
Aaron C. Courville
Person information
- affiliation: Université de Montréal, Department of Computer Science
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [i127]Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron C. Courville:
Emergent Communication under Competition. CoRR abs/2101.10276 (2021) - [i126]Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, Sarath Chandar:
Continuous Coordination As a Realistic Scenario for Lifelong Learning. CoRR abs/2103.03216 (2021) - [i125]Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron C. Courville, Joshua B. Tenenbaum, Chuang Gan:
Learning Task Decomposition with Ordered Memory Policy Network. CoRR abs/2103.10972 (2021) - [i124]Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vázquez, Aaron C. Courville, Pedro O. Pinheiro:
Touch-based Curiosity for Sparse-Reward Tasks. CoRR abs/2104.00442 (2021) - 2020
- [j14]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative adversarial networks. Commun. ACM 63(11): 139-144 (2020) - [j13]Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vázquez, Derek Nowrouzezahrai, Aaron C. Courville:
Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images Using a View-Based Representation. Int. J. Comput. Vis. 128(10): 2478-2493 (2020) - [c97]Faruk Ahmed, Aaron C. Courville:
Detecting Semantic Anomalies. AAAI 2020: 3154-3162 - [c96]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. AIED (2) 2020: 387-392 - [c95]Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste, Aaron C. Courville:
Stochastic Neural Network with Kronecker Flow. AISTATS 2020: 4184-4194 - [c94]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. BMVC 2020 - [c93]Shawn Tan, Yikang Shen, Alessandro Sordoni, Aaron C. Courville, Timothy J. O'Donnell:
Recursive Top-Down Production for Sentence Generation with Latent Trees. EMNLP (Findings) 2020: 2291-2307 - [c92]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. EMNLP (1) 2020: 3962-3970 - [c91]Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, Marc G. Bellemare:
On Bonus Based Exploration Methods In The Arcade Learning Environment. ICLR 2020 - [c90]Jae Hyun Lim, Aaron C. Courville, Christopher J. Pal, Chin-Wei Huang:
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation. ICML 2020: 6061-6071 - [c89]Yuchen Lu, Soumye Singhal, Florian Strub, Aaron C. Courville, Olivier Pietquin:
Countering Language Drift with Seeded Iterated Learning. ICML 2020: 6437-6447 - [c88]Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmalek, Florian Golemo, Aaron C. Courville:
Unsupervised Learning of Dense Visual Representations. NeurIPS 2020 - [i123]Chin-Wei Huang, Laurent Dinh, Aaron C. Courville:
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models. CoRR abs/2002.07101 (2020) - [i122]David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Rémi Le Priol, Aaron C. Courville:
Out-of-Distribution Generalization via Risk Extrapolation (REx). CoRR abs/2003.00688 (2020) - [i121]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Countering Language Drift with Seeded Iterated Learning. CoRR abs/2003.12694 (2020) - [i120]Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vázquez, Derek Nowrouzezahrai, Aaron C. Courville:
Pix2Shape - Towards Unsupervised Learning of 3D Scenes from Images using a View-based Representation. CoRR abs/2003.14166 (2020) - [i119]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. CoRR abs/2005.06616 (2020) - [i118]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. CoRR abs/2005.08230 (2020) - [i117]Jae Hyun Lim, Aaron C. Courville, Christopher J. Pal, Chin-Wei Huang:
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation. CoRR abs/2006.05164 (2020) - [i116]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Generative Graph Perturbations for Scene Graph Prediction. CoRR abs/2007.05756 (2020) - [i115]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Momentum Predictive Representations. CoRR abs/2007.05929 (2020) - [i114]Samuel Lavoie-Marchildon, Faruk Ahmed, Aaron C. Courville:
Integrating Categorical Semantics into Unsupervised Domain Translation. CoRR abs/2010.01262 (2020) - [i113]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. CoRR abs/2010.02975 (2020) - [i112]Shawn Tan, Yikang Shen, Timothy J. O'Donnell, Alessandro Sordoni, Aaron C. Courville:
Recursive Top-Down Production for Sentence Generation with Latent Trees. CoRR abs/2010.04704 (2020) - [i111]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. CoRR abs/2010.10079 (2020) - [i110]Rithesh Kumar, Kundan Kumar, Vicki Anand, Yoshua Bengio, Aaron C. Courville:
NU-GAN: High resolution neural upsampling with GAN. CoRR abs/2010.11362 (2020) - [i109]Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmalek, Florian Golemo, Aaron C. Courville:
Unsupervised Learning of Dense Visual Representations. CoRR abs/2011.05499 (2020) - [i108]Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva Reddy, Aaron C. Courville:
Explicitly Modeling Syntax in Language Model improves Generalization. CoRR abs/2011.07960 (2020) - [i107]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. CoRR abs/2011.09468 (2020) - [i106]Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, Aaron C. Courville:
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling. CoRR abs/2012.00857 (2020) - [i105]Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron C. Courville:
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization. CoRR abs/2012.05942 (2020)
2010 – 2019
- 2019
- [c87]Catalina Cangea, Eugene Belilovsky, Aaron C. Courville:
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. BMVC 2019: 280 - [c86]Kyle Kastner, João Felipe Santos, Yoshua Bengio, Aaron C. Courville:
Representation Mixing for TTS Synthesis. ICASSP 2019: 5906-5910 - [c85]Mikolaj Binkowski, R. Devon Hjelm, Aaron C. Courville:
Batch Weight for Domain Adaptation With Mass Shift. ICCV 2019: 1844-1853 - [c84]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Improved Conditional VRNNs for Video Prediction. ICCV 2019: 7607-7616 - [c83]Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, Aaron C. Courville:
Systematic Generalization: What Is Required and Can It Be Learned? ICLR (Poster) 2019 - [c82]Yikang Shen, Shawn Tan, Alessandro Sordoni, Aaron C. Courville:
Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks. ICLR 2019 - [c81]Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, Aaron C. Courville:
Hierarchical Importance Weighted Autoencoders. ICML 2019: 2869-2878 - [c80]Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:
On the Spectral Bias of Neural Networks. ICML 2019: 5301-5310 - [c79]Lucas Caccia, Herke van Hoof, Aaron C. Courville, Joelle Pineau:
Deep Generative Modeling of LiDAR Data. IROS 2019: 5034-5040 - [c78]Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville:
No-Press Diplomacy: Modeling Multi-Agent Gameplay. NeurIPS 2019: 4476-4487 - [c77]Yikang Shen, Shawn Tan, Seyed Arian Hosseini, Zhouhan Lin, Alessandro Sordoni, Aaron C. Courville:
Ordered Memory. NeurIPS 2019: 5038-5049 - [c76]Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville:
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis. NeurIPS 2019: 14881-14892 - [c75]Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron C. Courville:
Probability Distillation: A Caveat and Alternatives. UAI 2019: 1212-1221 - [i104]Catalina Cangea, Eugene Belilovsky, Pietro Liò, Aaron C. Courville:
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. ViGIL@NeurIPS 2019 - [i103]Harm de Vries, Dzmitry Bahdanau, Shikhar Murty, Aaron C. Courville, Philippe Beaudoin:
CLOSURE: Assessing Systematic Generalization of CLEVR Models. ViGIL@NeurIPS 2019 - [i102]Rithesh Kumar, Anirudh Goyal, Aaron C. Courville, Yoshua Bengio:
Maximum Entropy Generators for Energy-Based Models. CoRR abs/1901.08508 (2019) - [i101]Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, Douglas Eck:
Counterpoint by Convolution. CoRR abs/1903.07227 (2019) - [i100]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Improved Conditional VRNNs for Video Prediction. CoRR abs/1904.12165 (2019) - [i99]Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, Aaron C. Courville:
Hierarchical Importance Weighted Autoencoders. CoRR abs/1905.04866 (2019) - [i98]Mikolaj Binkowski, R. Devon Hjelm, Aaron C. Courville:
Batch weight for domain adaptation with mass shift. CoRR abs/1905.12760 (2019) - [i97]Chin-Wei Huang, Aaron C. Courville:
Note on the bias and variance of variational inference. CoRR abs/1906.03708 (2019) - [i96]Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste, Aaron C. Courville:
Stochastic Neural Network with Kronecker Flow. CoRR abs/1906.04282 (2019) - [i95]Shawn Tan, Yikang Shen, Chin-Wei Huang, Aaron C. Courville:
Investigating Biases in Textual Entailment Datasets. CoRR abs/1906.09635 (2019) - [i94]Jacob Leygonie, Jennifer She, Amjad Almahairi, Sai Rajeswar, Aaron C. Courville:
Adversarial Computation of Optimal Transport Maps. CoRR abs/1906.09691 (2019) - [i93]Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, Marc G. Bellemare:
Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment. CoRR abs/1908.02388 (2019) - [i92]Faruk Ahmed, Aaron C. Courville:
Detecting semantic anomalies. CoRR abs/1908.04388 (2019) - [i91]Catalina Cangea, Eugene Belilovsky, Pietro Liò, Aaron C. Courville:
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. CoRR abs/1908.04950 (2019) - [i90]Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Satinder Singh, Joelle Pineau, Aaron C. Courville:
No Press Diplomacy: Modeling Multi-Agent Gameplay. CoRR abs/1909.02128 (2019) - [i89]Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville:
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis. CoRR abs/1910.06711 (2019) - [i88]Shawn Tan, Guillaume Androz, Ahmad Chamseddine, Pierre Fecteau, Aaron C. Courville, Yoshua Bengio, Joseph Paul Cohen:
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery. CoRR abs/1910.09570 (2019) - [i87]Yikang Shen, Shawn Tan, Seyedarian Hosseini, Zhouhan Lin, Alessandro Sordoni, Aaron C. Courville:
Ordered Memory. CoRR abs/1910.13466 (2019) - [i86]Sara Hooker, Aaron C. Courville, Yann N. Dauphin, Andrea Frome:
Selective Brain Damage: Measuring the Disparate Impact of Model Pruning. CoRR abs/1911.05248 (2019) - [i85]Dzmitry Bahdanau, Harm de Vries, Timothy J. O'Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua Bengio, Aaron C. Courville:
CLOSURE: Assessing Systematic Generalization of CLEVR Models. CoRR abs/1912.05783 (2019) - 2018
- [c74]Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, Aaron C. Courville:
FiLM: Visual Reasoning with a General Conditioning Layer. AAAI 2018: 3942-3951 - [c73]Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron C. Courville, Yoshua Bengio:
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance. ACL (1) 2018: 1171-1180 - [c72]Florian Golemo, Adrien Ali Taïga, Aaron C. Courville, Pierre-Yves Oudeyer:
Sim-to-Real Transfer with Neural-Augmented Robot Simulation. CoRL 2018: 817-828 - [c71]Florian Strub, Mathieu Seurin, Ethan Perez, Harm de Vries, Jérémie Mary, Philippe Preux, Aaron C. Courville, Olivier Pietquin:
Visual Reasoning with Multi-hop Feature Modulation. ECCV (5) 2018: 808-831 - [c70]Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, Aaron C. Courville:
HoME: a Household Multimodal Environment. ICLR (Workshop) 2018 - [c69]Yikang Shen, Zhouhan Lin, Chin-Wei Huang, Aaron C. Courville:
Neural Language Modeling by Jointly Learning Syntax and Lexicon. ICLR (Poster) 2018 - [c68]Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, Aaron C. Courville:
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data. ICML 2018: 195-204 - [c67]Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon Hjelm, Aaron C. Courville:
Mutual Information Neural Estimation. ICML 2018: 530-539 - [c66]Chin-Wei Huang, David Krueger, Alexandre Lacoste, Aaron C. Courville:
Neural Autoregressive Flows. ICML 2018: 2083-2092 - [c65]Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron C. Courville, Chris Pal:
Towards Text Generation with Adversarially Learned Neural Outlines. NeurIPS 2018: 7562-7574 - [c64]Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, Aaron C. Courville:
Improving Explorability in Variational Inference with Annealed Variational Objectives. NeurIPS 2018: 9724-9734 - [i84]Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, Aaron C. Courville:
MINE: Mutual Information Neural Estimation. CoRR abs/1801.04062 (2018) - [i83]Mohamed Ishmael Belghazi, Sai Rajeswar, Olivier Mastropietro, Negar Rostamzadeh, Jovana Mitrovic, Aaron C. Courville:
Hierarchical Adversarially Learned Inference. CoRR abs/1802.01071 (2018) - [i82]Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, Aaron C. Courville:
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data. CoRR abs/1802.10151 (2018) - [i81]Yikang Shen, Shawn Tan, Chin-Wei Huang, Aaron C. Courville:
Generating Contradictory, Neutral, and Entailing Sentences. CoRR abs/1803.02710 (2018) - [i80]Chin-Wei Huang, David Krueger, Alexandre Lacoste, Aaron C. Courville:
Neural Autoregressive Flows. CoRR abs/1804.00779 (2018) - [i79]Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron C. Courville, Yoshua Bengio:
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance. CoRR abs/1806.04168 (2018) - [i78]Vikas Verma, Alex Lamb, Christopher Beckham, Aaron C. Courville, Ioannis Mitliagkas, Yoshua Bengio:
Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer. CoRR abs/1806.05236 (2018) - [i77]Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, Aaron C. Courville:
Learning Distributed Representations from Reviews for Collaborative Filtering. CoRR abs/1806.06875 (2018) - [i76]Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler
, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:
On the Spectral Bias of Deep Neural Networks. CoRR abs/1806.08734 (2018) - [i75]Florian Strub, Mathieu Seurin, Ethan Perez, Harm de Vries, Jérémie Mary, Philippe Preux, Aaron C. Courville, Olivier Pietquin:
Visual Reasoning with Multi-hop Feature Modulation. CoRR abs/1808.04446 (2018) - [i74]Adrien Ali Taïga, Aaron C. Courville, Marc G. Bellemare:
Approximate Exploration through State Abstraction. CoRR abs/1808.09819 (2018) - [i73]Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, Aaron C. Courville:
Improving Explorability in Variational Inference with Annealed Variational Objectives. CoRR abs/1809.01818 (2018) - [i72]Remi Tachet des Combes, Mohammad Pezeshki, Samira Shabanian, Aaron C. Courville, Yoshua Bengio:
On the Learning Dynamics of Deep Neural Networks. CoRR abs/1809.06848 (2018) - [i71]Yikang Shen, Shawn Tan, Alessandro Sordoni, Aaron C. Courville:
Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks. CoRR abs/1810.09536 (2018) - [i70]Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo Larochelle, Aaron C. Courville:
Blindfold Baselines for Embodied QA. CoRR abs/1811.05013 (2018) - [i69]Kyle Kastner, João Felipe Santos, Yoshua Bengio, Aaron C. Courville:
Representation Mixing for TTS Synthesis. CoRR abs/1811.07240 (2018) - [i68]Kyle Kastner, Rithesh Kumar, Tim Cooijmans, Aaron C. Courville:
Harmonic Recomposition using Conditional Autoregressive Modeling. CoRR abs/1811.07426 (2018) - [i67]Johanna Hansen, Kyle Kastner, Aaron C. Courville, Gregory Dudek:
Planning in Dynamic Environments with Conditional Autoregressive Models. CoRR abs/1811.10097 (2018) - [i66]Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, Aaron C. Courville:
Systematic Generalization: What Is Required and Can It Be Learned? CoRR abs/1811.12889 (2018) - [i65]Lucas Caccia, Herke van Hoof, Aaron C. Courville, Joelle Pineau:
Deep Generative Modeling of LiDAR Data. CoRR abs/1812.01180 (2018) - 2017
- [j12]Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket Tandon, Christopher Joseph Pal, Hugo Larochelle, Aaron C. Courville, Bernt Schiele:
Movie Description. Int. J. Comput. Vis. 123(1): 94-120 (2017) - [j11]Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron C. Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle:
Brain tumor segmentation with Deep Neural Networks. Medical Image Anal. 35: 18-31 (2017) - [c63]Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua Bengio, Aaron C. Courville:
Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation. AAAI 2017: 3288-3294 - [c62]Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. AAAI 2017: 3295-3301 - [c61]Harm de Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, Aaron C. Courville:
GuessWhat?! Visual Object Discovery through Multi-modal Dialogue. CVPR 2017: 4466-4475 - [c60]Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron C. Courville, Christopher Joseph Pal:
A Dataset and Exploration of Models for Understanding Video Data through Fill-in-the-Blank Question-Answering. CVPR 2017: 7359-7368 - [c59]Iulian Vlad Serban, Alexander Ororbia, Joelle Pineau, Aaron C. Courville:
Piecewise Latent Variables for Neural Variational Text Processing. SPNLP@EMNLP 2017: 52-62 - [c58]Iulian Vlad Serban, Alexander G. Ororbia II, Joelle Pineau, Aaron C. Courville:
Piecewise Latent Variables for Neural Variational Text Processing. EMNLP 2017: 422-432 - [c57]Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
An Actor-Critic Algorithm for Sequence Prediction. ICLR (Poster) 2017 - [c56]Tim Cooijmans, Nicolas Ballas, César Laurent, Çaglar Gülçehre, Aaron C. Courville:
Recurrent Batch Normalization. ICLR (Poster) 2017 - [c55]Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard H. Hovy, Aaron C. Courville:
Calibrating Energy-based Generative Adversarial Networks. ICLR (Poster) 2017 - [c54]Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martín Arjovsky, Olivier Mastropietro, Aaron C. Courville:
Adversarially Learned Inference. ICLR (Poster) 2017 - [c53]Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taïga, Francesco Visin, David Vázquez, Aaron C. Courville:
PixelVAE: A Latent Variable Model for Natural Images. ICLR (Poster) 2017 - [c52]David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S. Kanwal, Tegan Maharaj, Emmanuel Bengio, Asja Fischer, Aaron C. Courville:
Deep Nets Don't Learn via Memorization. ICLR (Workshop) 2017 - [c51]David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron C. Courville, Christopher J. Pal:
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations. ICLR (Poster) 2017 - [c50]Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron C. Courville, Yoshua Bengio:
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. ICLR (Poster) 2017 - [c49]Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Generalizable Features From Unsupervised Learning. ICLR (Workshop) 2017 - [c48]Jose Sotelo, Soroush Mehri, Kundan Kumar, João Felipe Santos, Kyle Kastner, Aaron C. Courville, Yoshua Bengio:
Char2Wav: End-to-End Speech Synthesis. ICLR (Workshop) 2017 - [c47]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. ICML 2017: 233-242 - [c46]Florian Strub, Harm de Vries, Jérémie Mary, Bilal Piot, Aaron C. Courville, Olivier Pietquin:
End-to-end optimization of goal-driven and visually grounded dialogue systems. IJCAI 2017: 2765-2771 - [c45]Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, Douglas Eck:
Counterpoint by Convolution. ISMIR 2017: 211-218 - [c44]Alex Lamb, R. Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio:
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. NIPS 2017: 5089-5098 - [c43]Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, Aaron C. Courville:
Improved Training of Wasserstein GANs. NIPS 2017: 5767-5777 - [c42]Harm de Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C. Courville:
Modulating early visual processing by language. NIPS 2017: 6594-6604 - [c41]Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal, Aaron C. Courville:
Adversarial Generation of Natural Language. Rep4NLP@ACL 2017: 241-251 - [i64]