


Остановите войну!
for scientists:


default search action
Ambuj Tewari
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j22]Jitao Wang
, Yu Fang
, Elena Frank, Maureen A. Walton, Margit Burmeister
, Ambuj Tewari
, Walter H. Dempsey, Timothy NeCamp
, Srijan Sen
, Zhenke Wu
:
Effectiveness of gamified team competition as mHealth intervention for medical interns: a cluster micro-randomized trial. npj Digit. Medicine 6 (2023) - [i86]Vinod Raman, Unique Subedi, Ambuj Tewari:
A Characterization of Multilabel Learnability. CoRR abs/2301.02729 (2023) - [i85]Gang Qiao, Ambuj Tewari:
An Asymptotically Optimal Algorithm for the One-Dimensional Convex Hull Feasibility Problem. CoRR abs/2302.02033 (2023) - [i84]Preetham Mohan, Ambuj Tewari:
Quantum Learning Theory Beyond Batch Binary Classification. CoRR abs/2302.07409 (2023) - [i83]Vinod Raman, Unique Subedi, Ambuj Tewari:
A Characterization of Online Multiclass Learnability. CoRR abs/2303.17716 (2023) - [i82]Vinod Raman, Unique Subedi, Ambuj Tewari:
On the Learnability of Multilabel Ranking. CoRR abs/2304.03337 (2023) - [i81]Yash Patel, Declan McNamara, Jackson Loper, Jeffrey Regier, Ambuj Tewari:
Variational Inference with Coverage Guarantees. CoRR abs/2305.14275 (2023) - 2022
- [j21]Runxuan Jiang
, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari
, Paul M. Zimmerman
:
Conformer-RL: A deep reinforcement learning library for conformer generation. J. Comput. Chem. 43(27): 1880-1886 (2022) - [c83]Yuntian Deng, Xingyu Zhou, Baekjin Kim, Ambuj Tewari, Abhishek Gupta, Ness B. Shroff:
Weighted Gaussian Process Bandits for Non-stationary Environments. AISTATS 2022: 6909-6932 - [c82]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Efficient Reinforcement Learning with Prior Causal Knowledge. CLeaR 2022: 526-541 - [c81]Ziping Xu, Ambuj Tewari:
On the Statistical Benefits of Curriculum Learning. ICML 2022: 24663-24682 - [c80]Vinod Raman, Ambuj Tewari:
Online Agnostic Multiclass Boosting. NeurIPS 2022 - [c79]Ziping Xu, Eunjae Shim, Ambuj Tewari, Paul M. Zimmerman:
Adaptive Sampling for Discovery. NeurIPS 2022 - [c78]Anthony DiGiovanni, Ambuj Tewari:
Balancing adaptability and non-exploitability in repeated games. UAI 2022: 559-568 - [i80]Laura Niss, Yuekai Sun, Ambuj Tewari:
Achieving Representative Data via Convex Hull Feasibility Sampling Algorithms. CoRR abs/2204.06664 (2022) - [i79]Kihyuk Hong, Yuhang Li, Ambuj Tewari:
An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge. CoRR abs/2205.14775 (2022) - [i78]Ziping Xu, Eunjae Shim, Ambuj Tewari, Paul M. Zimmerman:
Adaptive Learning for Discovery. CoRR abs/2205.14829 (2022) - [i77]Vinod Raman, Ambuj Tewari:
Online Agnostic Multiclass Boosting. CoRR abs/2205.15113 (2022) - [i76]Vinod Raman, Unique Subedi, Ambuj Tewari:
Probabilistically Robust PAC Learning. CoRR abs/2211.05656 (2022) - [i75]Sunrit Chakraborty, Saptarshi Roy, Ambuj Tewari:
Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits. CoRR abs/2211.05964 (2022) - [i74]Chinmaya Kausik, Kevin Tan, Ambuj Tewari:
Learning Mixtures of Markov Chains and MDPs. CoRR abs/2211.09403 (2022) - [i73]Kevin Tan, Yangyi Lu, Chinmaya Kausik, Yixin Wang, Ambuj Tewari:
Offline Policy Evaluation and Optimization under Confounding. CoRR abs/2211.16583 (2022) - 2021
- [j20]Mohamad Kazem Shirani Faradonbeh
, Ambuj Tewari
, George Michailidis
:
Optimism-Based Adaptive Regulation of Linear-Quadratic Systems. IEEE Trans. Autom. Control. 66(4): 1802-1808 (2021) - [c77]Ziping Xu, Amirhossein Meisami, Ambuj Tewari:
Decision Making Problems with Funnel Structure: A Multi-Task Learning Approach with Application to Email Marketing Campaigns. AISTATS 2021: 127-135 - [c76]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Low-Rank Generalized Linear Bandit Problems. AISTATS 2021: 460-468 - [c75]Ziping Xu, Ambuj Tewari:
Representation Learning Beyond Linear Prediction Functions. NeurIPS 2021: 4792-4804 - [c74]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Causal Bandits with Unknown Graph Structure. NeurIPS 2021: 24817-24828 - [c73]Anthony DiGiovanni, Ambuj Tewari:
Thompson sampling for Markov games with piecewise stationary opponent policies. UAI 2021: 738-748 - [i72]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Causal Markov Decision Processes: Learning Good Interventions Efficiently. CoRR abs/2102.07663 (2021) - [i71]Ziping Xu, Ambuj Tewari:
Representation Learning Beyond Linear Prediction Functions. CoRR abs/2105.14989 (2021) - [i70]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Causal Bandits with Unknown Graph Structure. CoRR abs/2106.02988 (2021) - [i69]Yuntian Deng, Xingyu Zhou, Baekjin Kim, Ambuj Tewari, Abhishek Gupta, Ness B. Shroff:
Weighted Gaussian Process Bandits for Non-stationary Environments. CoRR abs/2107.02371 (2021) - [i68]Yangyi Lu, Ziping Xu, Ambuj Tewari:
Bandit Algorithms for Precision Medicine. CoRR abs/2108.04782 (2021) - [i67]Gautam Chandrasekaran, Ambuj Tewari:
Online Learning in Adversarial MDPs: Is the Communicating Case Harder than Ergodic? CoRR abs/2111.02024 (2021) - [i66]Ziping Xu, Ambuj Tewari:
On the Statistical Benefits of Curriculum Learning. CoRR abs/2111.07126 (2021) - [i65]Anthony DiGiovanni, Ambuj Tewari:
Balancing Adaptability and Non-exploitability in Repeated Games. CoRR abs/2112.10314 (2021) - [i64]Aditya Modi, Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Joint Learning of Linear Time-Invariant Dynamical Systems. CoRR abs/2112.10955 (2021) - 2020
- [j19]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Input perturbations for adaptive control and learning. Autom. 117: 108950 (2020) - [j18]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
On adaptive Linear-Quadratic regulators. Autom. 117: 108982 (2020) - [j17]Joshua Kammeraad
, Jack Goetz, Eric Walker
, Ambuj Tewari, Paul M. Zimmerman
:
What Does the Machine Learn? Knowledge Representations of Chemical Reactivity. J. Chem. Inf. Model. 60(3): 1290-1301 (2020) - [c72]Aditya Modi, Nan Jiang, Ambuj Tewari, Satinder Singh:
Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles. AISTATS 2020: 2010-2020 - [c71]Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammeraad, Ambuj Tewari, Paul M. Zimmerman:
TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search. NeurIPS 2020 - [c70]Young Hun Jung, Baekjin Kim, Ambuj Tewari:
On the Equivalence between Online and Private Learnability beyond Binary Classification. NeurIPS 2020 - [c69]Ziping Xu, Ambuj Tewari:
Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting. NeurIPS 2020 - [c68]Baekjin Kim, Ambuj Tewari:
Randomized Exploration for Non-Stationary Stochastic Linear Bandits. UAI 2020: 71-80 - [c67]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari, William Yan:
Regret Analysis of Bandit Problems with Causal Background Knowledge. UAI 2020: 141-150 - [c66]Laura Niss, Ambuj Tewari:
What You See May Not Be What You Get: UCB Bandit Algorithms Robust to ε-Contamination. UAI 2020: 450-459 - [c65]Aditya Modi, Ambuj Tewari:
No-regret Exploration in Contextual Reinforcement Learning. UAI 2020: 829-838 - [i63]Ziping Xu, Ambuj Tewari:
Near-optimal Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms for the Non-episodic Setting. CoRR abs/2002.02302 (2020) - [i62]A. Philip Dawid, Ambuj Tewari:
On Learnability under General Stochastic Processes. CoRR abs/2005.07605 (2020) - [i61]Young Hun Jung, Baekjin Kim, Ambuj Tewari:
On the Equivalence between Online and Private Learnability beyond Binary Classification. CoRR abs/2006.01980 (2020) - [i60]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari:
Low-Rank Generalized Linear Bandit Problems. CoRR abs/2006.02948 (2020) - [i59]Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammeraad, Ambuj Tewari, Paul M. Zimmerman:
TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search. CoRR abs/2006.07078 (2020) - [i58]Jack Goetz, Ambuj Tewari:
Federated Learning via Synthetic Data. CoRR abs/2008.04489 (2020) - [i57]Ziping Xu, Amir Meisami, Ambuj Tewari:
Decision Making Problems with Funnel Structure: A Multi-Task Learning Approach with Application to Email Marketing Campaigns. CoRR abs/2010.08048 (2020)
2010 – 2019
- 2019
- [j16]Eric Walker
, Joshua Kammeraad
, Jonathan Goetz, Michael T. Robo
, Ambuj Tewari, Paul M. Zimmerman
:
Learning To Predict Reaction Conditions: Relationships between Solvent, Molecular Structure, and Catalyst. J. Chem. Inf. Model. 59(9): 3645-3654 (2019) - [j15]Mohamad Kazem Shirani Faradonbeh
, Ambuj Tewari
, George Michailidis
:
Finite-Time Adaptive Stabilization of Linear Systems. IEEE Trans. Autom. Control. 64(8): 3498-3505 (2019) - [c64]Daniel T. Zhang, Young Hun Jung, Ambuj Tewari:
Online Multiclass Boosting with Bandit Feedback. AISTATS 2019: 1148-1156 - [c63]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
On Applications of Bootstrap in Continuous Space Reinforcement Learning. CDC 2019: 1977-1984 - [c62]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Randomized Algorithms for Data-Driven Stabilization of Stochastic Linear Systems. DSW 2019: 170-174 - [c61]Baekjin Kim, Ambuj Tewari:
On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems. NeurIPS 2019: 2691-2700 - [c60]Jacob D. Abernethy, Young Hun Jung, Chansoo Lee, Audra McMillan, Ambuj Tewari:
Online Learning via the Differential Privacy Lens. NeurIPS 2019: 8892-8902 - [c59]Young Hun Jung, Ambuj Tewari:
Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems. NeurIPS 2019: 9005-9014 - [c58]Othman El Balghiti, Adam N. Elmachtoub, Paul Grigas, Ambuj Tewari:
Generalization Bounds in the Predict-then-Optimize Framework. NeurIPS 2019: 14389-14398 - [i56]Baekjin Kim, Ambuj Tewari:
On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems. CoRR abs/1902.00610 (2019) - [i55]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
On Applications of Bootstrap in Continuous Space Reinforcement Learning. CoRR abs/1903.05803 (2019) - [i54]Aditya Modi, Ambuj Tewari:
Contextual Markov Decision Processes using Generalized Linear Models. CoRR abs/1903.06187 (2019) - [i53]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Randomized Algorithms for Data-Driven Stabilization of Stochastic Linear Systems. CoRR abs/1905.06978 (2019) - [i52]Othman El Balghiti, Adam N. Elmachtoub
, Paul Grigas, Ambuj Tewari:
Generalization Bounds in the Predict-then-Optimize Framework. CoRR abs/1905.11488 (2019) - [i51]Young Hun Jung, Ambuj Tewari:
Regret Bounds for Thompson Sampling in Restless Bandit Problems. CoRR abs/1905.12673 (2019) - [i50]Yangyi Lu, Amirhossein Meisami, Ambuj Tewari, Zhenyu Yan:
Regret Analysis of Causal Bandit Problems. CoRR abs/1910.04938 (2019) - [i49]Jack Goetz, Ambuj Tewari:
Not All are Made Equal: Consistency of Weighted Averaging Estimators Under Active Learning. CoRR abs/1910.05321 (2019) - [i48]Laura Niss, Ambuj Tewari:
What You See May Not Be What You Get: UCB Bandit Algorithms Robust to ε-Contamination. CoRR abs/1910.05625 (2019) - [i47]Young Hun Jung, Marc Abeille, Ambuj Tewari:
Thompson Sampling in Non-Episodic Restless Bandits. CoRR abs/1910.05654 (2019) - [i46]Aditya Modi, Nan Jiang, Ambuj Tewari, Satinder Singh:
Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles. CoRR abs/1910.10597 (2019) - [i45]Daniel T. Zhang, Young Hun Jung, Ambuj Tewari:
Online Boosting for Multilabel Ranking with Top-k Feedback. CoRR abs/1910.10937 (2019) - [i44]Baekjin Kim, Ambuj Tewari:
Near-optimal Oracle-efficient Algorithms for Stationary and Non-Stationary Stochastic Linear Bandits. CoRR abs/1912.05695 (2019) - 2018
- [j14]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Finite time identification in unstable linear systems. Autom. 96: 342-353 (2018) - [j13]Zifan Li, Ambuj Tewari
:
Sampled fictitious play is Hannan consistent. Games Econ. Behav. 109: 401-412 (2018) - [c57]Young Hun Jung, Ambuj Tewari:
Online Boosting Algorithms for Multi-label Ranking. AISTATS 2018: 279-287 - [c56]Aditya Modi, Nan Jiang, Satinder Singh, Ambuj Tewari:
Markov Decision Processes with Continuous Side Information. ALT 2018: 597-618 - [c55]Jack Goetz, Ambuj Tewari, Paul M. Zimmerman:
Active Learning for Non-Parametric Regression Using Purely Random Trees. NeurIPS 2018: 2542-2551 - [c54]Yitong Sun, Anna C. Gilbert, Ambuj Tewari:
But How Does It Work in Theory? Linear SVM with Random Features. NeurIPS 2018: 3383-3392 - [i43]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
On Optimality of Adaptive Linear-Quadratic Regulators. CoRR abs/1806.10749 (2018) - [i42]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Finite Time Adaptive Stabilization of LQ Systems. CoRR abs/1807.09120 (2018) - [i41]Anna C. Gilbert, Ambuj Tewari, Yitong Sun:
But How Does It Work in Theory? Linear SVM with Random Features. CoRR abs/1809.04481 (2018) - [i40]Yitong Sun, Anna C. Gilbert, Ambuj Tewari:
Random ReLU Features: Universality, Approximation, and Composition. CoRR abs/1810.04374 (2018) - [i39]Daniel T. Zhang, Young Hun Jung, Ambuj Tewari:
Online Multiclass Boosting with Bandit Feedback. CoRR abs/1810.05290 (2018) - [i38]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Input Perturbations for Adaptive Regulation and Learning. CoRR abs/1811.04258 (2018) - 2017
- [j12]Sougata Chaudhuri, Ambuj Tewari:
Online Learning to Rank with Top-k Feedback. J. Mach. Learn. Res. 18: 103:1-103:50 (2017) - [j11]Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:
Cost-Sensitive Learning with Noisy Labels. J. Mach. Learn. Res. 18: 155:1-155:33 (2017) - [j10]Zifan Li, Ambuj Tewari:
Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits. J. Mach. Learn. Res. 18: 183:1-183:24 (2017) - [j9]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Optimality of Fast-Matching Algorithms for Random Networks With Applications to Structural Controllability. IEEE Trans. Control. Netw. Syst. 4(4): 770-780 (2017) - [j8]Prateek Jain, Ambuj Tewari
, Inderjit S. Dhillon:
Partial Hard Thresholding. IEEE Trans. Inf. Theory 63(5): 3029-3038 (2017) - [c53]Young Hun Jung, Jack Goetz, Ambuj Tewari:
Online multiclass boosting. NIPS 2017: 919-928 - [c52]Kristjan H. Greenewald, Ambuj Tewari, Susan A. Murphy, Predrag V. Klasnja:
Action Centered Contextual Bandits. NIPS 2017: 5977-5985 - [p1]Ambuj Tewari, Susan A. Murphy:
From Ads to Interventions: Contextual Bandits in Mobile Health. Mobile Health - Sensors, Analytic Methods, and Applications 2017: 495-517 - [i37]Zifan Li, Ambuj Tewari:
Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits. CoRR abs/1702.05536 (2017) - [i36]Young Hun Jung, Ambuj Tewari:
Online Multiclass Boosting. CoRR abs/1702.07305 (2017) - [i35]Huitian Lei, Ambuj Tewari, Susan A. Murphy:
An Actor-Critic Contextual Bandit Algorithm for Personalized Mobile Health Interventions. CoRR abs/1706.09090 (2017) - [i34]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Finite Time Identification in Unstable Linear Systems. CoRR abs/1710.01852 (2017) - [i33]Young Hun Jung, Ambuj Tewari:
Online Boosting Algorithms for Multi-label Ranking. CoRR abs/1710.08079 (2017) - [i32]Aditya Modi, Nan Jiang, Satinder Singh, Ambuj Tewari:
Markov Decision Processes with Continuous Side Information. CoRR abs/1711.05726 (2017) - [i31]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Finite Time Analysis of Optimal Adaptive Policies for Linear-Quadratic Systems. CoRR abs/1711.07230 (2017) - [i30]Jacob D. Abernethy, Chansoo Lee, Audra McMillan, Ambuj Tewari:
Online Learning via Differential Privacy. CoRR abs/1711.10019 (2017) - 2016
- [c51]Bopeng Li, Sougata Chaudhuri, Ambuj Tewari:
Handling Class Imbalance in Link Prediction Using Learning to Rank Techniques. AAAI 2016: 4226-4227 - [c50]Sougata Chaudhuri, Ambuj Tewari:
Online Learning to Rank with Feedback at the Top. AISTATS 2016: 277-285 - [c49]Harish G. Ramaswamy, Clayton Scott, Ambuj Tewari:
Mixture Proportion Estimation via Kernel Embeddings of Distributions. ICML 2016: 2052-2060 - [c48]Nan Jiang, Satinder Singh, Ambuj Tewari:
On Structural Properties of MDPs that Bound Loss Due to Shallow Planning. IJCAI 2016: 1640-1647 - [c47]Sougata Chaudhuri, Ambuj Tewari:
Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games. NIPS 2016: 2433-2441 - [i29]Kam Chung Wong, Ambuj Tewari, Zifan Li:
Regularized Estimation in High Dimensional Time Series under Mixing Conditions. CoRR abs/1602.04265 (2016) - [i28]Sougata Chaudhuri, Ambuj Tewari:
Online Learning to Rank with Feedback at the Top. CoRR abs/1603.01855 (2016) - [i27]Ambuj Tewari, Sougata Chaudhuri:
Generalization error bounds for learning to rank: Does the length of document lists matter? CoRR abs/1603.01860 (2016) - [i26]Harish G. Ramaswamy, Clayton Scott, Ambuj Tewari:
Mixture Proportion Estimation via Kernel Embedding of Distributions. CoRR abs/1603.02501 (2016) - [i25]Sougata Chaudhuri, Ambuj Tewari:
Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games. CoRR abs/1608.06403 (2016) - [i24]Sougata Chaudhuri, Ambuj Tewari:
Online Learning to Rank with Top-k Feedback. CoRR abs/1608.06408 (2016) - [i23]Zifan Li, Ambuj Tewari:
Sampled Fictitious Play is Hannan Consistent. CoRR abs/1610.01687 (2016) - 2015
- [j7]Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari:
Online learning via sequential complexities. J. Mach. Learn. Res. 16: 155-186 (2015) - [c46]Sougata Chaudhuri, Ambuj Tewari:
Online Ranking with Top-1 Feedback. AISTATS 2015 - [c45]Ambuj Tewari, Sougata Chaudhuri:
Generalization error bounds for learning to rank: Does the length of document lists matter? ICML 2015: 315-323 - [c44]Harish G. Ramaswamy, Ambuj Tewari, Shivani Agarwal:
Convex Calibrated Surrogates for Hierarchical Classification. ICML 2015: 1852-1860 - [c43]Prateek Jain, Nagarajan Natarajan, Ambuj Tewari:
Predtron: A Family of Online Algorithms for General Prediction Problems. NIPS 2015: 1009-1017 - [c42]Prateek Jain, Ambuj Tewari:
Alternating Minimization for Regression Problems with Vector-valued Outputs. NIPS 2015: 1126-1134 - [c41]Jacob D. Abernethy, Chansoo Lee, Ambuj Tewari:
Fighting Bandits with a New Kind of Smoothness. NIPS 2015: 2197-2205 - [i22]Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis:
Optimality of Fast Matching Algorithms for Random Networks with Applications to Structural Controllability. CoRR abs/1503.08019 (2015) - [i21]Harish G. Ramaswamy, Ambuj Tewari, Shivani Agarwal:
Consistent Algorithms for Multiclass Classification with a Reject Option. CoRR abs/1505.04137 (2015) - [i20]