default search action
Jinhui Xu 0001
Person information
- affiliation: State University of New York at Buffalo, Buffalo, NY, USA
Other persons with the same name
- Jinhui Xu — disambiguation page
- Jinhui Xu 0002 — National University of Defense Technology, Changsha, China
- Jinhui Xu 0003 — Indiana University Bloomington, IN, USA (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j78]Jinyan Su, Jinhui Xu, Di Wang:
PAC learning halfspaces in non-interactive local differential privacy model with public unlabeled data. J. Comput. Syst. Sci. 141: 103496 (2024) - [j77]Ziyun Huang, Qilong Feng, Jianxin Wang, Jinhui Xu:
PTAS for Minimum Cost MultiCovering with Disks. SIAM J. Comput. 53(4): 1181-1215 (2024) - [j76]Di Wang, Jinhui Xu:
Gradient complexity and non-stationary views of differentially private empirical risk minimization. Theor. Comput. Sci. 982: 114259 (2024) - [j75]Xiaoliang Wu, Qilong Feng, Jinhui Xu, Jian-xin Wang:
New algorithms for fair k-center problem with outliers and capacity constraints. Theor. Comput. Sci. 997: 114515 (2024) - [j74]Minghua Wang, Yan Hu, Ziyun Huang, Di Wang, Jinhui Xu:
Persistent Local Homology in Graph Learning. Trans. Mach. Learn. Res. 2024 (2024) - [c131]Junyu Huang, Qilong Feng, Jiahui Wang, Ziyun Huang, Jinhui Xu, Jianxin Wang:
SEC: More Accurate Clustering Algorithm via Structural Entropy. AAAI 2024: 12583-12590 - [c130]Xiaoliang Wu, Qilong Feng, Ziyun Huang, Jinhui Xu, Jianxin Wang:
New Algorithms for Distributed Fair k-Center Clustering: Almost Accurate as Sequential Algorithms. AAMAS 2024: 1938-1946 - [c129]Liyang Zhu, Meng Ding, Vaneet Aggarwal, Jinhui Xu, Di Wang:
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model. ICLR 2024 - [c128]Meng Ding, Kaiyi Ji, Di Wang, Jinhui Xu:
Understanding Forgetting in Continual Learning with Linear Regression. ICML 2024 - [c127]Junyu Huang, Qilong Feng, Ziyun Huang, Jinhui Xu, Jianxin Wang:
Near-Linear Time Approximation Algorithms for k-means with Outliers. ICML 2024 - [c126]Ting Liang, Qilong Feng, Xiaoliang Wu, Jinhui Xu, Jianxin Wang:
Improved Approximation Algorithm for the Distributed Lower-Bounded k-Center Problem. TAMC 2024: 309-319 - [i41]Danny Z. Chen, Ziyun Huang, Yangwei Liu, Jinhui Xu:
On Clustering Induced Voronoi Diagrams. CoRR abs/2404.18906 (2024) - [i40]Kai Zheng, Qilong Feng, Yaohang Li, Qichang Zhao, Jinhui Xu, Jianxin Wang:
TopoLa: a novel embedding framework for understanding complex networks. CoRR abs/2405.16928 (2024) - [i39]Meng Ding, Kaiyi Ji, Di Wang, Jinhui Xu:
Understanding Forgetting in Continual Learning with Linear Regression. CoRR abs/2405.17583 (2024) - [i38]Meng Ding, Jinhui Xu, Kaiyi Ji:
Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach. CoRR abs/2410.03833 (2024) - [i37]Liyang Zhu, Amina Manseur, Meng Ding, Jinyan Liu, Jinhui Xu, Di Wang:
Truthful High Dimensional Sparse Linear Regression. CoRR abs/2410.13046 (2024) - 2023
- [j73]Yunpei Xu, Hong-Dong Li, Cui-Xiang Lin, Ruiqing Zheng, Yaohang Li, Jinhui Xu, Jianxin Wang:
CellBRF: a feature selection method for single-cell clustering using cell balance and random forest. Bioinform. 39(Supplement-1): 368-376 (2023) - [j72]Di Wang, Lijie Hu, Huanyu Zhang, Marco Gaboardi, Jinhui Xu:
Generalized Linear Models in Non-interactive Local Differential Privacy with Public Data. J. Mach. Learn. Res. 24: 132:1-132:57 (2023) - [c125]Di Wu, Jinhui Xu, Jianxin Wang:
A PTAS Framework for Clustering Problems in Doubling Metrics. COCOON (1) 2023: 384-397 - [c124]Yufan Zhou, Bingchen Liu, Yizhe Zhu, Xiao Yang, Changyou Chen, Jinhui Xu:
Shifted Diffusion for Text-to-image Generation. CVPR 2023: 10157-10166 - [c123]Di Wang, Jiahao Ding, Lijie Hu, Zejun Xie, Miao Pan, Jinhui Xu:
Finite Sample Guarantees of Differentially Private Expectation Maximization Algorithm. ECAI 2023: 2435-2442 - [c122]Xiaoliang Wu, Qilong Feng, Jinhui Xu, Jianxin Wang:
The Fair k-Center with Outliers Problem: FPT and Polynomial Approximations. IJTCS-FAW 2023: 225-238 - [c121]Chunwei Ma, Zhanghexuan Ji, Ziyun Huang, Yan Shen, Mingchen Gao, Jinhui Xu:
Progressive Voronoi Diagram Subdivision Enables Accurate Data-free Class-Incremental Learning. ICLR 2023 - [c120]Junyu Huang, Qilong Feng, Ziyun Huang, Jinhui Xu, Jianxin Wang:
Fast Algorithms for Distributed k-Clustering with Outliers. ICML 2023: 13845-13868 - [c119]Junyu Huang, Qilong Feng, Ziyun Huang, Jinhui Xu, Jianxin Wang:
Linear Time Algorithms for k-means with Multi-Swap Local Search. NeurIPS 2023 - [i36]Yufan Zhou, Ruiyi Zhang, Tong Sun, Jinhui Xu:
Enhancing Detail Preservation for Customized Text-to-Image Generation: A Regularization-Free Approach. CoRR abs/2305.13579 (2023) - [i35]Liyang Zhu, Meng Ding, Vaneet Aggarwal, Jinhui Xu, Di Wang:
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model. CoRR abs/2310.07367 (2023) - 2022
- [j71]Ziyun Huang, Qilong Feng, Jianxin Wang, Jinhui Xu:
Small Candidate Set for Translational Pattern Search. Algorithmica 84(10): 3034-3053 (2022) - [j70]Danyang Chen, Xiangyu Wang, Xiu Xu, Cheng Zhong, Jinhui Xu:
Sparse non-negative matrix factorization for uncertain data clustering. Intell. Data Anal. 26(3): 615-636 (2022) - [j69]Angsheng Li, Jianer Chen, Qilong Feng, Jinhui Xu:
Preface. Math. Struct. Comput. Sci. 32(2): 125-126 (2022) - [c118]Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, Chris Tensmeyer, Tong Yu, Changyou Chen, Jinhui Xu, Tong Sun:
TiGAN: Text-Based Interactive Image Generation and Manipulation. AAAI 2022: 3580-3588 - [c117]Jinyan Su, Jinhui Xu, Di Wang:
On PAC Learning Halfspaces in Non-interactive Local Privacy Model with Public Unlabeled Data. ACML 2022: 927-941 - [c116]Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun:
Towards Language-Free Training for Text-to-Image Generation. CVPR 2022: 17886-17896 - [c115]Ziyun Huang, Jinhui Xu:
In-Range Farthest Point Queries and Related Problem in High Dimensions. ICALP 2022: 75:1-75:21 - [c114]Chunwei Ma, Ziyun Huang, Mingchen Gao, Jinhui Xu:
Few-shot Learning via Dirichlet Tessellation Ensemble. ICLR 2022 - [c113]Junyu Huang, Qilong Feng, Ziyun Huang, Jinhui Xu, Jianxin Wang:
FLS: A New Local Search Algorithm for K-means with Smaller Search Space. IJCAI 2022: 3092-3098 - [c112]Di Wang, Jinhui Xu:
Differentially Private ℓ1-norm Linear Regression with Heavy-tailed Data. ISIT 2022: 1856-1861 - [i34]Di Wang, Jinhui Xu:
Differentially Private 𝓁1-norm Linear Regression with Heavy-tailed Data. CoRR abs/2201.03204 (2022) - [i33]Chunwei Ma, Ziyun Huang, Mingchen Gao, Jinhui Xu:
Few-shot Learning as Cluster-induced Voronoi Diagrams: A Geometric Approach. CoRR abs/2202.02471 (2022) - [i32]Ziyun Huang, Jinhui Xu:
In-Range Farthest Point Queries and Related Problem in High Dimensions. CoRR abs/2206.07592 (2022) - [i31]Chunwei Ma, Zhanghexuan Ji, Ziyun Huang, Yan Shen, Mingchen Gao, Jinhui Xu:
Progressive Voronoi Diagram Subdivision: Towards A Holistic Geometric Framework for Exemplar-free Class-Incremental Learning. CoRR abs/2207.14202 (2022) - [i30]Jinyan Su, Jinhui Xu, Di Wang:
On PAC Learning Halfspaces in Non-interactive Local Privacy Model with Public Unlabeled Data. CoRR abs/2209.08319 (2022) - [i29]Yufan Zhou, Chunyuan Li, Changyou Chen, Jianfeng Gao, Jinhui Xu:
Lafite2: Few-shot Text-to-Image Generation. CoRR abs/2210.14124 (2022) - [i28]Yufan Zhou, Bingchen Liu, Yizhe Zhu, Xiao Yang, Changyou Chen, Jinhui Xu:
Shifted Diffusion for Text-to-image Generation. CoRR abs/2211.15388 (2022) - 2021
- [j68]Palak Patel, Seyyed Mostafa Mousavi Janbeh Sarayi, Danyang Chen, Adam L. Hammond, Robert J. Damiano, Jason M. Davies, Jinhui Xu, Hui Meng:
Fast virtual coiling algorithm for intracranial aneurysms using pre-shape path planning. Comput. Biol. Medicine 134: 104496 (2021) - [j67]Zhen Zhang, Qilong Feng, Jinhui Xu, Jianxin Wang:
An approximation algorithm for k-median with priorities. Sci. China Inf. Sci. 64(5) (2021) - [j66]Ziyun Huang, Danny Z. Chen, Jinhui Xu:
Influence-based Voronoi diagrams of clusters. Comput. Geom. 96: 101746 (2021) - [j65]Zhen Zhang, Qilong Feng, Junyu Huang, Yutian Guo, Jinhui Xu, Jianxin Wang:
A local search algorithm for k-means with outliers. Neurocomputing 450: 230-241 (2021) - [j64]Di Wang, Jinhui Xu:
Inferring ground truth from crowdsourced data under local attribute differential privacy. Theor. Comput. Sci. 865: 85-98 (2021) - [j63]Di Wang, Jinhui Xu:
Differentially private high dimensional sparse covariance matrix estimation. Theor. Comput. Sci. 865: 119-130 (2021) - [j62]Di Wang, Jinhui Xu:
On Sparse Linear Regression in the Local Differential Privacy Model. IEEE Trans. Inf. Theory 67(2): 1182-1200 (2021) - [c111]Di Wang, Huangyu Zhang, Marco Gaboardi, Jinhui Xu:
Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data. ALT 2021: 1207-1213 - [c110]Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, Jinhui Xu:
Meta-Learning with Neural Tangent Kernels. ICLR 2021 - [c109]Ziyun Huang, Qilong Feng, Jianxin Wang, Jinhui Xu:
PTAS for Minimum Cost Multi-covering with Disks. SODA 2021: 840-859 - [c108]Chunwei Ma, Ziyun Huang, Jiayi Xian, Mingchen Gao, Jinhui Xu:
Improving uncertainty calibration of deep neural networks via truth discovery and geometric optimization. UAI 2021: 75-85 - [i27]Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, Jinhui Xu:
Meta-Learning with Neural Tangent Kernels. CoRR abs/2102.03909 (2021) - [i26]Yufan Zhou, Changyou Chen, Jinhui Xu:
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels. CoRR abs/2105.04538 (2021) - [i25]Chunwei Ma, Ziyun Huang, Jiayi Xian, Mingchen Gao, Jinhui Xu:
Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization. CoRR abs/2106.14662 (2021) - [i24]Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun:
LAFITE: Towards Language-Free Training for Text-to-Image Generation. CoRR abs/2111.13792 (2021) - [i23]Yufan Zhou, Chunyuan Li, Changyou Chen, Jinhui Xu:
A Generic Approach for Enhancing GANs by Regularized Latent Optimization. CoRR abs/2112.03502 (2021) - 2020
- [j61]Hu Ding, Jinhui Xu:
A Unified Framework for Clustering Constrained Data Without Locality Property. Algorithmica 82(4): 808-852 (2020) - [j60]Ziyun Huang, Jinhui Xu:
An Efficient Sum Query Algorithm for Distance-Based Locally Dominating Functions. Algorithmica 82(9): 2415-2431 (2020) - [j59]Shi Li, Jinhui Xu, Minwei Ye:
Approximating Global Optimum for Probabilistic Truth Discovery. Algorithmica 82(10): 3091-3116 (2020) - [j58]Yangwei Liu, Hu Ding, Ziyun Huang, Jinhui Xu:
Distributed and Robust Support Vector Machine. Int. J. Comput. Geom. Appl. 30(3&4): 213-233 (2020) - [j57]Di Wang, Xiangyu Guo, Chaowen Guan, Shi Li, Jinhui Xu:
Estimating stochastic linear combination of non-linear regressions efficiently and scalably. Neurocomputing 399: 129-140 (2020) - [j56]Hu Ding, Jinhui Xu:
Learning the truth vector in high dimensions. J. Comput. Syst. Sci. 109: 78-94 (2020) - [j55]Di Wang, Marco Gaboardi, Adam D. Smith, Jinhui Xu:
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy. J. Mach. Learn. Res. 21: 200:1-200:39 (2020) - [j54]Di Wang, Xiangyu Guo, Shi Li, Jinhui Xu:
Robust high dimensional expectation maximization algorithm via trimmed hard thresholding. Mach. Learn. 109(12): 2283-2311 (2020) - [j53]Di Wang, Jinhui Xu:
Principal Component Analysis in the local differential privacy model. Theor. Comput. Sci. 809: 296-312 (2020) - [j52]Di Wang, Jinhui Xu:
Tight lower bound of sparse covariance matrix estimation in the local differential privacy model. Theor. Comput. Sci. 815: 47-59 (2020) - [c107]Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, Aidong Zhang:
Pairwise Learning with Differential Privacy Guarantees. AAAI 2020: 694-701 - [c106]Di Wang, Xiangyu Guo, Chaowen Guan, Shi Li, Jinhui Xu:
Estimating Stochastic Linear Combination of Non-Linear Regressions. AAAI 2020: 6137-6144 - [c105]Di Wang, Hanshen Xiao, Srinivas Devadas, Jinhui Xu:
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data. ICML 2020: 10081-10091 - [c104]Qilong Feng, Zhen Zhang, Ziyun Huang, Jinhui Xu, Jianxin Wang:
A Unified Framework of FPT Approximation Algorithms for Clustering Problems. ISAAC 2020: 5:1-5:17 - [c103]Yufan Zhou, Zheshuo Li, Chunwei Ma, Changyou Chen, Mingchen Gao, Hong Zhu, Jinhui Xu:
Weakly-Supervised Brain Tumor Classification with Global Diagnosis Label. ISBI 2020: 1-5 - [c102]Yufan Zhou, Changyou Chen, Jinhui Xu:
Learning Manifold Implicitly via Explicit Heat-Kernel Learning. NeurIPS 2020 - [c101]Di Wang, Jinhui Xu:
Escaping Saddle Points of Empirical Risk Privately and Scalably via DP-Trust Region Method. ECML/PKDD (3) 2020: 90-106 - [e2]Jianer Chen, Qilong Feng, Jinhui Xu:
Theory and Applications of Models of Computation, 16th International Conference, TAMC 2020, Changsha, China, October 18-20, 2020, Proceedings. Lecture Notes in Computer Science 12337, Springer 2020, ISBN 978-3-030-59266-0 [contents] - [i22]Tianhang Zheng, Di Wang, Baochun Li, Jinhui Xu:
Towards Assessment of Randomized Mechanisms for Certifying Adversarial Robustness. CoRR abs/2005.07347 (2020) - [i21]Yufan Zhou, Jiayi Xian, Changyou Chen, Jinhui Xu:
Graph Neural Networks with Composite Kernels. CoRR abs/2005.07869 (2020) - [i20]Yufan Zhou, Changyou Chen, Jinhui Xu:
Learning Manifold Implicitly via Explicit Heat-Kernel Learning. CoRR abs/2010.01761 (2020) - [i19]Di Wang, Xiangyu Guo, Chaowen Guan, Shi Li, Jinhui Xu:
Estimating Stochastic Linear Combination of Non-linear Regressions Efficiently and Scalably. CoRR abs/2010.09265 (2020) - [i18]Di Wang, Xiangyu Guo, Shi Li, Jinhui Xu:
Robust High Dimensional Expectation Maximization Algorithm via Trimmed Hard Thresholding. CoRR abs/2010.09576 (2020) - [i17]Di Wang, Hanshen Xiao, Srini Devadas, Jinhui Xu:
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data. CoRR abs/2010.11082 (2020) - [i16]Di Wang, Jiahao Ding, Zejun Xie, Miao Pan, Jinhui Xu:
Differentially Private (Gradient) Expectation Maximization Algorithm with Statistical Guarantees. CoRR abs/2010.13520 (2020) - [i15]Di Wang, Marco Gaboardi, Adam D. Smith, Jinhui Xu:
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy. CoRR abs/2011.05934 (2020)
2010 – 2019
- 2019
- [j51]Ziyun Huang, Hu Ding, Jinhui Xu:
A Faster Algorithm for Truth Discovery via Range Cover. Algorithmica 81(10): 4118-4133 (2019) - [j50]Di Wang, Jinhui Xu:
Faster constrained linear regression via two-step preconditioning. Neurocomputing 364: 280-296 (2019) - [j49]Haiming Jin, Lu Su, Danyang Chen, Hongpeng Guo, Klara Nahrstedt, Jinhui Xu:
Thanos: Incentive Mechanism with Quality Awareness for Mobile Crowd Sensing. IEEE Trans. Mob. Comput. 18(8): 1951-1964 (2019) - [c100]Di Wang, Jinhui Xu:
Differentially Private Empirical Risk Minimization with Smooth Non-Convex Loss Functions: A Non-Stationary View. AAAI 2019: 1182-1189 - [c99]Di Wang, Adam D. Smith, Jinhui Xu:
Noninteractive Locally Private Learning of Linear Models via Polynomial Approximations. ALT 2019: 897-902 - [c98]Di Wang, Jinhui Xu, Yang He:
Estimating Sparse Covariance Matrix Under Differential Privacy via Thresholding. CISS 2019: 1-5 - [c97]Di Wang, Changyou Chen, Jinhui Xu:
Differentially Private Empirical Risk Minimization with Non-convex Loss Functions. ICML 2019: 6526-6535 - [c96]Di Wang, Jinhui Xu:
On Sparse Linear Regression in the Local Differential Privacy Model. ICML 2019: 6628-6637 - [c95]Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, Aidong Zhang:
Privacy-aware Synthesizing for Crowdsourced Data. IJCAI 2019: 2542-2548 - [c94]Di Wang, Jinhui Xu:
Lower Bound of Locally Differentially Private Sparse Covariance Matrix Estimation. IJCAI 2019: 4788-4794 - [c93]Di Wang, Jinhui Xu:
Principal Component Analysis in the Local Differential Privacy Model. IJCAI 2019: 4795-4801 - [c92]Ziyun Huang, Qilong Feng, Jianxin Wang, Jinhui Xu:
Small Candidate Set for Translational Pattern Search. ISAAC 2019: 26:1-26:17 - [c91]Qilong Feng, Zhen Zhang, Ziyun Huang, Jinhui Xu, Jianxin Wang:
Improved Algorithms for Clustering with Outliers. ISAAC 2019: 61:1-61:12 - [i14]Di Wang, Jinhui Xu:
Differentially Private High Dimensional Sparse Covariance Matrix Estimation. CoRR abs/1901.06413 (2019) - [i13]Di Wang, Huanyu Zhang, Marco Gaboardi, Jinhui Xu:
Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data. CoRR abs/1910.00482 (2019) - [i12]Yufan Zhou, Changyou Chen, Jinhui Xu:
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative Modeling. CoRR abs/1912.00979 (2019) - 2018
- [j48]Hong Zhu, Hanzhi He, Jinhui Xu, Qianhao Fang, Wei Wang:
Medical Image Segmentation Using Fruit Fly Optimization and Density Peaks Clustering. Comput. Math. Methods Medicine 2018: 3052852:1-3052852:11 (2018) - [j47]Zihe Chen, Danyang Chen, Xiangyu Wang, Robert J. Damiano, Hui Meng, Jinhui Xu:
Novel geometric approach for virtual coiling. Theor. Comput. Sci. 734: 3-14 (2018) - [c90]Di Wang, Jinhui Xu:
Large Scale Constrained Linear Regression Revisited: Faster Algorithms via Preconditioning. AAAI 2018: 1439-1446 - [c89]Shi Li, Jinhui Xu, Minwei Ye:
Approximating Global Optimum for Probabilistic Truth Discovery. COCOON 2018: 96-107 - [c88]Di Wang, Mengdi Huai, Jinhui Xu:
Differentially Private Sparse Inverse Covariance Estimation. GlobalSIP 2018: 1139-1143 - [c87]Yufan Zhou, Zheshuo Li, Hong Zhu, Changyou Chen, Mingchen Gao, Kai Xu, Jinhui Xu:
Holistic Brain Tumor Screening and Classification Based on DenseNet and Recurrent Neural Network. BrainLes@MICCAI (1) 2018: 208-217 - [c86]Di Wang, Marco Gaboardi, Jinhui Xu:
Empirical Risk Minimization in Non-interactive Local Differential Privacy Revisited. NeurIPS 2018: 973-982 - [i11]Di Wang, Jinhui Xu:
Large Scale Constrained Linear Regression Revisited: Faster Algorithms via Preconditioning. CoRR abs/1802.03337 (2018) - [i10]Di Wang, Marco Gaboardi, Jinhui Xu:
Efficient Empirical Risk Minimization with Smooth Loss Functions in Non-interactive Local Differential Privacy. CoRR abs/1802.04085 (2018) - [i9]Di Wang, Minwei Ye, Jinhui Xu:
Differentially Private Empirical Risk Minimization Revisited: Faster and More General. CoRR abs/1802.05251 (2018) - [i8]Hu Ding, Jinhui Xu:
A Unified Framework for Clustering Constrained Data without Locality Property. CoRR abs/1810.01049 (2018) - [i7]Di Wang, Adam D. Smith, Jinhui Xu:
Differentially Private Empirical Risk Minimization in Non-interactive Local Model via Polynomial of Inner Product Approximation. CoRR abs/1812.06825 (2018) - 2017
- [j46]Hu Ding, Jinhui Xu:
FPTAS for Minimizing the Earth Mover's Distance Under Rigid Transformations and Related Problems. Algorithmica 78(3): 741-770 (2017) - [j45]Danny Z. Chen, Ziyun Huang, Yangwei Liu, Jinhui Xu:
On Clustering Induced Voronoi Diagrams. SIAM J. Comput. 46(6): 1679-1711 (2017) - [c85]Yangwei Liu, Hu Ding, Danyang Chen, Jinhui Xu:
Novel Geometric Approach for Global Alignment of PPI Networks. AAAI 2017: 31-37 - [c84]