


Остановите войну!
for scientists:


default search action
Massimiliano Pontil
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j40]Luca Romeo
, Andrea Cavallo
, Lucia Pepa
, Nadia Bianchi-Berthouze
, Massimiliano Pontil:
Multiple Instance Learning for Emotion Recognition Using Physiological Signals. IEEE Trans. Affect. Comput. 13(1): 389-407 (2022) - [c119]Jordan Frécon, Gilles Gasso, Massimiliano Pontil, Saverio Salzo:
Bregman Neural Networks. ICML 2022: 6779-6792 - [c118]Vladimir R. Kostic, Saverio Salzo, Massimiliano Pontil:
Batch Greenkhorn Algorithm for Entropic-Regularized Multimarginal Optimal Transport: Linear Rate of Convergence and Iteration Complexity. ICML 2022: 11529-11558 - [c117]Dimitri Meunier, Massimiliano Pontil, Carlo Ciliberto:
Distribution Regression with Sliced Wasserstein Kernels. ICML 2022: 15501-15523 - [c116]John Isak Texas Falk, Carlo Ciliberto, Massimiliano Pontil:
Implicit kernel meta-learning using kernel integral forms. UAI 2022: 652-662 - [c115]Rosanna Turrisi, Réemi Flamary, Alain Rakotomamonjy, Massimiliano Pontil:
Multi-source domain adaptation via weighted joint distributions optimal transport. UAI 2022: 1970-1980 - [i65]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start. CoRR abs/2202.03397 (2022) - [i64]Dimitri Meunier, Massimiliano Pontil, Carlo Ciliberto:
Distribution Regression with Sliced Wasserstein Kernels. CoRR abs/2202.03926 (2022) - [i63]Leonardo Cella, Karim Lounici, Massimiliano Pontil:
Multi-task Representation Learning with Stochastic Linear Bandits. CoRR abs/2202.10066 (2022) - [i62]Pietro Novelli, Luigi Bonati, Massimiliano Pontil, Michele Parrinello:
Characterizing metastable states with the help of machine learning. CoRR abs/2204.07391 (2022) - [i61]Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, Massimiliano Pontil:
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces. CoRR abs/2205.14027 (2022) - [i60]Leonardo Cella, Karim Lounici, Massimiliano Pontil:
Meta Representation Learning with Contextual Linear Bandits. CoRR abs/2205.15100 (2022) - [i59]Riccardo Grazzi, Arya Akhavan, John Isak Texas Falk, Leonardo Cella, Massimiliano Pontil:
Group Meritocratic Fairness in Linear Contextual Bandits. CoRR abs/2206.03150 (2022) - [i58]Ruohan Wang, Marco Ciccone, Giulia Luise, Andrew Yapp, Massimiliano Pontil, Carlo Ciliberto:
Schedule-Robust Online Continual Learning. CoRR abs/2210.05561 (2022) - [i57]Ruohan Wang, John Isak Texas Falk, Massimiliano Pontil, Carlo Ciliberto:
Robust Meta-Representation Learning via Global Label Inference and Classification. CoRR abs/2212.11702 (2022) - 2021
- [c114]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo:
Convergence Properties of Stochastic Hypergradients. AISTATS 2021: 3826-3834 - [c113]Henry Gouk, Timothy M. Hospedales, Massimiliano Pontil:
Distance-Based Regularisation of Deep Networks for Fine-Tuning. ICLR 2021 - [c112]Leonardo Cella, Massimiliano Pontil, Claudio Gentile:
Best Model Identification: A Rested Bandit Formulation. ICML 2021: 1362-1372 - [c111]Andreas Maurer, Daniela Angela Parletta, Andrea Paudice, Massimiliano Pontil:
Robust Unsupervised Learning via L-statistic Minimization. ICML 2021: 7524-7533 - [c110]Mark Herbster, Stephen Pasteris, Fabio Vitale, Massimiliano Pontil:
A Gang of Adversarial Bandits. NeurIPS 2021: 2265-2279 - [c109]Andreas Maurer, Massimiliano Pontil:
Concentration inequalities under sub-Gaussian and sub-exponential conditions. NeurIPS 2021: 7588-7597 - [c108]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Distributed Zero-Order Optimization under Adversarial Noise. NeurIPS 2021: 10209-10220 - [c107]Ruohan Wang, Massimiliano Pontil, Carlo Ciliberto:
The Role of Global Labels in Few-Shot Classification and How to Infer Them. NeurIPS 2021: 27160-27170 - [c106]Leonardo Cella, Massimiliano Pontil:
Multi-task and meta-learning with sparse linear bandits. UAI 2021: 1692-1702 - [i56]Andreas Maurer, Massimiliano Pontil:
Some Hoeffding- and Bernstein-type Concentration Inequalities. CoRR abs/2102.06304 (2021) - [i55]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
Conditional Meta-Learning of Linear Representations. CoRR abs/2103.16277 (2021) - [i54]Nicolò Cesa-Bianchi, Pierre Laforgue, Andrea Paudice, Massimiliano Pontil:
Multitask Online Mirror Descent. CoRR abs/2106.02393 (2021) - [i53]Ruohan Wang, Massimiliano Pontil, Carlo Ciliberto:
The Role of Global Labels in Few-Shot Classification and How to Infer Them. CoRR abs/2108.04055 (2021) - [i52]Vladimir Kostic, Saverio Salzo, Massimiliano Pontil:
Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport. CoRR abs/2112.00838 (2021) - 2020
- [j39]Luca Oneto
, Michele Donini, Massimiliano Pontil, John Shawe-Taylor
:
Randomized learning and generalization of fair and private classifiers: From PAC-Bayes to stability and differential privacy. Neurocomputing 416: 231-243 (2020) - [j38]Marco Fiorucci
, Marina Khoroshiltseva, Massimiliano Pontil, Arianna Traviglia
, Alessio Del Bue, Stuart James
:
Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 133: 102-108 (2020) - [j37]Alessandro Rudi, Leonard Wossnig, Carlo Ciliberto, Andrea Rocchetto, Massimiliano Pontil, Simone Severini:
Approximating Hamiltonian dynamics with the Nyström method. Quantum 4: 234 (2020) - [c105]Luca Oneto
, Michele Donini, Massimiliano Pontil, Andreas Maurer:
Learning Fair and Transferable Representations with Theoretical Guarantees. DSAA 2020: 30-39 - [c104]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. ICML 2020: 1360-1370 - [c103]Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo:
On the Iteration Complexity of Hypergradient Computation. ICML 2020: 3748-3758 - [c102]Jordan Frécon, Saverio Salzo, Massimiliano Pontil:
Unveiling Groups of Related Tasks in Multi - Task Learning. ICPR 2020: 7134-7141 - [c101]Michele Donini, Luca Franceschi, Orchid Majumder, Massimiliano Pontil, Paolo Frasconi:
Marthe: Scheduling the Learning Rate Via Online Hypergradients. IJCAI 2020: 2119-2125 - [c100]Luca Oneto
, Michele Donini, Massimiliano Pontil:
General Fair Empirical Risk Minimization. IJCNN 2020: 1-8 - [c99]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits. NeurIPS 2020 - [c98]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair regression with Wasserstein barycenters. NeurIPS 2020 - [c97]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair regression via plug-in estimator and recalibration with statistical guarantees. NeurIPS 2020 - [c96]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning. NeurIPS 2020 - [c95]Andreas Maurer, Massimiliano Pontil:
Estimating weighted areas under the ROC curve. NeurIPS 2020 - [c94]Luca Oneto, Michele Donini, Giulia Luise, Carlo Ciliberto, Andreas Maurer, Massimiliano Pontil:
Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning. NeurIPS 2020 - [c93]Giulia Denevi, Massimiliano Pontil, Dimitrios Stamos:
Online Parameter-Free Learning of Multiple Low Variance Tasks. UAI 2020: 889-898 - [i51]Henry Gouk, Timothy M. Hospedales, Massimiliano Pontil:
Distance-Based Regularisation of Deep Networks for Fine-Tuning. CoRR abs/2002.08253 (2020) - [i50]Feliks Hibraj, Marcello Pelillo, Saverio Salzo, Massimiliano Pontil:
Efficient Tensor Kernel methods for sparse regression. CoRR abs/2003.10482 (2020) - [i49]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. CoRR abs/2005.08531 (2020) - [i48]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Fair Regression with Wasserstein Barycenters. CoRR abs/2006.07286 (2020) - [i47]Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov:
Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits. CoRR abs/2006.07862 (2020) - [i46]Rosanna Turrisi, Rémi Flamary, Alain Rakotomamonjy, Massimiliano Pontil:
Multi-source Domain Adaptation via Weighted Joint Distributions Optimal Transport. CoRR abs/2006.12938 (2020) - [i45]Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo:
On the Iteration Complexity of Hypergradient Computation. CoRR abs/2006.16218 (2020) - [i44]Giulia Denevi, Dimitris Stamos, Massimiliano Pontil:
Online Parameter-Free Learning of Multiple Low Variance Tasks. CoRR abs/2007.05732 (2020) - [i43]Giulia Luise, Massimiliano Pontil, Carlo Ciliberto:
Generalization Properties of Optimal Transport GANs with Latent Distribution Learning. CoRR abs/2007.14641 (2020) - [i42]Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto:
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning. CoRR abs/2008.10857 (2020) - [i41]Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo
:
Convergence Properties of Stochastic Hypergradients. CoRR abs/2011.07122 (2020) - [i40]Leonardo Cella, Claudio Gentile, Massimiliano Pontil:
Online Model Selection: a Rested Bandit Formulation. CoRR abs/2012.03522 (2020) - [i39]Andreas Maurer, Daniela A. Parletta, Andrea Paudice, Massimiliano Pontil:
A Perturbation Resilient Framework for Unsupervised Learning. CoRR abs/2012.07399 (2020)
2010 – 2019
- 2019
- [j36]Patrick L. Combettes
, Andrew M. McDonald, Charles A. Micchelli, Massimiliano Pontil:
Learning with optimal interpolation norms. Numer. Algorithms 81(2): 695-717 (2019) - [j35]Michele Donini, João M. Monteiro, Massimiliano Pontil, Tim Hahn, Andreas J. Fallgatter, John Shawe-Taylor
, Janaina Mourão Miranda:
Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important. NeuroImage 195: 215-231 (2019) - [j34]Octavio Antonio Villarreal-Magaña
, Victor Barasuol, Marco Camurri
, Luca Franceschi
, Michele Focchi
, Massimiliano Pontil, Darwin G. Caldwell
, Claudio Semini
:
Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs. IEEE Robotics Autom. Lett. 4(2): 2140-2147 (2019) - [c92]Luca Oneto
, Michele Donini, Amon Elders, Massimiliano Pontil:
Taking Advantage of Multitask Learning for Fair Classification. AIES 2019: 227-237 - [c91]Andreas Maurer, Massimiliano Pontil:
Uniform concentration and symmetrization for weak interactions. COLT 2019: 2372-2387 - [c90]Luca Oneto, Michele Donini, Massimiliano Pontil:
PAC-Bayes and Fairness: Risk and Fairness Bounds on Distribution Dependent Fair Priors. ESANN 2019 - [c89]Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil:
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization. ICML 2019: 1566-1575 - [c88]Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He:
Learning Discrete Structures for Graph Neural Networks. ICML 2019: 1972-1982 - [c87]Giulia Luise, Dimitrios Stamos, Massimiliano Pontil, Carlo Ciliberto:
Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction. ICML 2019: 4193-4202 - [c86]Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto:
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm. NeurIPS 2019: 9318-9329 - [c85]Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil:
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification. NeurIPS 2019: 12739-12750 - [c84]Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil:
Online-Within-Online Meta-Learning. NeurIPS 2019: 13089-13099 - [i38]Luca Oneto, Michele Donini, Massimiliano Pontil:
General Fair Empirical Risk Minimization. CoRR abs/1901.10080 (2019) - [i37]Andreas Maurer, Massimiliano Pontil:
Uniform concentration and symmetrization for weak interactions. CoRR abs/1902.01911 (2019) - [i36]Giulia Luise, Dimitris Stamos, Massimiliano Pontil, Carlo Ciliberto:
Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction. CoRR abs/1903.00667 (2019) - [i35]Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil:
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization. CoRR abs/1903.10399 (2019) - [i34]Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He:
Learning Discrete Structures for Graph Neural Networks. CoRR abs/1903.11960 (2019) - [i33]Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto:
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm. CoRR abs/1905.13194 (2019) - [i32]Luca Oneto, Michele Donini, Andreas Maurer, Massimiliano Pontil:
Learning Fair and Transferable Representations. CoRR abs/1906.10673 (2019) - [i31]Michele Donini, Luca Franceschi, Massimiliano Pontil, Orchid Majumder, Paolo Frasconi:
Scheduling the Learning Rate via Hypergradients: New Insights and a New Algorithm. CoRR abs/1910.08525 (2019) - 2018
- [j33]Peixi Peng, Yonghong Tian
, Tao Xiang
, Yaowei Wang, Massimiliano Pontil, Tiejun Huang
:
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(7): 1625-1638 (2018) - [j32]Julien Bohné, Yiming Ying, Stéphane Gentric, Massimiliano Pontil:
Learning local metrics from pairwise similarity data. Pattern Recognit. 75: 315-326 (2018) - [c83]Andreas Maurer, Massimiliano Pontil:
Empirical bounds for functions with weak interactions. COLT 2018: 987-1010 - [c82]Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, Massimiliano Pontil:
Bilevel Programming for Hyperparameter Optimization and Meta-Learning. ICML 2018: 1563-1572 - [c81]Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil:
Empirical Risk Minimization Under Fairness Constraints. NeurIPS 2018: 2796-2806 - [c80]Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto:
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance. NeurIPS 2018: 5864-5874 - [c79]Jordan Frécon, Saverio Salzo, Massimiliano Pontil:
Bilevel learning of the Group Lasso structure. NeurIPS 2018: 8311-8321 - [c78]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Learning To Learn Around A Common Mean. NeurIPS 2018: 10190-10200 - [c77]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Incremental Learning-to-Learn with Statistical Guarantees. UAI 2018: 457-466 - [i30]Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil:
Empirical Risk Minimization under Fairness Constraints. CoRR abs/1802.08626 (2018) - [i29]Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Incremental Learning-to-Learn with Statistical Guarantees. CoRR abs/1803.08089 (2018) - [i28]Alessandro Rudi, Leonard Wossnig, Carlo Ciliberto, Andrea Rocchetto, Massimiliano Pontil, Simone Severini:
Approximating Hamiltonian dynamics with the Nyström method. CoRR abs/1804.02484 (2018) - [i27]Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto:
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance. CoRR abs/1805.11897 (2018) - [i26]Luca Franceschi, Paolo Frasconi, Saverio Salzo, Massimiliano Pontil:
Bilevel Programming for Hyperparameter Optimization and Meta-Learning. CoRR abs/1806.04910 (2018) - [i25]Luca Franceschi, Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo, Paolo Frasconi:
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization and Meta-Learning. CoRR abs/1806.04941 (2018) - [i24]Octavio Antonio Villarreal-Magaña, Victor Barasuol, Marco Camurri, Michele Focchi, Luca Franceschi, Massimiliano Pontil, Darwin G. Caldwell, Claudio Semini:
Fast and Continuous Foothold Adaptation for Dynamic Locomotion through Convolutional Neural Networks. CoRR abs/1809.09759 (2018) - [i23]Luca Oneto, Michele Donini, Amon Elders, Massimiliano Pontil:
Taking Advantage of Multitask Learning for Fair Classification. CoRR abs/1810.08683 (2018) - 2017
- [c76]Pierre Alquier, The Tien Mai, Massimiliano Pontil:
Regret Bounds for Lifelong Learning. AISTATS 2017: 261-269 - [c75]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
On Hyperparameter Optimization in Learning Systems. ICLR (Workshop) 2017 - [c74]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
Forward and Reverse Gradient-Based Hyperparameter Optimization. ICML 2017: 1165-1173 - [c73]Leonardo Badino, Luca Franceschi, Raman Arora, Michele Donini, Massimiliano Pontil:
A Speaker Adaptive DNN Training Approach for Speaker-Independent Acoustic Inversion. INTERSPEECH 2017: 984-988 - [c72]Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil:
Consistent Multitask Learning with Nonlinear Output Relations. NIPS 2017: 1986-1996 - [i22]Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil:
Consistent Multitask Learning with Nonlinear Output Relations. CoRR abs/1705.08118 (2017) - [i21]Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:
Reexamining Low Rank Matrix Factorization for Trace Norm Regularization. CoRR abs/1706.08934 (2017) - [i20]Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, Leonard Wossnig:
Quantum machine learning: a classical perspective. CoRR abs/1707.08561 (2017) - [i19]Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:
A Bridge Between Hyperparameter Optimization and Larning-to-learn. CoRR abs/1712.06283 (2017) - 2016
- [j31]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
The Benefit of Multitask Representation Learning. J. Mach. Learn. Res. 17: 81:1-81:32 (2016) - [j30]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
New Perspectives on k-Support and Cluster Norms. J. Mach. Learn. Res. 17: 155:1-155:38 (2016) - [c71]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
Fitting Spectral Decay with the k-Support Norm. AISTATS 2016: 1061-1069 - [c70]Peixi Peng, Tao Xiang, Yaowei Wang, Massimiliano Pontil, Shaogang Gong, Tiejun Huang, Yonghong Tian:
Unsupervised Cross-Dataset Transfer Learning for Person Re-identification. CVPR 2016: 1306-1315 - [c69]Julien Bohné, Sylvain Colin, Stéphane Gentric, Massimiliano Pontil:
Similarity Function Learning with Data Uncertainty. ICPRAM 2016: 131-140 - [c68]Michele Donini
, David Martínez-Rego
, Martin Goodson, John Shawe-Taylor
, Massimiliano Pontil:
Distributed variance regularized Multitask Learning. IJCNN 2016: 3101-3109 - [c67]Michele Donini
, João M. Monteiro, Massimiliano Pontil, John Shawe-Taylor
, Janaina Mourão Miranda:
A multimodal multiple kernel learning approach to Alzheimer's disease detection. MLSP 2016: 1-6 - [c66]Mark Herbster, Stephen Pasteris, Massimiliano Pontil:
Mistake Bounds for Binary Matrix Completion. NIPS 2016: 3954-3962 - [i18]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
Fitting Spectral Decay with the $k$-Support Norm. CoRR abs/1601.00449 (2016) - [i17]Andreas Maurer, Massimiliano Pontil:
Bounds for Vector-Valued Function Estimation. CoRR abs/1606.01487 (2016) - [i16]Pierre Alquier, The Tien Mai, Massimiliano Pontil:
Regret Bounds for Lifelong Learning. CoRR abs/1610.08628 (2016) - 2015
- [j29]Mark Herbster, Stephen Pasteris, Massimiliano Pontil:
Predicting a switching sequence of graph labelings. J. Mach. Learn. Res. 16: 2003-2022 (2015) - [c65]Dimitris Stamos, Samuele Martelli, Moin Nabi, Andrew M. McDonald, Vittorio Murino
, Massimiliano Pontil:
Learning with dataset bias in latent subcategory models. CVPR 2015: 3650-3658 - [i15]Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes:
The Benefit of Multitask Representation Learning. CoRR abs/1505.06279 (2015) - [i14]Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:
New Perspectives on $k$-Support and Cluster Norms. CoRR abs/1512.08204 (2015) - [i13]Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch, Erik Rodner:
Machine Learning with Interdependent and Non-identically Distributed Data (Dagstuhl Seminar 15152). Dagstuhl Reports 5(4): 18-55 (2015) - 2014
- [j28]Jair Montoya-Martínez
, Antonio Artés-Rodríguez
, Massimiliano Pontil, Lars Kai Hansen
:
A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem. EURASIP J. Adv. Signal Process. 2014: 97 (2014) - [c64]Jair Montoya-Martínez
, Antonio Artés-Rodríguez
, Massimiliano Pontil:
Structured sparse-low rank matrix factorization for the EEG inverse problem. CIP 2014: 1-6 - [c63]