default search action
Pradeep Ravikumar
Person information
- affiliation: University of Texas in Austin, Department of Computer Science, USA
- affiliation: University of California, Berkeley, Department of Statistics, USA
- affiliation: Carnegie Mellon University, School of Computer Science, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2023
- [j11]Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar:
Faith-Shap: The Faithful Shapley Interaction Index. J. Mach. Learn. Res. 24: 94:1-94:42 (2023) - 2022
- [j10]Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar:
Fundamental Limits and Tradeoffs in Invariant Representation Learning. J. Mach. Learn. Res. 23: 340:1-340:49 (2022) - 2017
- [j9]Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:
Cost-Sensitive Learning with Noisy Labels. J. Mach. Learn. Res. 18: 155:1-155:33 (2017) - 2016
- [j8]Ying-Wooi Wan, Genevera I. Allen, Yulia Baker, Eunho Yang, Pradeep Ravikumar, Matthew Anderson, Zhandong Liu:
XMRF: an R package to fit Markov Networks to high-throughput genetics data. BMC Syst. Biol. 10(S-3): 69 (2016) - 2015
- [j7]Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:
Graphical models via univariate exponential family distributions. J. Mach. Learn. Res. 16: 3813-3847 (2015) - 2014
- [j6]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
QUIC: quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res. 15(1): 2911-2947 (2014) - 2013
- [j5]Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi:
A Dirty Model for Multiple Sparse Regression. IEEE Trans. Inf. Theory 59(12): 7947-7968 (2013) - 2012
- [j4]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization. IEEE Trans. Inf. Theory 58(5): 3235-3249 (2012) - 2010
- [j3]Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright:
Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes. J. Mach. Learn. Res. 11: 1043-1080 (2010) - 2008
- [j2]Pradeep Ravikumar:
Approximate inference, structure learning and feature estimation in Markov random fields: thesis abstract. SIGKDD Explor. 10(2): 32-33 (2008) - 2003
- [j1]Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep Ravikumar, Stephen E. Fienberg:
Adaptive Name Matching in Information Integration. IEEE Intell. Syst. 18(5): 16-23 (2003)
Conference and Workshop Papers
- 2024
- [c150]Goutham Rajendran, Patrik Reizinger, Wieland Brendel, Pradeep Kumar Ravikumar:
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis. CLeaR 2024: 41-70 - [c149]Sorawit Saengkyongam, Elan Rosenfeld, Pradeep Kumar Ravikumar, Niklas Pfister, Jonas Peters:
Identifying Representations for Intervention Extrapolation. ICLR 2024 - [c148]Runtian Zhai, Bingbin Liu, Andrej Risteski, J. Zico Kolter, Pradeep Kumar Ravikumar:
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression. ICLR 2024 - [c147]Runtian Zhai, Rattana Pukdee, Roger Jin, Maria-Florina Balcan, Pradeep Kumar Ravikumar:
Spectrally Transformed Kernel Regression. ICLR 2024 - [c146]Yibo Jiang, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam, Victor Veitch:
On the Origins of Linear Representations in Large Language Models. ICML 2024 - 2023
- [c145]Maria-Florina Balcan, Rattana Pukdee, Pradeep Ravikumar, Hongyang Zhang:
Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games. AISTATS 2023: 9607-9636 - [c144]Wenbin Zhang, Zichong Wang, Juyong Kim, Cheng Cheng, Thomas Oommen, Pradeep Ravikumar, Jeremy C. Weiss:
Individual Fairness Under Uncertainty. ECAI 2023: 3042-3049 - [c143]Andrew Bai, Chih-Kuan Yeh, Neil Y. C. Lin, Pradeep Kumar Ravikumar, Cho-Jui Hsieh:
Concept Gradient: Concept-based Interpretation Without Linear Assumption. ICLR 2023 - [c142]Rattana Pukdee, Dylan Sam, Pradeep Kumar Ravikumar, Nina Balcan:
Label Propagation with Weak Supervision. ICLR 2023 - [c141]Runtian Zhai, Chen Dan, J. Zico Kolter, Pradeep Kumar Ravikumar:
Understanding Why Generalized Reweighting Does Not Improve Over ERM. ICLR 2023 - [c140]Chang Deng, Kevin Bello, Bryon Aragam, Pradeep Kumar Ravikumar:
Optimizing NOTEARS Objectives via Topological Swaps. ICML 2023: 7563-7595 - [c139]Che-Ping Tsai, Jiong Zhang, Hsiang-Fu Yu, Eli Chien, Cho-Jui Hsieh, Pradeep Kumar Ravikumar:
Representer Point Selection for Explaining Regularized High-dimensional Models. ICML 2023: 34469-34490 - [c138]Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar:
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing. NeurIPS 2023 - [c137]Tianyu Chen, Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models. NeurIPS 2023 - [c136]Chang Deng, Kevin Bello, Pradeep Ravikumar, Bryon Aragam:
Global Optimality in Bivariate Gradient-based DAG Learning. NeurIPS 2023 - [c135]Yash Gupta, Runtian Zhai, Arun Sai Suggala, Pradeep Ravikumar:
Responsible AI (RAI) Games and Ensembles. NeurIPS 2023 - [c134]Rattana Pukdee, Dylan Sam, J. Zico Kolter, Maria-Florina Balcan, Pradeep Ravikumar:
Learning with Explanation Constraints. NeurIPS 2023 - [c133]Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar:
Sample based Explanations via Generalized Representers. NeurIPS 2023 - 2022
- [c132]Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
Heavy-tailed Streaming Statistical Estimation. AISTATS 2022: 1251-1282 - [c131]Chih-Kuan Yeh, Kuan-Yun Lee, Frederick Liu, Pradeep Ravikumar:
Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations. AISTATS 2022: 1485-1502 - [c130]Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization. AISTATS 2022: 2641-2657 - [c129]Zeyu Zhou, Ziyu Gong, Pradeep Ravikumar, David I. Inouye:
Iterative Alignment Flows. AISTATS 2022: 6409-6444 - [c128]Juyong Kim, Jeremy C. Weiss, Pradeep Ravikumar:
Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence. CHIL 2022: 234-247 - [c127]Juyong Kim, Abheesht Sharma, Suhas Shanbhogue, Jeremy C. Weiss, Pradeep Ravikumar:
AnEMIC: A Framework for Benchmarking ICD Coding Models. EMNLP (Demos) 2022: 109-120 - [c126]Bingbin Liu, Elan Rosenfeld, Pradeep Kumar Ravikumar, Andrej Risteski:
Analyzing and Improving the Optimization Landscape of Noise-Contrastive Estimation. ICLR 2022 - [c125]So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov:
FILM: Following Instructions in Language with Modular Methods. ICLR 2022 - [c124]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [c123]Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization. NeurIPS 2022 - [c122]Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam:
Identifiability of deep generative models without auxiliary information. NeurIPS 2022 - [c121]Bingbin Liu, Daniel J. Hsu, Pradeep Ravikumar, Andrej Risteski:
Masked Prediction: A Parameter Identifiability View. NeurIPS 2022 - [c120]Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan, Frederick Liu, Pradeep Ravikumar:
First is Better Than Last for Language Data Influence. NeurIPS 2022 - 2021
- [c119]Sijie He, Xinyan Li, Timothy DelSole, Pradeep Ravikumar, Arindam Banerjee:
Sub-Seasonal Climate Forecasting via Machine Learning: Challenges, Analysis, and Advances. AAAI 2021: 169-177 - [c118]Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, Santiago Ontañón:
Improving Compositional Generalization in Classification Tasks via Structure Annotations. ACL/IJCNLP (2) 2021: 637-645 - [c117]Bingbin Liu, Pradeep Ravikumar, Andrej Risteski:
Contrastive learning of strong-mixing continuous-time stochastic processes. AISTATS 2021: 3151-3159 - [c116]Arun Sai Suggala, Pradeep Ravikumar, Praneeth Netrapalli:
Efficient Bandit Convex Optimization: Beyond Linear Losses. COLT 2021: 4008-4067 - [c115]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. ICLR 2021 - [c114]Elan Rosenfeld, Pradeep Kumar Ravikumar, Andrej Risteski:
The Risks of Invariant Risk Minimization. ICLR 2021 - [c113]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Zachary C. Lipton, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. ICML 2021: 3610-3619 - [c112]Runtian Zhai, Chen Dan, J. Zico Kolter, Pradeep Ravikumar:
DORO: Distributional and Outlier Robust Optimization. ICML 2021: 12345-12355 - [c111]Dhruv Malik, Yuanzhi Li, Pradeep Ravikumar:
When Is Generalizable Reinforcement Learning Tractable? NeurIPS 2021: 8032-8045 - [c110]Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam:
Learning latent causal graphs via mixture oracles. NeurIPS 2021: 18087-18101 - [c109]Runtian Zhai, Chen Dan, Arun Sai Suggala, J. Zico Kolter, Pradeep Ravikumar:
Boosted CVaR Classification. NeurIPS 2021: 21860-21871 - [c108]Vishwak Srinivasan, Justin Khim, Arindam Banerjee, Pradeep Ravikumar:
Subseasonal climate prediction in the western US using Bayesian spatial models. UAI 2021: 961-970 - 2020
- [c107]Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
Learning Sparse Nonparametric DAGs. AISTATS 2020: 3414-3425 - [c106]Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
A Robust Univariate Mean Estimator is All You Need. AISTATS 2020: 4034-4044 - [c105]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. ICLR 2020 - [c104]Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang:
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius. ICLR 2020 - [c103]Chen Dan, Yuting Wei, Pradeep Ravikumar:
Sharp Statistical Guaratees for Adversarially Robust Gaussian Classification. ICML 2020: 2345-2355 - [c102]Justin Khim, Liu Leqi, Adarsh Prasad, Pradeep Ravikumar:
Uniform Convergence of Rank-weighted Learning. ICML 2020: 5254-5263 - [c101]Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, J. Zico Kolter:
Certified Robustness to Label-Flipping Attacks via Randomized Smoothing. ICML 2020: 8230-8241 - [c100]Ziyu Xu, Chen Dan, Justin Khim, Pradeep Ravikumar:
Class-Weighted Classification: Trade-offs and Robust Approaches. ICML 2020: 10544-10554 - [c99]Juyong Kim, Linyuan Gong, Justin Khim, Jeremy C. Weiss, Pradeep Ravikumar:
Improved Clinical Abbreviation Expansion via Non-Sense-Based Approaches. ML4H@NeurIPS 2020: 161-178 - [c98]Adarsh Prasad, Vishwak Srinivasan, Sivaraman Balakrishnan, Pradeep Ravikumar:
On Learning Ising Models under Huber's Contamination Model. NeurIPS 2020 - [c97]Arun Sai Suggala, Bingbin Liu, Pradeep Ravikumar:
Generalized Boosting. NeurIPS 2020 - [c96]Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Tomas Pfister, Pradeep Ravikumar:
On Completeness-aware Concept-Based Explanations in Deep Neural Networks. NeurIPS 2020 - [c95]David I. Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, Pradeep Ravikumar:
Automated Dependence Plots. UAI 2020: 1238-1247 - 2019
- [c94]Umang Bhatt, Pradeep Ravikumar, José M. F. Moura:
Building Human-Machine Trust via Interpretability. AAAI 2019: 9919-9920 - [c93]Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, Pradeep Ravikumar:
Revisiting Adversarial Risk. AISTATS 2019: 2331-2339 - [c92]Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, Prateek Jain:
Adaptive Hard Thresholding for Near-optimal Consistent Robust Regression. COLT 2019: 2892-2897 - [c91]Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep Ravikumar:
Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation. NeurIPS 2019: 2537-2548 - [c90]Fan Yang, Liu Leqi, Yifan Wu, Zachary Chase Lipton, Pradeep Ravikumar, Tom M. Mitchell, William W. Cohen:
Game Design for Eliciting Distinguishable Behavior. NeurIPS 2019: 4686-4695 - [c89]Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, Pradeep Ravikumar:
On the (In)fidelity and Sensitivity of Explanations. NeurIPS 2019: 10965-10976 - [c88]Liu Leqi, Adarsh Prasad, Pradeep Ravikumar:
On Human-Aligned Risk Minimization. NeurIPS 2019: 15029-15038 - 2018
- [c87]Ritesh Noothigattu, Snehalkumar (Neil) S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep Ravikumar, Ariel D. Procaccia:
A Voting-Based System for Ethical Decision Making. AAAI 2018: 1587-1594 - [c86]Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-Yu Chen, Pradeep Ravikumar, Michael J. Witbrock:
Word Mover's Embedding: From Word2Vec to Document Embedding. EMNLP 2018: 4524-4534 - [c85]David I. Inouye, Pradeep Ravikumar:
Deep Density Destructors. ICML 2018: 2172-2180 - [c84]Bowei Yan, Oluwasanmi Koyejo, Kai Zhong, Pradeep Ravikumar:
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics. ICML 2018: 5527-5536 - [c83]Ian En-Hsu Yen, Satyen Kale, Felix X. Yu, Daniel Niels Holtmann-Rice, Sanjiv Kumar, Pradeep Ravikumar:
Loss Decomposition for Fast Learning in Large Output Spaces. ICML 2018: 5626-5635 - [c82]Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, Pradeep Ravikumar:
Representer Point Selection for Explaining Deep Neural Networks. NeurIPS 2018: 9311-9321 - [c81]Chen Dan, Liu Leqi, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models. NeurIPS 2018: 9344-9354 - [c80]Xun Zheng, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS 2018: 9492-9503 - [c79]Arun Sai Suggala, Adarsh Prasad, Pradeep Ravikumar:
Connecting Optimization and Regularization Paths. NeurIPS 2018: 10631-10641 - [c78]Ian En-Hsu Yen, Wei-Cheng Lee, Kai Zhong, Sung-En Chang, Pradeep Ravikumar, Shou-De Lin:
MixLasso: Generalized Mixed Regression via Convex Atomic-Norm Regularization. NeurIPS 2018: 10891-10899 - 2017
- [c77]Tianyang Li, Xinyang Yi, Constantine Caramanis, Pradeep Ravikumar:
Minimax Gaussian Classification & Clustering. AISTATS 2017: 1-9 - [c76]Jiong Zhang, Ian En-Hsu Yen, Pradeep Ravikumar, Inderjit S. Dhillon:
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. AISTATS 2017: 1514-1522 - [c75]Xiangru Huang, Ian En-Hsu Yen, Ruohan Zhang, Qixing Huang, Pradeep Ravikumar, Inderjit S. Dhillon:
Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. AISTATS 2017: 1550-1559 - [c74]Qi Lei, Ian En-Hsu Yen, Chao-Yuan Wu, Inderjit S. Dhillon, Pradeep Ravikumar:
Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization. ICML 2017: 2034-2042 - [c73]Arun Sai Suggala, Eunho Yang, Pradeep Ravikumar:
Ordinal Graphical Models: A Tale of Two Approaches. ICML 2017: 3260-3269 - [c72]Ian En-Hsu Yen, Wei-Cheng Lee, Sung-En Chang, Arun Sai Suggala, Shou-De Lin, Pradeep Ravikumar:
Latent Feature Lasso. ICML 2017: 3949-3957 - [c71]Ian En-Hsu Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit S. Dhillon, Eric P. Xing:
PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. KDD 2017: 545-553 - [c70]Arun Sai Suggala, Mladen Kolar, Pradeep Ravikumar:
The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities. NIPS 2017: 4446-4456 - [c69]Adarsh Prasad, Alexandru Niculescu-Mizil, Pradeep Ravikumar:
On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models. NIPS 2017: 7050-7059 - 2016
- [c68]Nagarajan Natarajan, Oluwasanmi Koyejo, Pradeep Ravikumar, Inderjit S. Dhillon:
Optimal Classification with Multivariate Losses. ICML 2016: 1530-1538 - [c67]Ian En-Hsu Yen, Xin Lin, Jiong Zhang, Pradeep Ravikumar, Inderjit S. Dhillon:
A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery. ICML 2016: 2272-2280 - [c66]David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:
Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies. ICML 2016: 2445-2453 - [c65]Ian En-Hsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, Inderjit S. Dhillon:
PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification. ICML 2016: 3069-3077 - [c64]Ian En-Hsu Yen, Xiangru Huang, Kai Zhong, Ruohan Zhang, Pradeep Ravikumar, Inderjit S. Dhillon:
Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain. NIPS 2016: 5024-5032 - 2015
- [c63]Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher:
Sparsistency of 1-Regularized M-Estimators. AISTATS 2015 - [c62]Wesley Tansey, Oscar Hernan Madrid Padilla, Arun Sai Suggala, Pradeep Ravikumar:
Vector-Space Markov Random Fields via Exponential Families. ICML 2015: 684-692 - [c61]Adarsh Prasad, Harsh H. Pareek, Pradeep Ravikumar:
Distributional Rank Aggregation, and an Axiomatic Analysis. ICML 2015: 2104-2112 - [c60]Ian En-Hsu Yen, Xin Lin, Kai Zhong, Pradeep Ravikumar, Inderjit S. Dhillon:
A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models. ICML 2015: 2418-2426 - [c59]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Closed-form Estimators for High-dimensional Generalized Linear Models. NIPS 2015: 586-594 - [c58]Tianyang Li, Adarsh Prasad, Pradeep Ravikumar:
Fast Classification Rates for High-dimensional Gaussian Generative Models. NIPS 2015: 1054-1062 - [c57]Nikhil Rao, Hsiang-Fu Yu, Pradeep Ravikumar, Inderjit S. Dhillon:
Collaborative Filtering with Graph Information: Consistency and Scalable Methods. NIPS 2015: 2107-2115 - [c56]Vidyashankar Sivakumar, Arindam Banerjee, Pradeep Ravikumar:
Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs. NIPS 2015: 2206-2214 - [c55]Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent. NIPS 2015: 2368-2376 - [c54]David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:
Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial. NIPS 2015: 3213-3221 - [c53]Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, Inderjit S. Dhillon:
Consistent Multilabel Classification. NIPS 2015: 3321-3329 - [c52]Xinnian Zheng, Pradeep Ravikumar, Lizy K. John, Andreas Gerstlauer:
Learning-based analytical cross-platform performance prediction. SAMOS 2015: 52-59 - [c51]Tianyang Li, Harsh H. Pareek, Pradeep Ravikumar, Dhruv Balwada, Kevin Speer:
Tracking with ranked signals. UAI 2015: 474-483 - 2014
- [c50]Eunho Yang, Yulia Baker, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:
Mixed Graphical Models via Exponential Families. AISTATS 2014: 1042-1050 - [c49]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for High-Dimensional Linear Regression. ICML 2014: 388-396 - [c48]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for Sparse Covariance Matrices and other Structured Moments. ICML 2014: 397-405 - [c47]Rashish Tandon, Pradeep Ravikumar:
Learning Graphs with a Few Hubs. ICML 2014: 602-610 - [c46]David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:
Admixture of Poisson MRFs: A Topic Model with Word Dependencies. ICML 2014: 683-691 - [c45]Suriya Gunasekar, Pradeep Ravikumar, Joydeep Ghosh:
Exponential Family Matrix Completion under Structural Constraints. ICML 2014: 1917-1925 - [c44]Harsh H. Pareek, Pradeep Ravikumar:
A Representation Theory for Ranking Functions. NIPS 2014: 361-369 - [c43]Ian En-Hsu Yen, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings. NIPS 2014: 1008-1016 - [c42]Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Stephen Becker, Peder A. Olsen:
QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models. NIPS 2014: 2006-2014 - [c41]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for Graphical Models. NIPS 2014: 2159-2167 - [c40]Rashish Tandon, Karthikeyan Shanmugam, Pradeep Ravikumar, Alexandros G. Dimakis:
On the Information Theoretic Limits of Learning Ising Models. NIPS 2014: 2303-2311 - [c39]Kai Zhong, Ian En-Hsu Yen, Inderjit S. Dhillon, Pradeep Ravikumar:
Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators. NIPS 2014: 2375-2383 - [c38]Ian En-Hsu Yen, Ting-Wei Lin, Shou-De Lin, Pradeep Ravikumar, Inderjit S. Dhillon:
Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space. NIPS 2014: 2456-2464 - [c37]Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, Inderjit S. Dhillon:
Consistent Binary Classification with Generalized Performance Metrics. NIPS 2014: 2744-2752 - [c36]David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:
Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs. NIPS 2014: 3158-3166 - 2013
- [c35]Harsh H. Pareek, Pradeep Ravikumar:
Human Boosting. ICML (1) 2013: 338-346 - [c34]Eunho Yang, Ambuj Tewari, Pradeep Ravikumar:
On Robust Estimation of High Dimensional Generalized Linear Models. IJCAI 2013: 1834-1840 - [c33]Rashish Tandon, Pradeep Ravikumar:
On the difficulty of learning power law graphical models. ISIT 2013: 2493-2497 - [c32]Huahua Wang, Arindam Banerjee, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Large Scale Distributed Sparse Precision Estimation. NIPS 2013: 584-592 - [c31]Eunho Yang, Pradeep Ravikumar:
Dirty Statistical Models. NIPS 2013: 611-619 - [c30]Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:
Conditional Random Fields via Univariate Exponential Families. NIPS 2013: 683-691 - [c29]Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:
Learning with Noisy Labels. NIPS 2013: 1196-1204 - [c28]Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:
On Poisson Graphical Models. NIPS 2013: 1718-1726 - [c27]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar, Russell A. Poldrack:
BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables. NIPS 2013: 3165-3173 - 2012
- [c26]Inderjit S. Dhillon, Cho-Jui Hsieh, Mátyás A. Sustik, Pradeep Ravikumar:
Sparse inverse covariance matrix estimation using quadratic approximation. MLSLP 2012 - [c25]Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:
Graphical Models via Generalized Linear Models. NIPS 2012: 1367-1375 - [c24]Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Arindam Banerjee:
A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation. NIPS 2012: 2339-2347 - [c23]Christopher C. Johnson, Ali Jalali, Pradeep Ravikumar:
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods. AISTATS 2012: 574-582 - [c22]Eunho Yang, Ambuj Tewari, Pradeep Ravikumar:
Perturbation based Large Margin Approach for Ranking. AISTATS 2012: 1358-1366 - 2011
- [c21]Eunho Yang, Pradeep Ravikumar:
On the Use of Variational Inference for Learning Discrete Graphical Model. ICML 2011: 1009-1016 - [c20]Ambuj Tewari, Pradeep Ravikumar, Inderjit S. Dhillon:
Greedy Algorithms for Structurally Constrained High Dimensional Problems. NIPS 2011: 882-890 - [c19]Ali Jalali, Christopher C. Johnson, Pradeep Ravikumar:
On Learning Discrete Graphical Models using Greedy Methods. NIPS 2011: 1935-1943 - [c18]Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:
Nearest Neighbor based Greedy Coordinate Descent. NIPS 2011: 2160-2168 - [c17]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. NIPS 2011: 2330-2338 - [c16]Ali Jalali, Pradeep Ravikumar, Vishvas Vasuki, Sujay Sanghavi:
On Learning Discrete Graphical Models using Group-Sparse Regularization. AISTATS 2011: 378-387 - [c15]Pradeep Ravikumar, Ambuj Tewari, Eunho Yang:
On NDCG Consistency of Listwise Ranking Methods. AISTATS 2011: 618-626 - 2010
- [c14]Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi, Chao Ruan:
A Dirty Model for Multi-task Learning. NIPS 2010: 964-972 - 2009
- [c13]Alina Beygelzimer, John Langford, Pradeep Ravikumar:
Error-Correcting Tournaments. ALT 2009: 247-262 - [c12]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-theoretic lower bounds on the oracle complexity of convex optimization. NIPS 2009: 1-9 - [c11]Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, Bin Yu:
A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers. NIPS 2009: 1348-1356 - 2008
- [c10]Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright:
Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes. ICML 2008: 800-807 - [c9]Pradeep Ravikumar, Garvesh Raskutti, Martin J. Wainwright, Bin Yu:
Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of l1-regularized MLE. NIPS 2008: 1329-1336 - [c8]Pradeep Ravikumar, Vincent Q. Vu, Bin Yu, Thomas Naselaris, Kendrick N. Kay, Jack L. Gallant:
Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images. NIPS 2008: 1337-1344 - 2007
- [c7]Pradeep Ravikumar, Han Liu, John D. Lafferty, Larry A. Wasserman:
SpAM: Sparse Additive Models. NIPS 2007: 1201-1208 - 2006
- [c6]Pradeep Ravikumar, John D. Lafferty:
Quadratic programming relaxations for metric labeling and Markov random field MAP estimation. ICML 2006: 737-744 - [c5]Martin J. Wainwright, Pradeep Ravikumar, John D. Lafferty:
High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression. NIPS 2006: 1465-1472 - 2005
- [c4]Pradeep Ravikumar, John D. Lafferty:
Preconditioner Approximations for Probabilistic Graphical Models. NIPS 2005: 1113-1120 - 2004
- [c3]Pradeep Ravikumar, William W. Cohen:
A Hierarchical Graphical Model for Record Linkage. UAI 2004: 454-461 - [c2]Pradeep Ravikumar, John D. Lafferty:
Variational Chernoff Bounds for Graphical Models. UAI 2004: 462-469 - 2003
- [c1]William W. Cohen, Pradeep Ravikumar, Stephen E. Fienberg:
A Comparison of String Distance Metrics for Name-Matching Tasks. IIWeb 2003: 73-78
Parts in Books or Collections
- 2023
- [p2]Bryon Aragam, Pradeep Ravikumar:
Neuro-Causal Models. Compendium of Neurosymbolic Artificial Intelligence 2023: 153-177 - 2021
- [p1]Chih-Kuan Yeh, Been Kim, Pradeep Ravikumar:
Human-Centered Concept Explanations for Neural Networks. Neuro-Symbolic Artificial Intelligence 2021: 337-352
Informal and Other Publications
- 2024
- [i86]Runtian Zhai, Rattana Pukdee, Roger Jin, Maria-Florina Balcan, Pradeep Ravikumar:
Spectrally Transformed Kernel Regression. CoRR abs/2402.00645 (2024) - [i85]Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar:
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models. CoRR abs/2402.09236 (2024) - [i84]Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, Victor Veitch:
On the Origins of Linear Representations in Large Language Models. CoRR abs/2403.03867 (2024) - [i83]Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam:
Do LLMs dream of elephants (when told not to)? Latent concept association and associative memory in transformers. CoRR abs/2406.18400 (2024) - [i82]Daniel P. Jeong, Zachary C. Lipton, Pradeep Ravikumar:
LLM-Select: Feature Selection with Large Language Models. CoRR abs/2407.02694 (2024) - 2023
- [i81]Wenbin Zhang, Juyong Kim, Zichong Wang, Pradeep Ravikumar, Jeremy C. Weiss:
Individual Fairness Guarantee in Learning with Censorship. CoRR abs/2302.08015 (2023) - [i80]Rattana Pukdee, Dylan Sam, J. Zico Kolter, Maria-Florina Balcan, Pradeep Ravikumar:
Learning with Explanation Constraints. CoRR abs/2303.14496 (2023) - [i79]Chang Deng, Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
Optimizing NOTEARS Objectives via Topological Swaps. CoRR abs/2305.17277 (2023) - [i78]Che-Ping Tsai, Jiong Zhang, Eli Chien, Hsiang-Fu Yu, Cho-Jui Hsieh, Pradeep Ravikumar:
Representer Point Selection for Explaining Regularized High-dimensional Models. CoRR abs/2305.20002 (2023) - [i77]Runtian Zhai, Bingbin Liu, Andrej Risteski, Zico Kolter, Pradeep Ravikumar:
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation. CoRR abs/2306.00788 (2023) - [i76]Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar:
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing. CoRR abs/2306.02235 (2023) - [i75]Tianyu Chen, Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models. CoRR abs/2306.17361 (2023) - [i74]Chang Deng, Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
Global Optimality in Bivariate Gradient-based DAG Learning. CoRR abs/2306.17378 (2023) - [i73]Sorawit Saengkyongam, Elan Rosenfeld, Pradeep Ravikumar, Niklas Pfister, Jonas Peters:
Identifying Representations for Intervention Extrapolation. CoRR abs/2310.04295 (2023) - [i72]Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar:
Sample based Explanations via Generalized Representers. CoRR abs/2310.18526 (2023) - [i71]Yash Gupta, Runtian Zhai, Arun Sai Suggala, Pradeep Ravikumar:
Responsible AI (RAI) Games and Ensembles. CoRR abs/2310.18832 (2023) - [i70]Goutham Rajendran, Patrik Reizinger, Wieland Brendel, Pradeep Ravikumar:
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis. CoRR abs/2311.18048 (2023) - 2022
- [i69]Runtian Zhai, Chen Dan, J. Zico Kolter, Pradeep Ravikumar:
Understanding Why Generalized Reweighting Does Not Improve Over ERM. CoRR abs/2201.12293 (2022) - [i68]Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization. CoRR abs/2202.06856 (2022) - [i67]Bingbin Liu, Daniel Hsu, Pradeep Ravikumar, Andrej Risteski:
Masked prediction tasks: a parameter identifiability view. CoRR abs/2202.09305 (2022) - [i66]Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan, Frederick Liu, Pradeep Ravikumar:
First is Better Than Last for Training Data Influence. CoRR abs/2202.11844 (2022) - [i65]Chih-Kuan Yeh, Kuan-Yun Lee, Frederick Liu, Pradeep Ravikumar:
Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations. CoRR abs/2202.11919 (2022) - [i64]Chih-Kuan Yeh, Been Kim, Pradeep Ravikumar:
Human-Centered Concept Explanations for Neural Networks. CoRR abs/2202.12451 (2022) - [i63]Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar:
Faith-Shap: The Faithful Shapley Interaction Index. CoRR abs/2203.00870 (2022) - [i62]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. CoRR abs/2206.03362 (2022) - [i61]Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam:
Identifiability of deep generative models under mixture priors without auxiliary information. CoRR abs/2206.10044 (2022) - [i60]Andrew Bai, Chih-Kuan Yeh, Pradeep Ravikumar, Neil Y. C. Lin, Cho-Jui Hsieh:
Concept Gradient: Concept-based Interpretation Without Linear Assumption. CoRR abs/2208.14966 (2022) - [i59]Kevin Bello, Bryon Aragam, Pradeep Ravikumar:
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization. CoRR abs/2209.08037 (2022) - [i58]Rattana Pukdee, Dylan Sam, Maria-Florina Balcan, Pradeep Ravikumar:
Label Propagation with Weak Supervision. CoRR abs/2210.03594 (2022) - [i57]Maria-Florina Balcan, Rattana Pukdee, Pradeep Ravikumar, Hongyang Zhang:
Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games. CoRR abs/2210.12606 (2022) - 2021
- [i56]Dhruv Malik, Yuanzhi Li, Pradeep Ravikumar:
When Is Generalizable Reinforcement Learning Tractable? CoRR abs/2101.00300 (2021) - [i55]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Sivaraman Balakrishnan, Zachary C. Lipton, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. CoRR abs/2102.10264 (2021) - [i54]Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization. CoRR abs/2102.13128 (2021) - [i53]Bingbin Liu, Pradeep Ravikumar, Andrej Risteski:
Contrastive learning of strong-mixing continuous-time stochastic processes. CoRR abs/2103.02740 (2021) - [i52]David I. Inouye, Zeyu Zhou, Ziyu Gong, Pradeep Ravikumar:
Iterative Barycenter Flows. CoRR abs/2104.07232 (2021) - [i51]Runtian Zhai, Chen Dan, J. Zico Kolter, Pradeep Ravikumar:
DORO: Distributional and Outlier Robust Optimization. CoRR abs/2106.06142 (2021) - [i50]Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, Santiago Ontañón:
Improving Compositional Generalization in Classification Tasks via Structure Annotations. CoRR abs/2106.10434 (2021) - [i49]Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam:
Learning latent causal graphs via mixture oracles. CoRR abs/2106.15563 (2021) - [i48]Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
Heavy-tailed Streaming Statistical Estimation. CoRR abs/2108.11483 (2021) - [i47]So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov:
FILM: Following Instructions in Language with Modular Methods. CoRR abs/2110.07342 (2021) - [i46]Bingbin Liu, Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:
Analyzing and Improving the Optimization Landscape of Noise-Contrastive Estimation. CoRR abs/2110.11271 (2021) - [i45]Runtian Zhai, Chen Dan, Arun Sai Suggala, J. Zico Kolter, Pradeep Ravikumar:
Boosted CVaR Classification. CoRR abs/2110.13948 (2021) - 2020
- [i44]Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang:
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius. CoRR abs/2001.02378 (2020) - [i43]Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, J. Zico Kolter:
Certified Robustness to Label-Flipping Attacks via Randomized Smoothing. CoRR abs/2002.03018 (2020) - [i42]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. CoRR abs/2004.05665 (2020) - [i41]Ziyu Xu, Chen Dan, Justin Khim, Pradeep Ravikumar:
Class-Weighted Classification: Trade-offs and Robust Approaches. CoRR abs/2005.12914 (2020) - [i40]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. CoRR abs/2006.00442 (2020) - [i39]Sijie He, Xinyan Li, Timothy DelSole, Pradeep Ravikumar, Arindam Banerjee:
Sub-Seasonal Climate Forecasting via Machine Learning: Challenges, Analysis, and Advances. CoRR abs/2006.07972 (2020) - [i38]Kartik Gupta, Arun Sai Suggala, Adarsh Prasad, Praneeth Netrapalli, Pradeep Ravikumar:
Learning Minimax Estimators via Online Learning. CoRR abs/2006.11430 (2020) - [i37]Chen Dan, Yuting Wei, Pradeep Ravikumar:
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification. CoRR abs/2006.16384 (2020) - [i36]Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:
The Risks of Invariant Risk Minimization. CoRR abs/2010.05761 (2020) - [i35]Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar:
Fundamental Limits and Tradeoffs in Invariant Representation Learning. CoRR abs/2012.10713 (2020) - 2019
- [i34]Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, Pradeep Ravikumar:
How Sensitive are Sensitivity-Based Explanations? CoRR abs/1901.09392 (2019) - [i33]Umang Bhatt, Pradeep Ravikumar, José M. F. Moura:
Towards Aggregating Weighted Feature Attributions. CoRR abs/1901.10040 (2019) - [i32]Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, Prateek Jain:
Adaptive Hard Thresholding for Near-optimal Consistent Robust Regression. CoRR abs/1903.08192 (2019) - [i31]Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
A Unified Approach to Robust Mean Estimation. CoRR abs/1907.00927 (2019) - [i30]Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
Learning Sparse Nonparametric DAGs. CoRR abs/1909.13189 (2019) - [i29]Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Pradeep Ravikumar, Tomas Pfister:
On Concept-Based Explanations in Deep Neural Networks. CoRR abs/1910.07969 (2019) - [i28]Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep Ravikumar:
Optimal Analysis of Subset-Selection Based L_p Low Rank Approximation. CoRR abs/1910.13618 (2019) - [i27]David I. Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, Pradeep Ravikumar:
Diagnostic Curves for Black Box Models. CoRR abs/1912.01108 (2019) - [i26]Fan Yang, Liu Leqi, Yifan Wu, Zachary C. Lipton, Pradeep Ravikumar, William W. Cohen, Tom M. Mitchell:
Game Design for Eliciting Distinguishable Behavior. CoRR abs/1912.06074 (2019) - 2018
- [i25]Bryon Aragam, Chen Dan, Pradeep Ravikumar, Eric P. Xing:
Identifiability of Nonparametric Mixture Models and Bayes Optimal Clustering. CoRR abs/1802.04397 (2018) - [i24]Lingfei Wu, Ian En-Hsu Yen, Fangli Xu, Pradeep Ravikumar, Michael Witbrock:
D2KE: From Distance to Kernel and Embedding. CoRR abs/1802.04956 (2018) - [i23]Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, Pradeep Ravikumar:
Robust Estimation via Robust Gradient Estimation. CoRR abs/1802.06485 (2018) - [i22]Xun Zheng, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
DAGs with NO TEARS: Smooth Optimization for Structure Learning. CoRR abs/1803.01422 (2018) - [i21]Simon S. Du, Yining Wang, Sivaraman Balakrishnan, Pradeep Ravikumar, Aarti Singh:
Robust Nonparametric Regression under Huber's ε-contamination Model. CoRR abs/1805.10406 (2018) - [i20]Bowei Yan, Oluwasanmi Koyejo, Kai Zhong, Pradeep Ravikumar:
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics. CoRR abs/1806.00640 (2018) - [i19]Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, Pradeep Ravikumar:
On Adversarial Risk and Training. CoRR abs/1806.02924 (2018) - [i18]Chen Dan, Liu Leqi, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:
Sample Complexity of Nonparametric Semi-Supervised Learning. CoRR abs/1809.03073 (2018) - [i17]Sung-En Chang, Xun Zheng, Ian En-Hsu Yen, Pradeep Ravikumar, Rose Yu:
Learning Tensor Latent Features. CoRR abs/1810.04754 (2018) - [i16]Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-Yu Chen, Pradeep Ravikumar, Michael J. Witbrock:
Word Mover's Embedding: From Word2Vec to Document Embedding. CoRR abs/1811.01713 (2018) - [i15]Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, Pradeep Ravikumar:
Representer Point Selection for Explaining Deep Neural Networks. CoRR abs/1811.09720 (2018) - 2017
- [i14]Ritesh Noothigattu, Snehalkumar (Neil) S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep Ravikumar, Ariel D. Procaccia:
A Voting-Based System for Ethical Decision Making. CoRR abs/1709.06692 (2017) - 2016
- [i13]Rashish Tandon, Si Si, Pradeep Ravikumar, Inderjit S. Dhillon:
Kernel Ridge Regression via Partitioning. CoRR abs/1608.01976 (2016) - 2015
- [i12]Nagarajan Natarajan, Oluwasanmi Koyejo, Pradeep Ravikumar, Inderjit S. Dhillon:
Optimal Decision-Theoretic Classification Using Non-Decomposable Performance Metrics. CoRR abs/1505.01802 (2015) - [i11]Suriya Gunasekar, Pradeep Ravikumar, Joydeep Ghosh:
Exponential Family Matrix Completion under Structural Constraints. CoRR abs/1509.04397 (2015) - 2014
- [i10]Karthikeyan Shanmugam, Rashish Tandon, Alexandros G. Dimakis, Pradeep Ravikumar:
On the Information Theoretic Limits of Learning Ising Models. CoRR abs/1411.1434 (2014) - 2013
- [i9]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. CoRR abs/1306.3212 (2013) - 2012
- [i8]Pradeep Ravikumar, John D. Lafferty:
Variational Chernoff Bounds for Graphical Models. CoRR abs/1207.4172 (2012) - [i7]Pradeep Ravikumar, William W. Cohen:
A Hierarchical Graphical Model for Record Linkage. CoRR abs/1207.4180 (2012) - 2011
- [i6]Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi:
A Dirty Model for Multiple Sparse Regression. CoRR abs/1106.5826 (2011) - [i5]Ali Jalali, Christopher C. Johnson, Pradeep Ravikumar:
On Learning Discrete Graphical Models Using Greedy Methods. CoRR abs/1107.3258 (2011) - [i4]Christopher C. Johnson, Ali Jalali, Pradeep Ravikumar:
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods. CoRR abs/1112.6411 (2011) - 2010
- [i3]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. CoRR abs/1009.0571 (2010) - [i2]Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, Bin Yu:
A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers. CoRR abs/1010.2731 (2010) - 2009
- [i1]Alina Beygelzimer, John Langford, Pradeep Ravikumar:
Error-Correcting Tournaments. CoRR abs/0902.3176 (2009)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 21:27 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint