default search action
Quoc V. Le
Quoc Viet Le – Quoc Le 0001
Person information
- affiliation: Google Inc., Mountain View, CA, USA
- affiliation: Stanford University, Computer Science Department, CA, USA
Other persons with the same name
- Quoc Le 0002 — Santa Clara University, School of Engineering, Department of Computer Engineering, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j14]Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei:
Scaling Instruction-Finetuned Language Models. J. Mach. Learn. Res. 25: 70:1-70:53 (2024) - [j13]Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, Thang Luong:
Solving olympiad geometry without human demonstrations. Nat. 625(7995): 476-482 (2024) - [c158]Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry W. Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc V. Le, Thang Luong:
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation. ACL (Findings) 2024: 13697-13720 - [c157]Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi:
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses. CHI Extended Abstracts 2024: 56:1-56:12 - [c156]Zhecan Wang, Garrett Bingham, Adams Wei Yu, Quoc V. Le, Thang Luong, Golnaz Ghiasi:
HaloQuest: A Visual Hallucination Dataset for Advancing Multimodal Reasoning. ECCV (77) 2024: 288-304 - [c155]Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen:
Large Language Models as Optimizers. ICLR 2024 - [c154]Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V. Le, Denny Zhou:
Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models. ICLR 2024 - [i160]Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou, Swaroop Mishra, Huaixiu Steven Zheng:
Self-Discover: Large Language Models Self-Compose Reasoning Structures. CoRR abs/2402.03620 (2024) - [i159]Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, Quoc V. Le:
Long-form factuality in large language models. CoRR abs/2403.18802 (2024) - [i158]Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou:
NATURAL PLAN: Benchmarking LLMs on Natural Language Planning. CoRR abs/2406.04520 (2024) - [i157]Zhecan Wang, Garrett Bingham, Adams Yu, Quoc V. Le, Thang Luong, Golnaz Ghiasi:
HaloQuest: A Visual Hallucination Dataset for Advancing Multimodal Reasoning. CoRR abs/2407.15680 (2024) - [i156]Bradley C. A. Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, Azalia Mirhoseini:
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling. CoRR abs/2407.21787 (2024) - [i155]Kiran Vodrahalli, Santiago Ontanon, Nilesh Tripuraneni, Kelvin Xu, Sanil Jain, Rakesh Shivanna, Jeffrey Hui, Nishanth Dikkala, Mehran Kazemi, Bahare Fatemi, Rohan Anil, Ethan Dyer, Siamak Shakeri, Roopali Vij, Harsh Mehta, Vinay V. Ramasesh, Quoc Le, Ed H. Chi, Yifeng Lu, Orhan Firat, Angeliki Lazaridou, Jean-Baptiste Lespiau, Nithya Attaluri, Kate Olszewska:
Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries. CoRR abs/2409.12640 (2024) - [i154]Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, Minmin Chen:
EVOLvE: Evaluating and Optimizing LLMs For Exploration. CoRR abs/2410.06238 (2024) - 2023
- [j12]Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu, Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, Mingxing Tan, Quoc V. Le:
Combined scaling for zero-shot transfer learning. Neurocomputing 555: 126658 (2023) - [c153]Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, Jason Wei:
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them. ACL (Findings) 2023: 13003-13051 - [c152]Sheng Li, Garrett Andersen, Tao Chen, Liqun Cheng, Julian Grady, Da Huang, Quoc V. Le, Andrew Li, Xin Li, Yang Li, Chen Liang, Yifeng Lu, Yun Ni, Ruoming Pang, Mingxing Tan, Martin Wicke, Gang Wu, Shengqi Zhu, Parthasarathy Ranganathan, Norman P. Jouppi:
Hyperscale Hardware Optimized Neural Architecture Search. ASPLOS (3) 2023: 343-358 - [c151]Jerry W. Wei, Le Hou, Andrew K. Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le:
Symbol tuning improves in-context learning in language models. EMNLP 2023: 968-979 - [c150]Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia, Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, Denny Zhou, Donald Metzler, Slav Petrov, Neil Houlsby, Quoc V. Le, Mostafa Dehghani:
Transcending Scaling Laws with 0.1% Extra Compute. EMNLP 2023: 1471-1486 - [c149]Jason Wei, Najoung Kim, Yi Tay, Quoc V. Le:
Inverse Scaling Can Become U-Shaped. EMNLP 2023: 15580-15591 - [c148]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023 - [c147]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ICLR 2023 - [c146]Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, Adam Roberts:
The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. ICML 2023: 22631-22648 - [c145]Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David R. So, Andrew M. Dai, Yifeng Lu, Zhifeng Chen, Quoc V. Le, Claire Cui, James Laudon, Jeff Dean:
Brainformers: Trading Simplicity for Efficiency. ICML 2023: 42531-42542 - [c144]Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le:
Symbolic Discovery of Optimization Algorithms. NeurIPS 2023 - [c143]Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le, Tengyu Ma, Adams Wei Yu:
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining. NeurIPS 2023 - [i153]Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, Adam Roberts:
The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. CoRR abs/2301.13688 (2023) - [i152]Daiyi Peng, Xuanyi Dong, Esteban Real, Yifeng Lu, Quoc V. Le:
PyGlove: Efficiently Exchanging ML Ideas as Code. CoRR abs/2302.01918 (2023) - [i151]Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong Zhang, Zhishuai Zhang, Jiahui Yu, Christian Havnø Frank, Jesse H. Engel, Quoc V. Le, William Chan, Wei Han:
Noise2Music: Text-conditioned Music Generation with Diffusion Models. CoRR abs/2302.03917 (2023) - [i150]Ryan Gillard, Stephen Jonany, Yingjie Miao, Michael Munn, Connal de Souza, Jonathan Dungay, Chen Liang, David R. So, Quoc V. Le, Esteban Real:
Unified Functional Hashing in Automatic Machine Learning. CoRR abs/2302.05433 (2023) - [i149]Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le:
Symbolic Discovery of Optimization Algorithms. CoRR abs/2302.06675 (2023) - [i148]Jerry W. Wei, Le Hou, Andrew K. Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le:
Symbol tuning improves in-context learning in language models. CoRR abs/2305.08298 (2023) - [i147]Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le, Tengyu Ma, Adams Wei Yu:
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining. CoRR abs/2305.10429 (2023) - [i146]Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David R. So, Andrew M. Dai, Yifeng Lu, Zhifeng Chen, Quoc V. Le, Claire Cui, James Laudon, Jeff Dean:
Brainformers: Trading Simplicity for Efficiency. CoRR abs/2306.00008 (2023) - [i145]Jordan Dotzel, Gang Wu, Andrew Li, Muhammad Umar, Yun Ni, Mohamed S. Abdelfattah, Zhiru Zhang, Liqun Cheng, Martin G. Dixon, Norman P. Jouppi, Quoc V. Le, Sheng Li:
FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search. CoRR abs/2308.03290 (2023) - [i144]Jerry W. Wei, Da Huang, Yifeng Lu, Denny Zhou, Quoc V. Le:
Simple synthetic data reduces sycophancy in large language models. CoRR abs/2308.03958 (2023) - [i143]Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen:
Large Language Models as Optimizers. CoRR abs/2309.03409 (2023) - [i142]Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry W. Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc V. Le, Thang Luong:
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation. CoRR abs/2310.03214 (2023) - [i141]Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V. Le, Denny Zhou:
Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models. CoRR abs/2310.06117 (2023) - [i140]Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi:
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses. CoRR abs/2312.00763 (2023) - [i139]Esteban Real, Yao Chen, Mirko Rossini, Connal de Souza, Manav Garg, Akhil Verghese, Moritz Firsching, Quoc V. Le, Ekin Dogus Cubuk, David H. Park:
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions. CoRR abs/2312.08472 (2023) - 2022
- [j11]David A. Patterson, Joseph Gonzalez, Urs Hölzle, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, Jeff Dean:
The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. Computer 55(7): 18-28 (2022) - [j10]Yu Zhang, Daniel S. Park, Wei Han, James Qin, Anmol Gulati, Joel Shor, Aren Jansen, Yuanzhong Xu, Yanping Huang, Shibo Wang, Zongwei Zhou, Bo Li, Min Ma, William Chan, Jiahui Yu, Yongqiang Wang, Liangliang Cao, Khe Chai Sim, Bhuvana Ramabhadran, Tara N. Sainath, Françoise Beaufays, Zhifeng Chen, Quoc V. Le, Chung-Cheng Chiu, Ruoming Pang, Yonghui Wu:
BigSSL: Exploring the Frontier of Large-Scale Semi-Supervised Learning for Automatic Speech Recognition. IEEE J. Sel. Top. Signal Process. 16(6): 1519-1532 (2022) - [c142]Dan Zhang, Safeen Huda, Ebrahim M. Songhori, Kartik Prabhu, Quoc V. Le, Anna Goldie, Azalia Mirhoseini:
A full-stack search technique for domain optimized deep learning accelerators. ASPLOS 2022: 27-42 - [c141]Yingwei Li, Adams Wei Yu, Tianjian Meng, Benjamin Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Yifeng Lu, Denny Zhou, Quoc V. Le, Alan L. Yuille, Mingxing Tan:
DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection. CVPR 2022: 17161-17170 - [c140]Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le:
Finetuned Language Models are Zero-Shot Learners. ICLR 2022 - [c139]Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P. Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Zhifeng Chen, Claire Cui:
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts. ICML 2022: 5547-5569 - [c138]Weizhe Hua, Zihang Dai, Hanxiao Liu, Quoc V. Le:
Transformer Quality in Linear Time. ICML 2022: 9099-9117 - [c137]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, Denny Zhou:
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS 2022 - [c136]Chengrun Yang, Gabriel Bender, Hanxiao Liu, Pieter-Jan Kindermans, Madeleine Udell, Yifeng Lu, Quoc V. Le, Da Huang:
TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets. NeurIPS 2022 - [c135]Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng Chen, Quoc V. Le, James Laudon:
Mixture-of-Experts with Expert Choice Routing. NeurIPS 2022 - [c134]Gary Wang, Ekin D. Cubuk, Andrew Rosenberg, Shuyang Cheng, Ron J. Weiss, Bhuvana Ramabhadran, Pedro J. Moreno, Quoc V. Le, Daniel S. Park:
G-Augment: Searching for the Meta-Structure of Data Augmentation Policies for ASR. SLT 2022: 23-30 - [i138]Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Agüera y Arcas, Claire Cui, Marian Croak, Ed H. Chi, Quoc Le:
LaMDA: Language Models for Dialog Applications. CoRR abs/2201.08239 (2022) - [i137]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, Denny Zhou:
Chain of Thought Prompting Elicits Reasoning in Large Language Models. CoRR abs/2201.11903 (2022) - [i136]Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng Chen, Quoc Le, James Laudon:
Mixture-of-Experts with Expert Choice Routing. CoRR abs/2202.09368 (2022) - [i135]Weizhe Hua, Zihang Dai, Hanxiao Liu, Quoc V. Le:
Transformer Quality in Linear Time. CoRR abs/2202.10447 (2022) - [i134]Yingwei Li, Adams Wei Yu, Tianjian Meng, Benjamin Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Bo Wu, Yifeng Lu, Denny Zhou, Quoc V. Le, Alan L. Yuille, Mingxing Tan:
DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection. CoRR abs/2203.08195 (2022) - [i133]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. CoRR abs/2203.11171 (2022) - [i132]Tianjian Meng, Golnaz Ghiasi, Reza Mahjourian, Quoc V. Le, Mingxing Tan:
Revisiting Multi-Scale Feature Fusion for Semantic Segmentation. CoRR abs/2203.12683 (2022) - [i131]David A. Patterson, Joseph Gonzalez, Urs Hölzle, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, Jeff Dean:
The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. CoRR abs/2204.05149 (2022) - [i130]Chengrun Yang, Gabriel Bender, Hanxiao Liu, Pieter-Jan Kindermans, Madeleine Udell, Yifeng Lu, Quoc V. Le, Da Huang:
Resource-Constrained Neural Architecture Search on Tabular Datasets. CoRR abs/2204.07615 (2022) - [i129]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. CoRR abs/2205.10625 (2022) - [i128]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Rationale-Augmented Ensembles in Language Models. CoRR abs/2207.00747 (2022) - [i127]Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, Jason Wei:
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them. CoRR abs/2210.09261 (2022) - [i126]Gary Wang, Ekin D. Cubuk, Andrew Rosenberg, Shuyang Cheng, Ron J. Weiss, Bhuvana Ramabhadran, Pedro J. Moreno, Quoc V. Le, Daniel S. Park:
G-Augment: Searching for the Meta-Structure of Data Augmentation Policies for ASR. CoRR abs/2210.10879 (2022) - [i125]Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia, Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, Denny Zhou, Donald Metzler, Slav Petrov, Neil Houlsby, Quoc V. Le, Mostafa Dehghani:
Transcending Scaling Laws with 0.1% Extra Compute. CoRR abs/2210.11399 (2022) - [i124]Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei:
Scaling Instruction-Finetuned Language Models. CoRR abs/2210.11416 (2022) - [i123]Jason Wei, Yi Tay, Quoc V. Le:
Inverse scaling can become U-shaped. CoRR abs/2211.02011 (2022) - 2021
- [j9]Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim M. Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, Jeff Dean:
A graph placement methodology for fast chip design. Nat. 594(7862): 207-212 (2021) - [c133]Hieu Pham, Quoc V. Le:
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks. AAAI 2021: 9351-9359 - [c132]Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D. Cubuk, Quoc V. Le, Barret Zoph:
Simple Copy-Paste Is a Strong Data Augmentation Method for Instance Segmentation. CVPR 2021: 2918-2928 - [c131]Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V. Le, Norman P. Jouppi:
Searching for Fast Model Families on Datacenter Accelerators. CVPR 2021: 8085-8095 - [c130]Hieu Pham, Zihang Dai, Qizhe Xie, Quoc V. Le:
Meta Pseudo Labels. CVPR 2021: 11557-11568 - [c129]Tu Vu, Minh-Thang Luong, Quoc V. Le, Grady Simon, Mohit Iyyer:
STraTA: Self-Training with Task Augmentation for Better Few-shot Learning. EMNLP (1) 2021: 5715-5731 - [c128]Golnaz Ghiasi, Barret Zoph, Ekin D. Cubuk, Quoc V. Le, Tsung-Yi Lin:
Multi-Task Self-Training for Learning General Representations. ICCV 2021: 8836-8845 - [c127]John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V. Le, Sergey Levine, Honglak Lee, Aleksandra Faust:
Evolving Reinforcement Learning Algorithms. ICLR 2021 - [c126]Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung, Zhen Li, Tom Duerig:
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision. ICML 2021: 4904-4916 - [c125]Mingxing Tan, Quoc V. Le:
EfficientNetV2: Smaller Models and Faster Training. ICML 2021: 10096-10106 - [c124]Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, Quoc V. Le:
Towards Domain-Agnostic Contrastive Learning. ICML 2021: 10530-10541 - [c123]Arissa Wongpanich, Hieu Pham, James Demmel, Mingxing Tan, Quoc V. Le, Yang You, Sameer Kumar:
Training EfficientNets at Supercomputer Scale: 83% ImageNet Top-1 Accuracy in One Hour. IPDPS Workshops 2021: 947-950 - [c122]Zihang Dai, Hanxiao Liu, Quoc V. Le, Mingxing Tan:
CoAtNet: Marrying Convolution and Attention for All Data Sizes. NeurIPS 2021: 3965-3977 - [c121]David R. So, Wojciech Manke, Hanxiao Liu, Zihang Dai, Noam Shazeer, Quoc V. Le:
Searching for Efficient Transformers for Language Modeling. NeurIPS 2021: 6010-6022 - [c120]Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le:
Pay Attention to MLPs. NeurIPS 2021: 9204-9215 - [i122]Hieu Pham, Quoc V. Le:
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks. CoRR abs/2101.01761 (2021) - [i121]John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V. Le, Honglak Lee, Aleksandra Faust:
Evolving Reinforcement Learning Algorithms. CoRR abs/2101.03958 (2021) - [i120]Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Hanxiao Liu, Gabriel Bender, Adam Kraft, Chen Liang, Quoc V. Le:
PyGlove: Symbolic Programming for Automated Machine Learning. CoRR abs/2101.08809 (2021) - [i119]Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V. Le, Norman P. Jouppi:
Searching for Fast Model Families on Datacenter Accelerators. CoRR abs/2102.05610 (2021) - [i118]Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung, Zhen Li, Tom Duerig:
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision. CoRR abs/2102.05918 (2021) - [i117]Mingxing Tan, Quoc V. Le:
EfficientNetV2: Smaller Models and Faster Training. CoRR abs/2104.00298 (2021) - [i116]William Chan, Daniel S. Park, Chris A. Lee, Yu Zhang, Quoc V. Le, Mohammad Norouzi:
SpeechStew: Simply Mix All Available Speech Recognition Data to Train One Large Neural Network. CoRR abs/2104.02133 (2021) - [i115]David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, Jeff Dean:
Carbon Emissions and Large Neural Network Training. CoRR abs/2104.10350 (2021) - [i114]Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le:
Pay Attention to MLPs. CoRR abs/2105.08050 (2021) - [i113]Dan Zhang, Safeen Huda, Ebrahim M. Songhori, Quoc V. Le, Anna Goldie, Azalia Mirhoseini:
A Full-stack Accelerator Search Technique for Vision Applications. CoRR abs/2105.12842 (2021) - [i112]Zihang Dai, Hanxiao Liu, Quoc V. Le, Mingxing Tan:
CoAtNet: Marrying Convolution and Attention for All Data Sizes. CoRR abs/2106.04803 (2021) - [i111]Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, Charles Sutton:
Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021) - [i110]Golnaz Ghiasi, Barret Zoph, Ekin D. Cubuk, Quoc V. Le, Tsung-Yi Lin:
Multi-Task Self-Training for Learning General Representations. CoRR abs/2108.11353 (2021) - [i109]Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le:
Finetuned Language Models Are Zero-Shot Learners. CoRR abs/2109.01652 (2021) - [i108]Tu Vu, Minh-Thang Luong, Quoc V. Le, Grady Simon, Mohit Iyyer:
STraTA: Self-Training with Task Augmentation for Better Few-shot Learning. CoRR abs/2109.06270 (2021) - [i107]David R. So, Wojciech Manke, Hanxiao Liu, Zihang Dai, Noam Shazeer, Quoc V. Le:
Primer: Searching for Efficient Transformers for Language Modeling. CoRR abs/2109.08668 (2021) - [i106]Yu Zhang, Daniel S. Park, Wei Han, James Qin, Anmol Gulati, Joel Shor, Aren Jansen, Yuanzhong Xu, Yanping Huang, Shibo Wang, Zongwei Zhou, Bo Li, Min Ma, William Chan, Jiahui Yu, Yongqiang Wang, Liangliang Cao, Khe Chai Sim, Bhuvana Ramabhadran, Tara N. Sainath, Françoise Beaufays, Zhifeng Chen, Quoc V. Le, Chung-Cheng Chiu, Ruoming Pang, Yonghui Wu:
BigSSL: Exploring the Frontier of Large-Scale Semi-Supervised Learning for Automatic Speech Recognition. CoRR abs/2109.13226 (2021) - [i105]Hieu Pham, Zihang Dai, Golnaz Ghiasi, Hanxiao Liu, Adams Wei Yu, Minh-Thang Luong, Mingxing Tan, Quoc V. Le:
Combined Scaling for Zero-shot Transfer Learning. CoRR abs/2111.10050 (2021) - [i104]Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathy Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Zhifeng Chen, Claire Cui:
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts. CoRR abs/2112.06905 (2021) - 2020
- [c119]Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, Quoc V. Le:
Adversarial Examples Improve Image Recognition. CVPR 2020: 816-825 - [c118]