default search action
Yudong Chen 0001
Person information
- affiliation: University of Wisconsin-Madison, Madison, WI, USA
- affiliation: Cornell University, School of Operations Research and Information Engineering, Ithaca, NY, USA
- affiliation: University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, CA, USA
- affiliation: University of Texas at Austin, Department of Electrical and Computer Engineering, TX, USA
Other persons with the same name
- Yudong Chen (aka: Yu-Dong Chen) — disambiguation page
- Yudong Chen 0002 — Shenzhen University, College of Computer Science and Software Engineering, Shenzhen, China
- Yudong Chen 0003 — Tsinghua University, Beijing, China (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j31]Yudong Chen, Dogyoon Song, Xumei Xi, Yuqian Zhang:
Local Minima Structures in Gaussian Mixture Models. IEEE Trans. Inf. Theory 70(6): 4218-4257 (2024) - [j30]Jeongyeol Kwon, Wei Qian, Yudong Chen, Constantine Caramanis, Damek Davis, Nhat Ho:
Global Optimality of the EM Algorithm for Mixtures of Two-Component Linear Regressions. IEEE Trans. Inf. Theory 70(9): 6519-6546 (2024) - [c42]Dongyan Lucy Huo, Yudong Chen, Qiaomin Xie:
Effectiveness of Constant Stepsize in Markovian LSA and Statistical Inference. AAAI 2024: 20447-20455 - [c41]Emmanouil-Vasileios Vlatakis-Gkaragkounis, Angeliki Giannou, Yudong Chen, Qiaomin Xie:
Stochastic Methods in Variational Inequalities: Ergodicity, Bias and Refinements. AISTATS 2024: 4123-4131 - [c40]Brahma S. Pavse, Matthew Zurek, Yudong Chen, Qiaomin Xie, Josiah P. Hanna:
Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces. ICML 2024 - [c39]Young Wu, Jeremy McMahan, Yiding Chen, Yudong Chen, Jerry Zhu, Qiaomin Xie:
Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value. ICML 2024 - [c38]Yixuan Zhang, Dongyan Lucy Huo, Yudong Chen, Qiaomin Xie:
Prelimit Coupling and Steady-State Convergence of Constant-stepsize Nonsmooth Contractive SA. SIGMETRICS/Performance (Abstracts) 2024: 35-36 - [i56]Yige Hong, Qiaomin Xie, Yudong Chen, Weina Wang:
Unichain and Aperiodicity are Sufficient for Asymptotic Optimality of Average-Reward Restless Bandits. CoRR abs/2402.05689 (2024) - [i55]Xumei Xi, Christina Lee Yu, Yudong Chen:
Entry-Specific Bounds for Low-Rank Matrix Completion under Highly Non-Uniform Sampling. CoRR abs/2403.00184 (2024) - [i54]Yixuan Zhang, Dongyan Huo, Yudong Chen, Qiaomin Xie:
Prelimit Coupling and Steady-State Convergence of Constant-stepsize Nonsmooth Contractive SA. CoRR abs/2404.06023 (2024) - [i53]Dongyan Huo, Yixuan Zhang, Yudong Chen, Qiaomin Xie:
The Collusion of Memory and Nonlinearity in Stochastic Approximation With Constant Stepsize. CoRR abs/2405.16732 (2024) - [i52]Yige Hong, Qiaomin Xie, Yudong Chen, Weina Wang:
When is exponential asymptotic optimality achievable in average-reward restless bandits? CoRR abs/2405.17882 (2024) - [i51]Jeremy McMahan, Young Wu, Yudong Chen, Xiaojin Zhu, Qiaomin Xie:
Inception: Efficiently Computable Misinformation Attacks on Markov Games. CoRR abs/2406.17114 (2024) - 2023
- [j29]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. Math. Oper. Res. 48(1): 433-462 (2023) - [j28]Tyler Sam, Yudong Chen, Christina Lee Yu:
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure. Proc. ACM Meas. Anal. Comput. Syst. 7(2): 29:1-29:60 (2023) - [j27]Tyler Sam, Yudong Chen, Christina Lee Yu:
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure. SIGMETRICS Perform. Evaluation Rev. 50(4): 41-43 (2023) - [j26]Liwei Jiang, Yudong Chen, Lijun Ding:
Algorithmic Regularization in Model-Free Overparametrized Asymmetric Matrix Factorization. SIAM J. Math. Data Sci. 5(3): 723-744 (2023) - [c37]Xumei Xi, Christina Lee Yu, Yudong Chen:
Entry-Specific Bounds for Low-Rank Matrix Completion under Highly Non-Uniform Sampling. ISIT 2023: 2625-2630 - [c36]Yige Hong, Qiaomin Xie, Yudong Chen, Weina Wang:
Restless Bandits with Average Reward: Breaking the Uniform Global Attractor Assumption. NeurIPS 2023 - [c35]Dongyan Lucy Huo, Yudong Chen, Qiaomin Xie:
Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. SIGMETRICS (Abstracts) 2023: 81-82 - [c34]Tyler Sam, Yudong Chen, Christina Lee Yu:
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure. SIGMETRICS (Abstracts) 2023: 85-86 - [i50]Xumei Xi, Christina Lee Yu, Yudong Chen:
Matrix Estimation for Offline Reinforcement Learning with Low-Rank Structure. CoRR abs/2305.15621 (2023) - [i49]Yige Hong, Qiaomin Xie, Yudong Chen, Weina Wang:
Restless Bandits with Average Reward: Breaking the Uniform Global Attractor Assumption. CoRR abs/2306.00196 (2023) - [i48]Brahma S. Pavse, Yudong Chen, Qiaomin Xie, Josiah P. Hanna:
Tackling Unbounded State Spaces in Continuing Task Reinforcement Learning. CoRR abs/2306.01896 (2023) - [i47]Emmanouil V. Vlatakis-Gkaragkounis, Angeliki Giannou, Yudong Chen, Qiaomin Xie:
Stochastic Methods in Variational Inequalities: Ergodicity, Bias and Refinements. CoRR abs/2306.16502 (2023) - [i46]Jeremy McMahan, Young Wu, Yudong Chen, Xiaojin Zhu, Qiaomin Xie:
VISER: A Tractable Solution Concept for Games with Information Asymmetry. CoRR abs/2307.09652 (2023) - [i45]Young Wu, Jeremy McMahan, Yiding Chen, Yudong Chen, Xiaojin Zhu, Qiaomin Xie:
Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value. CoRR abs/2311.00582 (2023) - [i44]Dongyan Huo, Yudong Chen, Qiaomin Xie:
Effectiveness of Constant Stepsize in Markovian LSA and Statistical Inference. CoRR abs/2312.10894 (2023) - 2022
- [j25]Yingjie Fei, Yudong Chen:
Hidden Integrality and Semirandom Robustness of SDP Relaxation for Sub-Gaussian Mixture Model. Math. Oper. Res. 47(3): 2464-2493 (2022) - [j24]Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan A. K. Suykens:
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 44(10): 7128-7148 (2022) - [j23]Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan A. K. Suykens:
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 7975-7988 (2022) - [j22]Wei Qian, Yuqian Zhang, Yudong Chen:
Structures of Spurious Local Minima in k-Means. IEEE Trans. Inf. Theory 68(1): 395-422 (2022) - [i43]Liwei Jiang, Yudong Chen, Lijun Ding:
Algorithmic Regularization in Model-free Overparametrized Asymmetric Matrix Factorization. CoRR abs/2203.02839 (2022) - [i42]Tyler Sam, Yudong Chen, Christina Lee Yu:
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure. CoRR abs/2206.03569 (2022) - [i41]Dongyan Huo, Yudong Chen, Qiaomin Xie:
Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. CoRR abs/2210.00953 (2022) - 2021
- [j21]Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Díaz, Lijun Ding, Dmitriy Drusvyatskiy:
Low-Rank Matrix Recovery with Composite Optimization: Good Conditioning and Rapid Convergence. Found. Comput. Math. 21(6): 1505-1593 (2021) - [c33]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. NeurIPS 2021: 20436-20446 - [c32]Lijun Ding, Liwei Jiang, Yudong Chen, Qing Qu, Zhihui Zhu:
Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery. NeurIPS 2021: 26767-26778 - [i40]Lijun Ding, Liwei Jiang, Yudong Chen, Qing Qu, Zhihui Zhu:
Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery. CoRR abs/2109.11154 (2021) - [i39]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. CoRR abs/2111.03947 (2021) - 2020
- [j20]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4): 925-938 (2020) - [j19]Yingjie Fei, Yudong Chen:
Achieving the Bayes Error Rate in Synchronization and Block Models by SDP, Robustly. IEEE Trans. Inf. Theory 66(6): 3929-3953 (2020) - [j18]Lijun Ding, Yudong Chen:
Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis. IEEE Trans. Inf. Theory 66(11): 7274-7301 (2020) - [c31]Fanghui Liu, Xiaolin Huang, Yudong Chen, Jie Yang, Johan A. K. Suykens:
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling. AAAI 2020: 4844-4851 - [c30]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. COLT 2020: 3674-3682 - [c29]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, Qiaomin Xie:
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret. NeurIPS 2020 - [i38]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. CoRR abs/2002.07066 (2020) - [i37]Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan A. K. Suykens:
Random Features for Kernel Approximation: A Survey in Algorithms, Theory, and Beyond. CoRR abs/2004.11154 (2020) - [i36]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, Qiaomin Xie:
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret. CoRR abs/2006.13827 (2020) - [i35]Lijun Ding, Yuqian Zhang, Yudong Chen:
Low-rank matrix recovery with non-quadratic loss: projected gradient method and regularity projection oracle. CoRR abs/2008.13777 (2020) - [i34]Yudong Chen, Xumei Xi:
Likelihood Landscape and Local Minima Structures of Gaussian Mixture Models. CoRR abs/2009.13040 (2020) - [i33]Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan A. K. Suykens:
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines. CoRR abs/2011.01668 (2020)
2010 – 2019
- 2019
- [j17]Yingjie Fei, Yudong Chen:
Exponential Error Rates of SDP for Block Models: Beyond Grothendieck's Inequality. IEEE Trans. Inf. Theory 65(1): 551-571 (2019) - [j16]Dong Yin, Ramtin Pedarsani, Yudong Chen, Kannan Ramchandran:
Learning Mixtures of Sparse Linear Regressions Using Sparse Graph Codes. IEEE Trans. Inf. Theory 65(3): 1430-1451 (2019) - [c28]Yingjie Fei, Yudong Chen:
Achieving the Bayes Error Rate in Stochastic Block Model by SDP, Robustly. COLT 2019: 1235-1269 - [c27]Jeongyeol Kwon, Wei Qian, Constantine Caramanis, Yudong Chen, Damek Davis:
Global Convergence of the EM Algorithm for Mixtures of Two Component Linear Regression. COLT 2019: 2055-2110 - [c26]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning. ICML 2019: 7074-7084 - [c25]Jicong Fan, Lijun Ding, Yudong Chen, Madeleine Udell:
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery. NeurIPS 2019: 5105-5115 - [i32]Yingjie Fei, Yudong Chen:
Achieving the Bayes Error Rate in Synchronization and Block Models by SDP, Robustly. CoRR abs/1904.09635 (2019) - [i31]Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Díaz, Lijun Ding, Dmitriy Drusvyatskiy:
Low-rank matrix recovery with composite optimization: good conditioning and rapid convergence. CoRR abs/1904.10020 (2019) - [i30]Xin Qian, Yudong Chen, Andreea Minca:
Clustering Degree-Corrected Stochastic Block Model with Outliers. CoRR abs/1906.03305 (2019) - [i29]Jicong Fan, Lijun Ding, Yudong Chen, Madeleine Udell:
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery. CoRR abs/1911.05774 (2019) - [i28]Fanghui Liu, Xiaolin Huang, Yudong Chen, Jie Yang, Johan A. K. Suykens:
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling. CoRR abs/1911.09158 (2019) - 2018
- [j15]Yudong Chen, Yuejie Chi:
Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation: Recent Theory and Fast Algorithms via Convex and Nonconvex Optimization. IEEE Signal Process. Mag. 35(4): 14-31 (2018) - [j14]Yudong Chen, Xinyang Yi, Constantine Caramanis:
Convex and Nonconvex Formulations for Mixed Regression With Two Components: Minimax Optimal Rates. IEEE Trans. Inf. Theory 64(3): 1738-1766 (2018) - [c24]Yingjie Fei, Yudong Chen:
Hidden Integrality of SDP Relaxations for Sub-Gaussian Mixture Models. COLT 2018: 1931-1965 - [c23]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. ICML 2018: 5636-5645 - [c22]Yudong Chen, Lili Su, Jiaming Xu:
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent. SIGMETRICS (Abstracts) 2018: 96 - [i27]Yudong Chen, Yuejie Chi:
Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation. CoRR abs/1802.08397 (2018) - [i26]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. CoRR abs/1803.01498 (2018) - [i25]Yingjie Fei, Yudong Chen:
Hidden Integrality of SDP Relaxation for Sub-Gaussian Mixture Models. CoRR abs/1803.06510 (2018) - [i24]Lijun Ding, Yudong Chen:
The Leave-one-out Approach for Matrix Completion: Primal and Dual Analysis. CoRR abs/1803.07554 (2018) - [i23]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis with A New Tensor Nuclear Norm. CoRR abs/1804.03728 (2018) - [i22]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning. CoRR abs/1806.05358 (2018) - [i21]Xiaodong Li, Yudong Chen, Jiaming Xu:
Convex Relaxation Methods for Community Detection. CoRR abs/1810.00315 (2018) - 2017
- [j13]Shiau Hong Lim, Yudong Chen, Huan Xu:
Clustering from General Pairwise Observations with Applications to Time-varying Graphs. J. Mach. Learn. Res. 18: 49:1-49:47 (2017) - [j12]Yudong Chen, Lili Su, Jiaming Xu:
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent. Proc. ACM Meas. Anal. Comput. Syst. 1(2): 44:1-44:25 (2017) - [c21]Dong Yin, Ramtin Pedarsani, Yudong Chen, Kannan Ramchandran:
Learning mixtures of sparse linear regressions using sparse graph codes. Allerton 2017: 588-595 - [i20]Dong Yin, Ramtin Pedarsani, Yudong Chen, Kannan Ramchandran:
Learning Mixtures of Sparse Linear Regressions Using Sparse Graph Codes. CoRR abs/1703.00641 (2017) - [i19]Yudong Chen, Lili Su, Jiaming Xu:
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent. CoRR abs/1705.05491 (2017) - [i18]Yingjie Fei, Yudong Chen:
Exponential error rates of SDP for block models: Beyond Grothendieck's inequality. CoRR abs/1705.08391 (2017) - [i17]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. CoRR abs/1708.04181 (2017) - 2016
- [j11]Yudong Chen, Jiaming Xu:
Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices. J. Mach. Learn. Res. 17: 27:1-27:57 (2016) - [j10]Yudong Chen, Huan Xu, Constantine Caramanis, Sujay Sanghavi:
Matrix Completion With Column Manipulation: Near-Optimal Sample-Robustness-Rank Tradeoffs. IEEE Trans. Inf. Theory 62(1): 503-526 (2016) - [c20]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. CVPR 2016: 5249-5257 - [c19]Xinyang Yi, Dohyung Park, Yudong Chen, Constantine Caramanis:
Fast Algorithms for Robust PCA via Gradient Descent. NIPS 2016: 4152-4160 - [i16]Xinyang Yi, Dohyung Park, Yudong Chen, Constantine Caramanis:
Fast Algorithms for Robust PCA via Gradient Descent. CoRR abs/1605.07784 (2016) - 2015
- [j9]Nir Ailon, Yudong Chen, Huan Xu:
Iterative and active graph clustering using trace norm minimization without cluster size constraints. J. Mach. Learn. Res. 16: 455-490 (2015) - [j8]Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel A. Ward:
Completing any low-rank matrix, provably. J. Mach. Learn. Res. 16: 2999-3034 (2015) - [j7]Yudong Chen:
Incoherence-Optimal Matrix Completion. IEEE Trans. Inf. Theory 61(5): 2909-2923 (2015) - [c18]Shiau Hong Lim, Yudong Chen, Huan Xu:
A Convex Optimization Framework for Bi-Clustering. ICML 2015: 1679-1688 - [i15]Yudong Chen, Martin J. Wainwright:
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees. CoRR abs/1509.03025 (2015) - [i14]Yudong Chen, Xiaodong Li, Jiaming Xu:
Convexified Modularity Maximization for Degree-corrected Stochastic Block Models. CoRR abs/1512.08425 (2015) - 2014
- [j6]Yudong Chen, Ali Jalali, Sujay Sanghavi, Huan Xu:
Clustering partially observed graphs via convex optimization. J. Mach. Learn. Res. 15(1): 2213-2238 (2014) - [j5]Yudong Chen, Sujay Sanghavi, Huan Xu:
Improved Graph Clustering. IEEE Trans. Inf. Theory 60(10): 6440-6455 (2014) - [c17]Yudong Chen, Xinyang Yi, Constantine Caramanis:
A Convex Formulation for Mixed Regression with Two Components: Minimax Optimal Rates. COLT 2014: 560-604 - [c16]Yudong Chen, Jiaming Xu:
Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting. ICML 2014: 244-252 - [c15]Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel A. Ward:
Coherent Matrix Completion. ICML 2014: 674-682 - [c14]Yudong Chen, Shiau Hong Lim, Huan Xu:
Weighted Graph Clustering with Non-Uniform Uncertainties. ICML 2014: 1566-1574 - [c13]Shiau Hong Lim, Yudong Chen, Huan Xu:
Clustering from Labels and Time-Varying Graphs. NIPS 2014: 1188-1196 - 2013
- [j4]Yudong Chen, Ali Jalali, Sujay Sanghavi, Constantine Caramanis:
Low-Rank Matrix Recovery From Errors and Erasures. IEEE Trans. Inf. Theory 59(7): 4324-4337 (2013) - [j3]Qiaoyang Ye, Beiyu Rong, Yudong Chen, Mazin Al-Shalash, Constantine Caramanis, Jeffrey G. Andrews:
User Association for Load Balancing in Heterogeneous Cellular Networks. IEEE Trans. Wirel. Commun. 12(6): 2706-2716 (2013) - [c12]Li Li, Yudong Chen:
Quantization errors of modulo sigma-delta modulated ARMA processes. ChinaSIP 2013: 86-90 - [c11]Yudong Chen, Constantine Caramanis:
Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery. ICML (1) 2013: 383-391 - [c10]Yudong Chen, Constantine Caramanis, Shie Mannor:
Robust Sparse Regression under Adversarial Corruption. ICML (3) 2013: 774-782 - [c9]Nir Ailon, Yudong Chen, Huan Xu:
Breaking the Small Cluster Barrier of Graph Clustering. ICML (3) 2013: 995-1003 - [i13]Yudong Chen, Constantine Caramanis, Shie Mannor:
Robust High Dimensional Sparse Regression and Matching Pursuit. CoRR abs/1301.2725 (2013) - [i12]Nir Ailon, Yudong Chen, Huan Xu:
Breaking the Small Cluster Barrier of Graph Clustering. CoRR abs/1302.4549 (2013) - [i11]Yudong Chen, Vikas Kawadia, Rahul Urgaonkar:
Detecting Overlapping Temporal Community Structure in Time-Evolving Networks. CoRR abs/1303.7226 (2013) - [i10]Srinadh Bhojanapalli, Yudong Chen, Sujay Sanghavi, Rachel A. Ward:
Coherent Matrix Completion. CoRR abs/1306.2979 (2013) - [i9]Yudong Chen:
Incoherence-Optimal Matrix Completion. CoRR abs/1310.0154 (2013) - [i8]Yudong Chen, Xinyang Yi, Constantine Caramanis:
A Convex Formulation for Mixed Regression: Near Optimal Rates in the Face of Noise. CoRR abs/1312.7006 (2013) - 2012
- [c8]Li Li, Zhiheng Li, Yi Zhang, Yudong Chen:
A Mixed-Fractal Traffic Flow Model Whose Hurst Exponent Appears Crossover. CSO 2012: 443-447 - [c7]Qiaoyang Ye, Beiyu Rong, Yudong Chen, Constantine Caramanis, Jeffrey G. Andrews:
Towards an optimal user association in heterogeneous cellular networks. GLOBECOM 2012: 4143-4147 - [c6]Yudong Chen, Sujay Sanghavi, Huan Xu:
Clustering Sparse Graphs. NIPS 2012: 2213-2221 - [c5]Yudong Chen, Constantine Caramanis:
Simple algorithms for sparse linear regression with uncertain covariates. SSP 2012: 413-415 - [i7]Qiaoyang Ye, Beiyu Rong, Yudong Chen, Mazin Al-Shalash, Constantine Caramanis, Jeffrey G. Andrews:
User Association for Load Balancing in Heterogeneous Cellular Networks. CoRR abs/1205.2833 (2012) - [i6]Yudong Chen, Constantine Caramanis:
Orthogonal Matching Pursuit with Noisy and Missing Data: Low and High Dimensional Results. CoRR abs/1206.0823 (2012) - 2011
- [c4]