


default search action
Barnabás Póczos
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j16]Amira Alakhdar
, Barnabás Póczos, Newell Washburn
:
Diffusion Models in De Novo Drug Design. J. Chem. Inf. Model. 64(19): 7238-7256 (2024) - [i114]Dhananjay Ashok, Barnabás Póczos:
Controllable Text Generation in the Instruction-Tuning Era. CoRR abs/2405.01490 (2024) - [i113]Amira Alakhdar, Barnabás Póczos, Newell Washburn:
Diffusion Models in De Novo Drug Design. CoRR abs/2406.08511 (2024) - [i112]Tongzhou Liao, Barnabás Póczos:
Graph Attention with Random Rewiring. CoRR abs/2407.05649 (2024) - [i111]Yuchen Shen, Barnabás Póczos:
GraphBPE: Molecular Graphs Meet Byte-Pair Encoding. CoRR abs/2407.19039 (2024) - [i110]Euxhen Hasanaj, Barnabás Póczos, Ziv Bar-Joseph:
Recovering Time-Varying Networks From Single-Cell Data. CoRR abs/2410.01853 (2024) - [i109]Alan Hsu, Matthew Ho, Joyce Lin, Carleen Markey, Michelle Ntampaka, Hy Trac, Barnabás Póczos:
Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling. CoRR abs/2410.02857 (2024) - [i108]Yuchen Shen, Chenhao Zhang, Sijie Fu, Chenghui Zhou, Newell Washburn, Barnabás Póczos:
Chemistry-Inspired Diffusion with Non-Differentiable Guidance. CoRR abs/2410.06502 (2024) - 2023
- [c122]Dhananjay Ashok, Atharva Kulkarni, Hai Pham, Barnabás Póczos
:
The student becomes the master: Outperforming GPT3 on Scientific Factual Error Correction. EMNLP (Findings) 2023: 6762-6778 - [i107]Dhananjay Ashok, Atharva Kulkarni, Hai Pham, Barnabás Póczos:
The student becomes the master: Matching GPT3 on Scientific Factual Error Correction. CoRR abs/2305.14707 (2023) - [i106]Chenghui Zhou, Barnabás Póczos:
Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage VAE. CoRR abs/2308.13066 (2023) - [i105]Hai Pham, Young Jin Kim, Subhabrata Mukherjee, David P. Woodruff, Barnabás Póczos, Hany Hassan Awadalla:
Task-Based MoE for Multitask Multilingual Machine Translation. CoRR abs/2308.15772 (2023) - 2022
- [i104]Han Nguyen, Hai Pham, Sashank J. Reddi, Barnabás Póczos:
On the Algorithmic Stability and Generalization of Adaptive Optimization Methods. CoRR abs/2211.03970 (2022) - [i103]Chenghui Zhou, Barnabás Póczos:
Improving Molecule Properties Through 2-Stage VAE. CoRR abs/2212.02750 (2022) - 2021
- [c121]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Re-TACRED: Addressing Shortcomings of the TACRED Dataset. AAAI 2021: 13843-13850 - [c120]Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard H. Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency:
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer. NAACL-HLT 2021: 2116-2138 - [c119]Chenghui Zhou, Chun-Liang Li, Barnabás Póczos:
Unsupervised program synthesis for images by sampling without replacement. UAI 2021: 408-418 - [i102]Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard H. Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency:
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer. CoRR abs/2104.05196 (2021) - [i101]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Re-TACRED: Addressing Shortcomings of the TACRED Dataset. CoRR abs/2104.08398 (2021) - [i100]Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, Barnabás Póczos:
Coarse-to-Fine Curriculum Learning. CoRR abs/2106.04072 (2021) - 2020
- [j15]Michael Andrews
, Manfred Paulini
, Sergei Gleyzer, Barnabás Póczos:
End-to-End Physics Event Classification with CMS Open Data: Applying Image-Based Deep Learning to Detector Data for the Direct Classification of Collision Events at the LHC. Comput. Softw. Big Sci. 4(1) (2020) - [j14]Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly. J. Mach. Learn. Res. 21: 81:1-81:27 (2020) - [c118]George Stoica, Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, Barnabás Póczos:
Contextual Parameter Generation for Knowledge Graph Link Prediction. AAAI 2020: 3000-3008 - [c117]Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabás Póczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W. Black, Shrimai Prabhumoye:
Politeness Transfer: A Tag and Generate Approach. ACL 2020: 1869-1881 - [c116]Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations. AISTATS 2020: 3393-3403 - [c115]Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos
, Jaime G. Carbonell:
Efficient Meta Lifelong-Learning with Limited Memory. EMNLP (1) 2020: 535-548 - [c114]Hai Pham, Amrith Setlur, Saket Dingliwal, Tzu-Hsiang Lin, Barnabás Póczos, Kang Huang, Zhuo Li, Jae Lim, Collin McCormack, Tam Vu:
Robust Handwriting Recognition with Limited and Noisy Data. ICFHR 2020: 301-306 - [c113]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. ICLR 2020 - [c112]Zoltán Ádám Milacski, Barnabás Póczos, András Lörincz:
VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing. ICML 2020: 6893-6904 - [c111]Amrith Setlur, Barnabás Póczos, Alan W. Black:
Nonlinear ISA with Auxiliary Variables for Learning Speech Representations. INTERSPEECH 2020: 180-184 - [c110]Mariya Toneva, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, Tom M. Mitchell:
Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction. NeurIPS 2020 - [c109]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Robust Density Estimation under Besov IPM Losses. NeurIPS 2020 - [i99]Adarsh Dave, Jared Mitchell, Kirthevasan Kandasamy, Sven Burke, Biswajit Paria, Barnabás Póczos, Jay Whitacre, Venkatasubramanian Viswanathan:
Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning. CoRR abs/2001.09938 (2020) - [i98]Chenghui Zhou, Chun-Liang Li, Barnabás Póczos:
Unsupervised Program Synthesis for Images using Tree-Structured LSTM. CoRR abs/2001.10119 (2020) - [i97]Ilqar Ramazanli, Barnabás Póczos:
Optimal Adaptive Matrix Completion. CoRR abs/2002.02431 (2020) - [i96]Ilqar Ramazanli, Han Nguyen, Hai Pham, Sashank J. Reddi, Barnabás Póczos:
Adaptive Sampling Distributed Stochastic Variance Reduced Gradient for Heterogeneous Distributed Datasets. CoRR abs/2002.08528 (2020) - [i95]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. CoRR abs/2004.05665 (2020) - [i94]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Robust Density Estimation under Besov IPM Losses. CoRR abs/2004.08597 (2020) - [i93]Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabás Póczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W. Black, Shrimai Prabhumoye:
Politeness Transfer: A Tag and Generate Approach. CoRR abs/2004.14257 (2020) - [i92]Amrith Setlur, Saket Dingliwal, Barnabás Póczos:
Covariate Distribution Aware Meta-learning. CoRR abs/2007.02523 (2020) - [i91]Amrith Setlur, Barnabás Póczos, Alan W. Black:
Nonlinear ISA with Auxiliary Variables for Learning Speech Representations. CoRR abs/2007.12948 (2020) - [i90]Hai Pham, Amrith Setlur, Saket Dingliwal, Tzu-Hsiang Lin, Barnabás Póczos, Kang Huang, Zhuo Li, Jae Lim, Collin McCormack, Tam Vu:
Robust Handwriting Recognition with Limited and Noisy Data. CoRR abs/2008.08148 (2020) - [i89]Mariya Toneva, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, Tom M. Mitchell:
Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction. CoRR abs/2009.08424 (2020) - [i88]Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos, Jaime G. Carbonell:
Efficient Meta Lifelong-Learning with Limited Memory. CoRR abs/2010.02500 (2020) - [i87]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Improving Relation Extraction by Leveraging Knowledge Graph Link Prediction. CoRR abs/2012.04812 (2020)
2010 – 2019
- 2019
- [j13]Kirthevasan Kandasamy, Gautam Dasarathy
, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Multi-fidelity Gaussian Process Bandit Optimisation. J. Artif. Intell. Res. 66: 151-196 (2019) - [j12]Shashank Singh, Yang Yang, Barnabás Póczos, Jian Ma
:
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol. 7(2): 122-137 (2019) - [c108]Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos:
Found in Translation: Learning Robust Joint Representations by Cyclic Translations between Modalities. AAAI 2019: 6892-6899 - [c107]Yifan Wu, Barnabás Póczos, Aarti Singh:
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent. AISTATS 2019: 1070-1078 - [c106]Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos:
Implicit Kernel Learning. AISTATS 2019: 2007-2016 - [c105]Zoltán Ádám Milacski, Barnabás Póczos, András Lorincz:
Differentiable Unrolled Alternating Direction Method of Multipliers for OneNet. BMVC 2019: 140 - [c104]Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime G. Carbonell:
Characterizing and Avoiding Negative Transfer. CVPR 2019: 11293-11302 - [c103]Chun-Liang Li, Tomas Simon, Jason M. Saragih, Barnabás Póczos, Yaser Sheikh:
LBS Autoencoder: Self-Supervised Fitting of Articulated Meshes to Point Clouds. CVPR 2019: 11967-11976 - [c102]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Kernel Change-point Detection with Auxiliary Deep Generative Models. ICLR (Poster) 2019 - [c101]Simon S. Du, Xiyu Zhai, Barnabás Póczos, Aarti Singh:
Gradient Descent Provably Optimizes Over-parameterized Neural Networks. ICLR (Poster) 2019 - [c100]Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov:
Point Cloud GAN. DGS@ICLR 2019 - [c99]Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments. ICML 2019: 3222-3232 - [c98]Zoltán Ádám Milacski, Barnabás Póczos, András Lörincz:
Group k-Sparse Temporal Convolutional Neural Networks: Unsupervised Pretraining for Video Classification. IJCNN 2019: 1-10 - [c97]Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, Tom M. Mitchell:
Competence-based Curriculum Learning for Neural Machine Translation. NAACL-HLT (1) 2019: 1162-1172 - [c96]Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, Keyulu Xu:
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. NeurIPS 2019: 5724-5734 - [c95]Emre Yolcu, Barnabás Póczos:
Learning Local Search Heuristics for Boolean Satisfiability. NeurIPS 2019: 7990-8001 - [c94]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses. NeurIPS 2019: 9086-9097 - [c93]Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos:
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations. UAI 2019: 766-776 - [i86]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Kernel Change-point Detection with Auxiliary Deep Generative Models. CoRR abs/1901.06077 (2019) - [i85]Willie Neiswanger, Kirthevasan Kandasamy, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization. CoRR abs/1901.11515 (2019) - [i84]Ananya Uppal, Shashank Singh
, Barnabás Póczos:
Nonparametric Density Estimation under Besov IPM Losses. CoRR abs/1902.03511 (2019) - [i83]Michael Andrews, John Alison, Sitong An, Patrick Bryant, Bjorn Burkle, Sergei Gleyzer, Meenakshi Narain, Manfred Paulini, Barnabás Póczos, Emanuele Usai:
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data. CoRR abs/1902.08276 (2019) - [i82]Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos:
Implicit Kernel Learning. CoRR abs/1902.10214 (2019) - [i81]Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly. CoRR abs/1903.06694 (2019) - [i80]Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, Tom M. Mitchell:
Competence-based Curriculum Learning for Neural Machine Translation. CoRR abs/1903.09848 (2019) - [i79]Chun-Liang Li, Tomas Simon, Jason M. Saragih, Barnabás Póczos, Yaser Sheikh:
LBS Autoencoder: Self-supervised Fitting of Articulated Meshes to Point Clouds. CoRR abs/1904.10037 (2019) - [i78]Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu:
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. CoRR abs/1905.13192 (2019) - [i77]Haiguang Liao, Wentai Zhang, Xuliang Dong, Barnabás Póczos, Kenji Shimada, Levent Burak Kara:
A Deep Reinforcement Learning Approach for Global Routing. CoRR abs/1906.08809 (2019) - [i76]Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations. CoRR abs/1908.01425 (2019) - [i75]Songwei Ge, Austin Dill, Eunsu Kang, Chun-Liang Li, Lingyao Zhang, Manzil Zaheer, Barnabás Póczos:
Developing Creative AI to Generate Sculptural Objects. CoRR abs/1908.07587 (2019) - [i74]Amrith Setlur, Barnabás Póczos:
Better Approximate Inference for Partial Likelihood Models with a Latent Structure. CoRR abs/1910.10211 (2019) - [i73]Kai Hu, Barnabás Póczos:
RotationOut as a Regularization Method for Neural Network. CoRR abs/1911.07427 (2019) - [i72]Joel Ruben Antony Moniz, Eunsu Kang, Barnabás Póczos:
LucidDream: Controlled Temporally-Consistent DeepDream on Videos. CoRR abs/1911.11960 (2019) - [i71]Austin Dill, Songwei Ge, Eunsu Kang, Chun-Liang Li, Barnabás Póczos:
Learned Interpolation for 3D Generation. CoRR abs/1912.10787 (2019) - 2018
- [c92]Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Parallelised Bayesian Optimisation via Thompson Sampling. AISTATS 2018: 133-142 - [c91]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. AISTATS 2018: 1233-1242 - [c90]Shashank Singh, Barnabás Póczos, Jian Ma
:
Minimax Reconstruction Risk of Convolutional Sparse Dictionary Learning. AISTATS 2018: 1327-1336 - [c89]Yusha Liu, Chun-Liang Li, Barnabás Póczos:
Classifier Two Sample Test for Video Anomaly Detections. BMVC 2018: 71 - [c88]Simon S. Du, Jason D. Lee, Yuandong Tian, Aarti Singh, Barnabás Póczos:
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima. ICML 2018: 1338-1347 - [c87]Junier B. Oliva, Avinava Dubey, Manzil Zaheer, Barnabás Póczos, Ruslan Salakhutdinov, Eric P. Xing, Jeff Schneider:
Transformation Autoregressive Networks. ICML 2018: 3895-3904 - [c86]Paloma Sodhi, Hanqi Sun, Barnabás Póczos
, David Wettergreen
:
Robust Plant Phenotyping via Model-Based Optimization. IROS 2018: 7689-7696 - [c85]Sumedha Singla
, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba
, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. MICCAI (1) 2018: 502-510 - [c84]Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Neural Architecture Search with Bayesian Optimisation and Optimal Transport. NeurIPS 2018: 2020-2029 - [c83]Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos:
Nonparametric Density Estimation under Adversarial Losses. NeurIPS 2018: 10246-10257 - [i70]Yifan Wu, Barnabás Póczos, Aarti Singh:
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent. CoRR abs/1802.04420 (2018) - [i69]Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Neural Architecture Search with Bayesian Optimisation and Optimal Transport. CoRR abs/1802.07191 (2018) - [i68]Shashank Singh, Barnabás Póczos:
Minimax Distribution Estimation in Wasserstein Distance. CoRR abs/1802.08855 (2018) - [i67]Shashank Singh, Bharath K. Sriperumbudur, Barnabás Póczos:
Minimax Estimation of Quadratic Fourier Functionals. CoRR abs/1803.11451 (2018) - [i66]Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos:
Nonparametric Density Estimation under Adversarial Losses. CoRR abs/1805.08836 (2018) - [i65]Yotam Hechtlinger, Barnabás Póczos, Larry A. Wasserman:
Cautious Deep Learning. CoRR abs/1805.09460 (2018) - [i64]Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Myopic Bayesian Design of Experiments via Posterior Sampling and Probabilistic Programming. CoRR abs/1805.09964 (2018) - [i63]Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos:
A Flexible Multi-Objective Bayesian Optimization Approach using Random Scalarizations. CoRR abs/1805.12168 (2018) - [i62]Sumedha Singla, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. CoRR abs/1806.11217 (2018) - [i61]Hai Pham, Thomas Manzini, Paul Pu Liang, Barnabás Póczos:
Seq2Seq2Sentiment: Multimodal Sequence to Sequence Models for Sentiment Analysis. CoRR abs/1807.03915 (2018) - [i60]Michael Andrews, Manfred Paulini
, Sergei Gleyzer, Barnabás Póczos:
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC. CoRR abs/1807.11916 (2018) - [i59]Simon S. Du, Xiyu Zhai, Barnabás Póczos, Aarti Singh:
Gradient Descent Provably Optimizes Over-parameterized Neural Networks. CoRR abs/1810.02054 (2018) - [i58]Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov:
Point Cloud GAN. CoRR abs/1810.05795 (2018) - [i57]Chun-Liang Li, Eunsu Kang, Songwei Ge, Lingyao Zhang, Austin Dill, Manzil Zaheer, Barnabás Póczos:
Hallucinating Point Cloud into 3D Sculptural Object. CoRR abs/1811.05389 (2018) - [i56]Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, Barnabás Póczos:
Learning to Predict the Cosmological Structure Formation. CoRR abs/1811.06533 (2018) - [i55]Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime G. Carbonell:
Characterizing and Avoiding Negative Transfer. CoRR abs/1811.09751 (2018) - [i54]Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos:
Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities. CoRR abs/1812.07809 (2018) - 2017
- [j11]Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:
Query efficient posterior estimation in scientific experiments via Bayesian active learning. Artif. Intell. 243: 45-56 (2017) - [c82]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. AAAI 2017: 1488-1494 - [c81]Srinivasan Vijayarangan, Paloma Sodhi, Prathamesh Kini, James Bourne, Simon S. Du, Hanqi Sun, Barnabás Póczos, Dimitrios Apostolopoulos, David Wettergreen
:
High-Throughput Robotic Phenotyping of Energy Sorghum Crops. FSR 2017: 99-113 - [c80]Jen-Hao Rick Chang, Chun-Liang Li, Barnabás Póczos, B. V. K. Vijaya Kumar
:
One Network to Solve Them All - Solving Linear Inverse Problems Using Deep Projection Models. ICCV 2017: 5889-5898 - [c79]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Deep Learning with Sets and Point Clouds. ICLR (Workshop) 2017 - [c78]Kirthevasan Kandasamy, Gautam Dasarathy, Jeff G. Schneider, Barnabás Póczos:
Multi-fidelity Bayesian Optimisation with Continuous Approximations. ICML 2017: 1799-1808 - [c77]Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
The Statistical Recurrent Unit. ICML 2017: 2671-2680 - [c76]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. ICML 2017: 2892-2901 - [c75]Shashank Singh, Barnabás Póczos:
Nonparanormal Information Estimation. ICML 2017: 3210-3219 - [c74]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Data-driven Random Fourier Features using Stein Effect. IJCAI 2017: 1497-1503 - [c73]Simon S. Du, Jayanth Koushik, Aarti Singh, Barnabás Póczos:
Hypothesis Transfer Learning via Transformation Functions. NIPS 2017: 574-584 - [c72]Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Aarti Singh, Barnabás Póczos:
Gradient Descent Can Take Exponential Time to Escape Saddle Points. NIPS 2017: 1067-1077 - [c71]Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabás Póczos:
MMD GAN: Towards Deeper Understanding of Moment Matching Network. NIPS 2017: 2203-2213 - [c70]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. NIPS 2017: 3391-3401 - [c69]Xiao Fu, Kejun Huang, Otilia Stretcu, Hyun Ah Song, Evangelos E. Papalexakis, Partha P. Talukdar, Tom M. Mitchell, Nicholas D. Sidiropoulos
, Christos Faloutsos, Barnabás Póczos:
BrainZoom: High Resolution Reconstruction from Multi-modal Brain Signals. SDM 2017: 216-227 - [c68]Pengtao Xie, Barnabás Póczos, Eric P. Xing:
Near-Orthogonality Regularization in Kernel Methods. UAI 2017 - [i53]Shashank Singh, Barnabás Póczos:
Nonparanormal Information Estimation. CoRR abs/1702.07803 (2017) - [i52]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. CoRR abs/1702.08389 (2017)