Xiaojin Zhu 0001
Xiaojin (Jerry) Zhu
Person information
- affiliation: University of Wisconsin-Madison, Department of Computer Sciences, WI, USA
Other persons with the same name
- Xiaojin Zhu
- Xiaojin Zhu 0002 — Shanghai University, School of Mechatronics Engineering and Automation, China
- Xiaojin Zhu 0003 — Chinese Academy of Sciences, Institute of Computing Technology, Beijing, China
- Xiaojin Zhu 0004 — Xidian University, Department of Computer Science, Xi'an, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2010 – today
- 2018
- [c93]Xuezhou Zhang, Xiaojin Zhu, Stephen J. Wright:
Training Set Debugging Using Trusted Items. AAAI 2018: 4482-4489 - [c92]Yuzhe Ma, Robert Nowak, Philippe Rigollet, Xuezhou Zhang, Xiaojin Zhu:
Teacher Improves Learning by Selecting a Training Subset. AISTATS 2018: 1366-1375 - [c91]Felice Resnik, Amy Bellmore, Xiaojin (Jerry) Zhu, Wei Zhang:
Using Machine Learning to Understand Changes in How Youth Discuss Bullying With Celebrities on Social Media. APAScience 2018: 34:1 - [c90]Shalini Ghosh, Susmit Jha, Ashish Tiwari, Patrick Lincoln, Xiaojin Zhu:
Model, Data and Reward Repair: Trusted Machine Learning for Markov Decision Processes. DSN Workshops 2018: 194-199 - [c89]Ayon Sen, Purav Patel, Martina A. Rau, Blake Mason, Robert Nowak, Timothy T. Rogers, Xiaojin Zhu:
Machine Beats Human at Sequencing Visuals for Perceptual-Fluency Practice. EDM 2018 - [c88]Ayon Sen, Scott Alfeld, Xuezhou Zhang, Ara Vartanian, Yuzhe Ma, Xiaojin Zhu:
Training Set Camouflage. GameSec 2018: 59-79 - [c87]Yuzhe Ma, Kwang-Sung Jun, Lihong Li, Xiaojin Zhu:
Data Poisoning Attacks in Contextual Bandits. GameSec 2018: 186-204 - [c86]Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin (Jerry) Zhu:
Adversarial Attacks on Stochastic Bandits. NeurIPS 2018: 3644-3653 - [i17]Xiaojin Zhu, Adish Singla, Sandra Zilles, Anna N. Rafferty:
An Overview of Machine Teaching. CoRR abs/1801.05927 (2018) - [i16]Xuezhou Zhang, Xiaojin Zhu, Stephen J. Wright:
Training Set Debugging Using Trusted Items. CoRR abs/1801.08019 (2018) - [i15]Yuzhe Ma, Robert Nowak, Philippe Rigollet, Xuezhou Zhang, Xiaojin Zhu:
Teacher Improves Learning by Selecting a Training Subset. CoRR abs/1802.08946 (2018) - [i14]Evan Hernandez, Ara Vartanian, Xiaojin Zhu:
Program Synthesis from Visual Specification. CoRR abs/1806.00938 (2018) - [i13]Yuzhe Ma, Kwang-Sung Jun, Lihong Li, Xiaojin Zhu:
Data Poisoning Attacks in Contextual Bandits. CoRR abs/1808.05760 (2018) - [i12]Wei Zhang, Fan Bu, Derek Owens-Oas, Katherine Heller, Xiaojin Zhu:
Learning Root Source with Marked Multivariate Hawkes Processes. CoRR abs/1809.03648 (2018) - [i11]Laurent Lessard, Xuezhou Zhang, Xiaojin Zhu:
An Optimal Control Approach to Sequential Machine Teaching. CoRR abs/1810.06175 (2018) - [i10]Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu:
Adversarial Attacks on Stochastic Bandits. CoRR abs/1810.12188 (2018) - [i9]
- [i8]Ayon Sen, Scott Alfeld, Xuezhou Zhang, Ara Vartanian, Yuzhe Ma, Xiaojin Zhu:
Training Set Camouflage. CoRR abs/1812.05725 (2018) - 2017
- [j8]Vraj Shah, Arun Kumar, Xiaojin Zhu:
Are Key-Foreign Key Joins Safe to Avoid when Learning High-Capacity Classifiers? PVLDB 11(3): 366-379 (2017) - [c85]Scott Alfeld, Xiaojin Zhu, Paul Barford:
Explicit Defense Actions Against Test-Set Attacks. AAAI 2017: 1274-1280 - [c84]Shalini Ghosh, Patrick Lincoln, Ashish Tiwari, Xiaojin Zhu:
Trusted Machine Learning: Model Repair and Data Repair for Probabilistic Models. AAAI Workshops 2017 - [c83]Xiaojin Zhu, Ji Liu, Manuel Lopes:
No Learner Left Behind: On the Complexity of Teaching Multiple Learners Simultaneously. IJCAI 2017: 3588-3594 - [c82]Paul N. Bennett, David Maxwell Chickering, Christopher Meek, Xiaojin Zhu:
Algorithms for Active Classifier Selection: Maximizing Recall with Precision Constraints. WSDM 2017: 711-719 - [e1]Aarti Singh, Xiaojin (Jerry) Zhu:
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Proceedings of Machine Learning Research 54, PMLR 2017 [contents] - [r2]Xiaojin Zhu:
Semi-supervised Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1142-1147 - [i7]Vraj Shah, Arun Kumar, Xiaojin Zhu:
Stop That Join! Discarding Dimension Tables when Learning High Capacity Classifiers. CoRR abs/1704.00485 (2017) - [i6]Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause, Susmit Jha:
Machine Learning and Formal Method (Dagstuhl Seminar 17351). Dagstuhl Reports 7(8): 55-73 (2017) - 2016
- [j7]Ji Liu, Xiaojin Zhu:
The Teaching Dimension of Linear Learners. Journal of Machine Learning Research 17: 162:1-162:25 (2016) - [c81]Scott Alfeld, Xiaojin Zhu, Paul Barford:
Data Poisoning Attacks against Autoregressive Models. AAAI 2016: 1452-1458 - [c80]Kwang-Sung Jun, Kevin G. Jamieson, Robert D. Nowak, Xiaojin Zhu:
Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls. AISTATS 2016: 139-148 - [c79]Ji Liu, Xiaojin Zhu, Hrag Ohannessian:
The Teaching Dimension of Linear Learners. ICML 2016: 117-126 - [c78]Jina Suh, Xiaojin Zhu, Saleema Amershi:
The Label Complexity of Mixed-Initiative Classifier Training. ICML 2016: 2800-2809 - [c77]Xiaojin Zhu, Ara Vartanian, Manish Bansal, Duy Nguyen, Luke Brandl:
Stochastic Multiresolution Persistent Homology Kernel. IJCAI 2016: 2449-2457 - [c76]Tzu-Kuo Huang, Lihong Li, Ara Vartanian, Saleema Amershi, Xiaojin Zhu:
Active Learning with Oracle Epiphany. NIPS 2016: 2820-2828 - [c75]Arun Kumar, Jeffrey F. Naughton, Jignesh M. Patel, Xiaojin Zhu:
To Join or Not to Join?: Thinking Twice about Joins before Feature Selection. SIGMOD Conference 2016: 19-34 - [c74]
- [i5]Christopher Meek, Patrice Y. Simard, Xiaojin Zhu:
Analysis of a Design Pattern for Teaching with Features and Labels. CoRR abs/1611.05950 (2016) - 2015
- [j6]Amy Bellmore, Angela J. Calvin, Jun-Ming Xu, Xiaojin Zhu:
The five W's of "bullying" on Twitter: Who, What, Why, Where, and When. Computers in Human Behavior 44: 305-314 (2015) - [c73]
- [c72]Xiaojin Zhu:
Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education. AAAI 2015: 4083-4087 - [c71]
- [c70]Bryan R. Gibson, Timothy T. Rogers, Chuck Kalish, Xiaojin Zhu:
What causes category-shifting in human semi-supervised learning? CogSci 2015 - [c69]Gautam Dasarathy, Robert D. Nowak, Xiaojin Zhu:
S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification. COLT 2015: 503-522 - [c68]Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, Xiaojin Zhu:
Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance. MICRO 2015: 725-737 - [c67]Kwang-Sung Jun, Xiaojin Zhu, Timothy T. Rogers, Zhuoran Yang, Ming Yuan:
Human Memory Search as Initial-Visit Emitting Random Walk. NIPS 2015: 1072-1080 - [i4]Gautam Dasarathy, Robert D. Nowak, Xiaojin Zhu:
S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification. CoRR abs/1506.08760 (2015) - [i3]
- 2014
- [j5]Mark W. Liu, Mutlu Ozdogan, Xiaojin Zhu:
Crop Type Classification by Simultaneous Use of Satellite Images of Different Resolutions. IEEE Trans. Geoscience and Remote Sensing 52(6): 3637-3649 (2014) - [c66]Shike Mei, Han Li, Jing Fan, Xiaojin Zhu, Charles R. Dyer:
Inferring air pollution by sniffing social media. ASONAM 2014: 534-539 - [c65]Jun-Ming Xu, Hsun-Chih Huang, Amy Bellmore, Xiaojin Zhu:
School Bullying in Twitter and Weibo: A Comparative Study. ICWSM 2014 - [c64]Kaustubh R. Patil, Xiaojin Zhu, Lukasz Kopec, Bradley C. Love:
Optimal Teaching for Limited-Capacity Human Learners. NIPS 2014: 2465-2473 - [c63]Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Rampalli, Jude W. Shavlik, Xiaojin Zhu:
Corleone: hands-off crowdsourcing for entity matching. SIGMOD Conference 2014: 601-612 - 2013
- [j4]Bryan R. Gibson, Timothy T. Rogers, Xiaojin Zhu:
Human Semi-Supervised Learning. topiCS 5(1): 132-172 (2013) - [c62]Kwang-Sung Jun, Xiaojin (Jerry) Zhu, Burr Settles, Timothy T. Rogers:
Learning from Human-Generated Lists. ICML (3) 2013: 181-189 - [c61]Xiaojin Zhu:
Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing. IJCAI 2013: 1953-1959 - [c60]Jun-Ming Xu, Aniruddha Bhargava, Robert D. Nowak, Xiaojin Zhu:
Socioscope: Spatio-Temporal Signal Recovery from Social Media (Extended Abstract). IJCAI 2013: 3096-3100 - [c59]Jun-Ming Xu, Benjamin Burchfiel, Xiaojin Zhu, Amy Bellmore:
An Examination of Regret in Bullying Tweets. HLT-NAACL 2013: 697-702 - [c58]
- [i2]
- 2012
- [j3]Jun-Ming Xu, Xiaojin Zhu, Timothy T. Rogers:
Metric Learning for Estimating Psychological Similarities. ACM TIST 3(3): 55:1-55:22 (2012) - [c57]Xiaojin Zhu, Xu Zhang, Hui Wang, Chunchan Li, Lili Yan, Qingkai Liu, Zhaohui Ren:
Research on peripheral nerve conduction block by high frequency alternating current stimulation. BMEI 2012: 582-586 - [c56]Qian Dong, Guoqing Chen, Qingkai Liu, Zhaohui Ren, Dewu Yang, Nan Cui, Xiaojin Zhu, Xu Zhang:
Analysis of functional restoration of the lower urinary tract after spinal cord injury using functional electrical stimulation on pudendal nerve. BMEI 2012: 716-720 - [c55]Burr Settles, Xiaojin Zhu:
Behavioral Factors in Interactive Training of Text Classifiers. HLT-NAACL 2012: 563-567 - [c54]Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, Amy Bellmore:
Learning from Bullying Traces in Social Media. HLT-NAACL 2012: 656-666 - [c53]Jun-Ming Xu, Aniruddha Bhargava, Robert D. Nowak, Xiaojin Zhu:
Socioscope: Spatio-temporal Signal Recovery from Social Media. ECML/PKDD (2) 2012: 644-659 - [i1]Jun-Ming Xu, Aniruddha Bhargava, Robert D. Nowak, Xiaojin Zhu:
Robust Spatio-Temporal Signal Recovery from Noisy Counts in Social Media. CoRR abs/1204.2248 (2012) - 2011
- [c52]Andrew B. Goldberg, Xiaojin Zhu, Alex Furger, Jun-Ming Xu:
OASIS: Online Active Semi-Supervised Learning. AAAI 2011 - [c51]Xiaojin Zhu, Bryan R. Gibson, Timothy T. Rogers:
Co-Training as a Human Collaboration Policy. AAAI 2011 - [c50]Chen Yu, Jun-Ming Xu, Xiaojin Zhu:
Word Learning through Sensorimotor Child-Parent Interaction: A Feature Selection Approach. CogSci 2011 - [c49]Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller:
Who Wrote This Code? Identifying the Authors of Program Binaries. ESORICS 2011: 172-189 - [c48]David Andrzejewski, Xiaojin Zhu, Mark Craven, Benjamin Recht:
A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation Using First-Order Logic. IJCAI 2011: 1171-1177 - [c47]Mariyam Mirza, Paul Barford, Xiaojin Zhu, Suman Banerjee, Michael Blodgett:
Fingerprinting 802.11 rate adaption algorithms. INFOCOM 2011: 1161-1169 - [c46]Nathan E. Rosenblum, Barton P. Miller, Xiaojin Zhu:
Recovering the toolchain provenance of binary code. ISSTA 2011: 100-110 - [c45]Shilin Ding, Grace Wahba, Xiaojin (Jerry) Zhu:
Learning Higher-Order Graph Structure with Features by Structure Penalty. NIPS 2011: 253-261 - [c44]Faisal Khan, Xiaojin (Jerry) Zhu, Bilge Mutlu:
How Do Humans Teach: On Curriculum Learning and Teaching Dimension. NIPS 2011: 1449-1457 - 2010
- [j2]Mariyam Mirza, Joel Sommers, Paul Barford, Xiaojin Zhu:
A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Trans. Netw. 18(4): 1026-1039 (2010) - [c43]Xiaojin Zhu, Bryan R. Gibson, Kwang-Sung Jun, Timothy T. Rogers, Joseph Harrison, Chuck Kalish:
Cognitive Models of Test-Item Effects in Human Category Learning. ICML 2010: 1247-1254 - [c42]Bryan R. Gibson, Xiaojin Zhu, Timothy T. Rogers, Chuck Kalish, Joseph Harrison:
Humans Learn Using Manifolds, Reluctantly. NIPS 2010: 730-738 - [c41]Andrew B. Goldberg, Xiaojin Zhu, Ben Recht, Jun-Ming Xu, Robert D. Nowak:
Transduction with Matrix Completion: Three Birds with One Stone. NIPS 2010: 757-765 - [c40]Nathan E. Rosenblum, Barton P. Miller, Xiaojin Zhu:
Extracting compiler provenance from program binaries. PASTE 2010: 21-28 - [r1]
2000 – 2009
- 2009
- [b1]Xiaojin Zhu, Andrew B. Goldberg:
Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2009 - [c39]Xiaojin Zhu, Andrew B. Goldberg, Tushar Khot:
Some new directions in graph-based semi-supervised learning. ICME 2009: 1504-1507 - [c38]David Andrzejewski, Xiaojin Zhu, Mark Craven:
Incorporating domain knowledge into topic modeling via Dirichlet Forest priors. ICML 2009: 25-32 - [c37]Andrew B. Goldberg, Nathanael Fillmore, David Andrzejewski, Zhiting Xu, Bryan R. Gibson, Xiaojin Zhu:
May All Your Wishes Come True: A Study of Wishes and How to Recognize Them. HLT-NAACL 2009: 263-271 - [c36]
- [c35]Mariyam Mirza, Kevin Springborn, Suman Banerjee, Paul Barford, Michael Blodgett, Xiaojin Zhu:
On The Accuracy of TCP Throughput Prediction for Opportunistic Wireless Networks. SECON 2009: 1-9 - [c34]Andrew B. Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, Robert D. Nowak:
Multi-Manifold Semi-Supervised Learning. AISTATS 2009: 169-176 - 2008
- [c33]Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller, Karen Hunt:
Learning to Analyze Binary Computer Code. AAAI 2008: 798-804 - [c32]Xiaojin Zhu, Michael Coen, Shelley Prudom, Ricki Colman, Joseph Kemnitz:
Online Learning in Monkeys. AAAI 2008: 1506-1507 - [c31]John Blitzer, Xiaojin Zhu:
Semi-Supervised Learning for Natural Language Processing. ACL (Tutorial Abstracts) 2008: 3 - [c30]Xiaojin Zhu, Andrew B. Goldberg, Michael Rabbat, Robert D. Nowak:
Learning Bigrams from Unigrams. ACL 2008: 656-664 - [c29]Andrew B. Goldberg, Xiaojin Zhu, Charles R. Dyer, Mohamed Eldawy, Lijie Heng:
Easy as ABC? Facilitating Pictorial Communication via Semantically Enhanced Layout. CoNLL 2008: 119-126 - [c28]Pedro DeRose, Xiaoyong Chai, Byron J. Gao, Warren Shen, AnHai Doan, Philip Bohannon, Xiaojin Zhu:
Building Community Wikipedias: A Machine-Human Partnership Approach. ICDE 2008: 646-655 - [c27]Rui M. Castro, Charles Kalish, Robert D. Nowak, Ruichen Qian, Timothy T. Rogers, Xiaojin Zhu:
Human Active Learning. NIPS 2008: 241-248 - [c26]Aarti Singh, Robert D. Nowak, Xiaojin Zhu:
Unlabeled data: Now it helps, now it doesn't. NIPS 2008: 1513-1520 - [c25]Andrew B. Goldberg, Ming Li, Xiaojin Zhu:
Online Manifold Regularization: A New Learning Setting and Empirical Study. ECML/PKDD (1) 2008: 393-407 - 2007
- [c24]
- [c23]Xiaojin Zhu, Timothy T. Rogers, Ruichen Qian, Chuck Kalish:
Humans Perform Semi-Supervised Classification Too. AAAI 2007: 864-870 - [c22]Xiaojin Zhu, Andrew B. Goldberg, Mohamed Eldawy, Charles R. Dyer, Bradley Strock:
A Text-to-Picture Synthesis System for Augmenting Communication. AAAI 2007: 1590-1596 - [c21]David Andrzejewski, Anne Mulhern, Ben Liblit, Xiaojin Zhu:
Statistical Debugging Using Latent Topic Models. ECML 2007: 6-17 - [c20]Jordan L. Boyd-Graber, David M. Blei, Xiaojin Zhu:
A Topic Model for Word Sense Disambiguation. EMNLP-CoNLL 2007: 1024-1033 - [c19]Jurgen Van Gael, Xiaojin Zhu:
Correlation Clustering for Crosslingual Link Detection. IJCAI 2007: 1744-1749 - [c18]Gregory Druck, Chris Pal, Andrew McCallum, Xiaojin Zhu:
Semi-supervised classification with hybrid generative/discriminative methods. KDD 2007: 280-289 - [c17]Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van Gael, David Andrzejewski:
Improving Diversity in Ranking using Absorbing Random Walks. HLT-NAACL 2007: 97-104 - [c16]Mariyam Mirza, Joel Sommers, Paul Barford, Xiaojin Zhu:
A machine learning approach to TCP throughput prediction. SIGMETRICS 2007: 97-108 - [c15]Andrew B. Goldberg, Xiaojin Zhu, Stephen J. Wright:
Dissimilarity in Graph-Based Semi-Supervised Classification. AISTATS 2007: 155-162 - 2006
- [c14]Andrew B. Goldberg, David Andrzejewski, Jurgen Van Gael, Burr Settles, Xiaojin Zhu, Mark Craven:
Ranking Biomedical Passages for Relevance and Diversity: University of Wisconsin, Madison at TREC Genomics 2006. TREC 2006 - 2005
- [c13]Xiaojin Zhu, John D. Lafferty:
Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. ICML 2005: 1052-1059 - 2004
- [c12]John D. Lafferty, Xiaojin Zhu, Yan Liu:
Kernel conditional random fields: representation and clique selection. ICML 2004 - [c11]Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, John D. Lafferty:
Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning. NIPS 2004: 1641-1648 - 2003
- [c10]Xiaojin Zhu, Zoubin Ghahramani, John D. Lafferty:
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. ICML 2003: 912-919 - 2001
- [j1]Ronald Rosenfeld, Stanley F. Chen, Xiaojin Zhu:
Whole-sentence exponential language models: a vehicle for linguistic-statistical integration. Computer Speech & Language 15(1): 55-73 (2001) - [c9]Stefanie Shriver, Arthur R. Toth, Xiaojin Zhu, Alexander I. Rudnicky, Roni Rosenfeld:
A unified design for human-machine voice interaction. CHI Extended Abstracts 2001: 247-248 - [c8]Xiaojin Zhu, Ronald Rosenfeld:
Improving trigram language modeling with the World Wide Web. ICASSP 2001: 533-536 - [c7]Stefanie Shriver, Roni Rosenfeld, Xiaojin Zhu, Arthur R. Toth, Alexander I. Rudnicky, Markus Flueckiger:
Universalizing speech: notes from the USI project. INTERSPEECH 2001: 1563-1566 - 2000
- [c6]
- [c5]Ralph Gross, Michael Bett, Hua Yu, Xiaojin Zhu, Yue Pan, Jie Yang, Alex Waibel:
Towards a Multimodal Meeting Record. IEEE International Conference on Multimedia and Expo (III) 2000: 1593-1596 - [c4]Roni Rosenfeld, Xiaojin Zhu, Arthur R. Toth, Stefanie Shriver, Kevin A. Lenzo, Alan W. Black:
Towards a universal speech interface. INTERSPEECH 2000: 102-105 - [c3]Michael Bett, Ralph Gross, Hua Yu, Xiaojin Zhu, Yue Pan, Jie Yang, Alex Waibel:
Multimodal Meeting Tracker. RIAO 2000: 32-45
1990 – 1999
- 1999
- [c2]Xiaojin Zhu, Stanley F. Chen, Ronald Rosenfeld:
Linguistic features for whole sentence maximum entropy language models. EUROSPEECH 1999 - [c1]Jie Yang, Xiaojin Zhu, Ralph Gross, John Kominek, Yue Pan, Alex Waibel:
Multimodal people ID for a multimedia meeting browser. ACM Multimedia (1) 1999: 159-168