong Chieu, Dan Wu:

Conditional Random Fields with High-Order Features for Sequence Labeling. 2196-2204 - Yiming Ying, Kaizhu Huang, Colin Campbell:

Sparse Metric Learning via Smooth Optimization. 2214-2222 - Yiming Ying, Colin Campbell, Mark A. Girolami:

Analysis of SVM with Indefinite Kernels. 2205-2213 - Kai Yu, Tong Zhang, Yihong Gong:

Nonlinear Learning using Local Coordinate Coding. 2223-2231 - Yaoliang Yu, Yuxi Li, Dale Schuurmans, Csaba Szepesvári:

A General Projection Property for Distribution Families. 2232-2240 - Zhihua Zhang, Guang Dai:

Optimal Scoring for Unsupervised Learning. 2241-2249 - Manqi Zhao, Venkatesh Saligrama:

Anomaly Detection with Score functions based on Nearest Neighbor Graphs. 2250-2258 - Peilin Zhao, Steven C. H. Hoi, Rong Jin:

DUOL: A Double Updating Approach for Online Learning. 2259-2267 - Wenming Zheng, Zhouchen Lin:

Optimizing Multi-Class Spatio-Spectral Filters via Bayes Error Estimation for EEG Classification. 2268-2276 - Shuheng Zhou:

Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation. 2304-2312 - Mingyuan Zhou

, Haojun Chen, John W. Paisley, Lu Ren, Guillermo Sapiro, Lawrence Carin:
Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations. 2295-2303 - Chunxiao Zhou, Huixia Judy Wang, Yongmei Michelle Wang:

Efficient Moments-based Permutation Tests. 2277-2285 - Feng Zhou, Fernando De la Torre:

Canonical Time Warping for Alignment of Human Behavior. 2286-2294 - Xiaojin Zhu, Timothy T. Rogers, Bryan R. Gibson:

Human Rademacher Complexity. 2322-2330 - Long Zhu, Yuanhao Chen, Bill Freeman, Antonio Torralba:

Nonparametric Bayesian Texture Learning and Synthesis. 2313-2321 - Martin Zinkevich, Alexander J. Smola, John Langford:

Slow Learners are Fast. 2331-2339 - Daniel Zoran, Yair Weiss:

The 'tree-dependent components' of natural scenes are edge filters. 2340-2348

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














