


Остановите войну!
for scientists:


default search action
Aaron C. Courville
Person information

- affiliation: Université de Montréal, Department of Computer Science
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c135]Kyle Kastner, Tim Cooijmans, Yusong Wu, Aaron C. Courville:
SUNMASK: Mask Enhanced Control in Step Unrolled Denoising Autoencoders. EvoMUSART@EvoStar 2023: 148-163 - [i158]Taoli Cheng, Aaron C. Courville:
Versatile Energy-Based Models for High Energy Physics. CoRR abs/2302.00695 (2023) - [i157]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. CoRR abs/2302.05793 (2023) - 2022
- [c134]Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng Li, Jie Zhou, Aaron C. Courville:
Unsupervised Dependency Graph Network. ACL (1) 2022: 4767-4784 - [c133]Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, Aaron C. Courville:
On the Compositional Generalization Gap of In-Context Learning. BlackboxNLP@EMNLP 2022: 272-280 - [c132]Sai Rajeswar, Issam Hadj Laradji, Pau Rodríguez, David Vázquez, Aaron C. Courville:
Consistency-CAM: Towards Improved Weakly Supervised Semantic Segmentation. BMVC 2022: 644 - [c131]Rim Assouel, Lluís Castrejón, Aaron C. Courville, Nicolas Ballas, Yoshua Bengio:
VIM: Variational Independent Modules for Video Prediction. CLeaR 2022: 70-89 - [c130]Sai Rajeswar, Pau Rodríguez, Soumye Singhal, David Vázquez, Aaron C. Courville:
Multi-label Iterated Learning for Image Classification with Label Ambiguity. CVPR 2022: 4773-4783 - [c129]Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron C. Courville, George Tucker, Sergey Levine:
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. ICLR 2022 - [c128]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. ICLR 2022 - [c127]Shawn Tan, Chin-Wei Huang, Alessandro Sordoni, Aaron C. Courville:
Learning to Dequantise with Truncated Flows. ICLR 2022 - [c126]Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans, Aaron C. Courville, Cheng-Zhi Anna Huang, Jesse H. Engel:
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. ICLR 2022 - [c125]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Optimization and Beyond. ICLR 2022 - [c124]Hattie Zhou, Ankit Vani, Hugo Larochelle, Aaron C. Courville:
Fortuitous Forgetting in Connectionist Networks. ICLR 2022 - [c123]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. ICML 2022: 16828-16847 - [c122]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. ICML 2022: 26412-26428 - [c121]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [c120]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Cascaded Video Generation for Videos In-the-Wild. ICPR 2022: 2385-2392 - [c119]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress. NeurIPS 2022 - [c118]Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, Aaron C. Courville:
Riemannian Diffusion Models. NeurIPS 2022 - [i156]Taoli Cheng, Aaron C. Courville:
Invariant Representation Driven Neural Classifier for Anti-QCD Jet Tagging. CoRR abs/2201.07199 (2022) - [i155]Hattie Zhou, Ankit Vani, Hugo Larochelle, Aaron C. Courville:
Fortuitous Forgetting in Connectionist Networks. CoRR abs/2202.00155 (2022) - [i154]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. CoRR abs/2202.01361 (2022) - [i153]Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Kenji Kawaguchi, Ankit Vani, Aaron C. Courville:
Simplicial Embeddings in Self-Supervised Learning and Downstream Classification. CoRR abs/2204.00616 (2022) - [i152]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. CoRR abs/2205.07802 (2022) - [i151]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Cascaded Video Generation for Videos In-the-Wild. CoRR abs/2206.00735 (2022) - [i150]Yuchen Lu, Zhen Liu, Aristide Baratin, Romain Laroche, Aaron C. Courville, Alessandro Sordoni:
Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning. CoRR abs/2206.01251 (2022) - [i149]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Beyond Tabula Rasa: Reincarnating Reinforcement Learning. CoRR abs/2206.01626 (2022) - [i148]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. CoRR abs/2206.03362 (2022) - [i147]Kyle Kastner, Aaron C. Courville:
R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS. CoRR abs/2206.15276 (2022) - [i146]Chin-Wei Huang, Milad Aghajohari, Avishek Joey Bose, Prakash Panangaden, Aaron C. Courville:
Riemannian Diffusion Models. CoRR abs/2208.07949 (2022) - [i145]Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville, Alexandre Lacoste:
Unsupervised Model-based Pre-training for Data-efficient Control from Pixels. CoRR abs/2209.12016 (2022) - [i144]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. CoRR abs/2210.00999 (2022) - [i143]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. CoRR abs/2210.03308 (2022) - [i142]Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, Aaron C. Courville:
On the Compositional Generalization Gap of In-Context Learning. CoRR abs/2211.08473 (2022) - [i141]Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron C. Courville, Behnam Neyshabur, Hanie Sedghi:
Teaching Algorithmic Reasoning via In-context Learning. CoRR abs/2211.09066 (2022) - 2021
- [c117]Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, Aaron C. Courville:
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling. ACL/IJCNLP (1) 2021: 7196-7209 - [c116]Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron C. Courville:
Emergent Communication under Competition. AAMAS 2021: 974-982 - [c115]Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vázquez, Aaron C. Courville, Pedro O. Pinheiro:
Haptics-based Curiosity for Sparse-reward Tasks. CoRL 2021: 395-405 - [c114]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Generative Compositional Augmentations for Scene Graph Prediction. ICCV 2021: 15807-15817 - [c113]Faruk Ahmed, Yoshua Bengio, Harm van Seijen, Aaron C. Courville:
Systematic generalisation with group invariant predictions. ICLR 2021 - [c112]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. ICLR 2021 - [c111]Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron C. Courville:
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization. ICLR 2021 - [c110]Samuel Lavoie-Marchildon, Faruk Ahmed, Aaron C. Courville:
Integrating Categorical Semantics into Unsupervised Domain Translation. ICLR 2021 - [c109]Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron C. Courville, Joshua B. Tenenbaum, Chuang Gan:
Learning Task Decomposition with Ordered Memory Policy Network. ICLR 2021 - [c108]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Self-Predictive Representations. ICLR 2021 - [c107]Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron C. Courville:
Iterated learning for emergent systematicity in VQA. ICLR 2021 - [c106]David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Rémi Le Priol, Aaron C. Courville:
Out-of-Distribution Generalization via Risk Extrapolation (REx). ICML 2021: 5815-5826 - [c105]Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, Sarath Chandar:
Continuous Coordination As a Realistic Scenario for Lifelong Learning. ICML 2021: 8016-8024 - [c104]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? ICML 2021: 12356-12367 - [c103]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. NAACL-HLT 2021: 1301-1312 - [c102]Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva Reddy, Aaron C. Courville:
Explicitly Modeling Syntax in Language Models with Incremental Parsing and a Dynamic Oracle. NAACL-HLT 2021: 1660-1672 - [c101]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. NeurIPS 2021: 1256-1272 - [c100]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. NeurIPS 2021: 12686-12699 - [c99]Chin-Wei Huang, Jae Hyun Lim, Aaron C. Courville:
A Variational Perspective on Diffusion-Based Generative Models and Score Matching. NeurIPS 2021: 22863-22876 - [c98]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. NeurIPS 2021: 29304-29320 - [i140]Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron C. Courville:
Emergent Communication under Competition. CoRR abs/2101.10276 (2021) - [i139]Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, Sarath Chandar:
Continuous Coordination As a Realistic Scenario for Lifelong Learning. CoRR abs/2103.03216 (2021) - [i138]Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron C. Courville, Joshua B. Tenenbaum, Chuang Gan:
Learning Task Decomposition with Ordered Memory Policy Network. CoRR abs/2103.10972 (2021) - [i137]Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vázquez, Aaron C. Courville, Pedro O. Pinheiro:
Touch-based Curiosity for Sparse-Reward Tasks. CoRR abs/2104.00442 (2021) - [i136]Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron C. Courville:
Iterated learning for emergent systematicity in VQA. CoRR abs/2105.01119 (2021) - [i135]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. CoRR abs/2105.03519 (2021) - [i134]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Hierarchical Video Generation for Complex Data. CoRR abs/2106.02719 (2021) - [i133]Chin-Wei Huang, Jae Hyun Lim, Aaron C. Courville:
A Variational Perspective on Diffusion-Based Generative Models and Score Matching. CoRR abs/2106.02808 (2021) - [i132]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? CoRR abs/2106.02890 (2021) - [i131]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. CoRR abs/2106.04799 (2021) - [i130]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. CoRR abs/2108.13264 (2021) - [i129]Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, Marc G. Bellemare:
On Bonus-Based Exploration Methods in the Arcade Learning Environment. CoRR abs/2109.11052 (2021) - [i128]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond. CoRR abs/2110.03372 (2021) - [i127]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. CoRR abs/2110.10139 (2021) - [i126]Sai Rajeswar, Pau Rodríguez, Soumye Singhal, David Vázquez, Aaron C. Courville:
Multi-label Iterated Learning for Image Classification with Label Ambiguity. CoRR abs/2111.12172 (2021) - [i125]Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron C. Courville, George Tucker, Sergey Levine:
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. CoRR abs/2112.04716 (2021) - [i124]Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans, Aaron C. Courville, Cheng-Zhi Anna Huang, Jesse H. Engel:
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. CoRR abs/2112.09312 (2021) - 2020
- [j14]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative adversarial networks. Commun. ACM 63(11): 139-144 (2020) - [j13]Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vázquez, Derek Nowrouzezahrai, Aaron C. Courville:
Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images Using a View-Based Representation. Int. J. Comput. Vis. 128(10): 2478-2493 (2020) - [c97]Faruk Ahmed, Aaron C. Courville:
Detecting Semantic Anomalies. AAAI 2020: 3154-3162 - [c96]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. AIED (2) 2020: 387-392 - [c95]Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste, Aaron C. Courville:
Stochastic Neural Network with Kronecker Flow. AISTATS 2020: 4184-4194 - [c94]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. BMVC 2020 - [c93]Shawn Tan, Yikang Shen, Alessandro Sordoni, Aaron C. Courville, Timothy J. O'Donnell:
Recursive Top-Down Production for Sentence Generation with Latent Trees. EMNLP (Findings) 2020: 2291-2307 - [c92]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. EMNLP (1) 2020: 3962-3970 - [c91]Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, Marc G. Bellemare:
On Bonus Based Exploration Methods In The Arcade Learning Environment. ICLR 2020 - [c90]Jae Hyun Lim, Aaron C. Courville, Christopher J. Pal, Chin-Wei Huang:
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation. ICML 2020: 6061-6071 - [c89]Yuchen Lu, Soumye Singhal, Florian Strub, Aaron C. Courville, Olivier Pietquin:
Countering Language Drift with Seeded Iterated Learning. ICML 2020: 6437-6447 - [c88]Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmalek, Florian Golemo, Aaron C. Courville:
Unsupervised Learning of Dense Visual Representations. NeurIPS 2020 - [i123]Chin-Wei Huang, Laurent Dinh, Aaron C. Courville:
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models. CoRR abs/2002.07101 (2020) - [i122]David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Rémi Le Priol, Aaron C. Courville:
Out-of-Distribution Generalization via Risk Extrapolation (REx). CoRR abs/2003.00688 (2020) - [i121]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Countering Language Drift with Seeded Iterated Learning. CoRR abs/2003.12694 (2020) - [i120]Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vázquez, Derek Nowrouzezahrai, Aaron C. Courville:
Pix2Shape - Towards Unsupervised Learning of 3D Scenes from Images using a View-based Representation. CoRR abs/2003.14166 (2020) - [i119]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. CoRR abs/2005.06616 (2020) - [i118]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. CoRR abs/2005.08230 (2020) - [i117]Jae Hyun Lim, Aaron C. Courville, Christopher J. Pal, Chin-Wei Huang:
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation. CoRR abs/2006.05164 (2020) - [i116]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Generative Graph Perturbations for Scene Graph Prediction. CoRR abs/2007.05756 (2020) - [i115]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Momentum Predictive Representations. CoRR abs/2007.05929 (2020) - [i114]Samuel Lavoie-Marchildon, Faruk Ahmed, Aaron C. Courville:
Integrating Categorical Semantics into Unsupervised Domain Translation. CoRR abs/2010.01262 (2020) - [i113]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. CoRR abs/2010.02975 (2020) - [i112]Shawn Tan, Yikang Shen, Timothy J. O'Donnell, Alessandro Sordoni, Aaron C. Courville:
Recursive Top-Down Production for Sentence Generation with Latent Trees. CoRR abs/2010.04704 (2020) - [i111]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. CoRR abs/2010.10079 (2020) - [i110]Rithesh Kumar, Kundan Kumar, Vicki Anand, Yoshua Bengio, Aaron C. Courville:
NU-GAN: High resolution neural upsampling with GAN. CoRR abs/2010.11362 (2020) - [i109]Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmalek, Florian Golemo, Aaron C. Courville:
Unsupervised Learning of Dense Visual Representations. CoRR abs/2011.05499 (2020) - [i108]Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva Reddy, Aaron C. Courville:
Explicitly Modeling Syntax in Language Model improves Generalization. CoRR abs/2011.07960 (2020) - [i107]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. CoRR abs/2011.09468 (2020) - [i106]Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, Aaron C. Courville:
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling. CoRR abs/2012.00857 (2020) - [i105]Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron C. Courville:
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization. CoRR abs/2012.05942 (2020)
2010 – 2019
- 2019
- [c87]Catalina Cangea, Eugene Belilovsky, Aaron C. Courville:
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. BMVC 2019: 280 - [c86]Kyle Kastner, João Felipe Santos, Yoshua Bengio, Aaron C. Courville:
Representation Mixing for TTS Synthesis. ICASSP 2019: 5906-5910 - [c85]Mikolaj Binkowski, R. Devon Hjelm, Aaron C. Courville:
Batch Weight for Domain Adaptation With Mass Shift. ICCV 2019: 1844-1853 - [c84]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Improved Conditional VRNNs for Video Prediction. ICCV 2019: 7607-7616 - [c83]Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, Aaron C. Courville:
Systematic Generalization: What Is Required and Can It Be Learned? ICLR (Poster) 2019 - [c82]Yikang Shen, Shawn Tan, Alessandro Sordoni, Aaron C. Courville:
Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks. ICLR 2019 - [c81]Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, Aaron C. Courville:
Hierarchical Importance Weighted Autoencoders. ICML 2019: 2869-2878 - [c80]Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:
On the Spectral Bias of Neural Networks. ICML 2019: 5301-5310 - [c79]Lucas Caccia, Herke van Hoof, Aaron C. Courville, Joelle Pineau:
Deep Generative Modeling of LiDAR Data. IROS 2019: 5034-5040 - [c78]Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville:
No-Press Diplomacy: Modeling Multi-Agent Gameplay. NeurIPS 2019: 4476-4487 - [c77]Yikang Shen, Shawn Tan, Seyed Arian Hosseini, Zhouhan Lin, Alessandro Sordoni, Aaron C. Courville:
Ordered Memory. NeurIPS 2019: 5038-5049 - [c76]Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville:
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis. NeurIPS 2019: 14881-14892 - [c75]Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron C. Courville:
Probability Distillation: A Caveat and Alternatives. UAI 2019: 1212-1221 - [i104]Catalina Cangea, Eugene Belilovsky, Pietro Liò, Aaron C. Courville:
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. ViGIL@NeurIPS 2019 - [i103]Harm de Vries, Dzmitry Bahdanau, Shikhar Murty, Aaron C. Courville, Philippe Beaudoin:
CLOSURE: Assessing Systematic Generalization of CLEVR Models. ViGIL@NeurIPS 2019 - [i102]Rithesh Kumar, Anirudh Goyal, Aaron C. Courville, Yoshua Bengio:
Maximum Entropy Generators for Energy-Based Models. CoRR abs/1901.08508 (2019) - [i101]