default search action
Luigi Di Stefano
Person information
- affiliation: University of Bologna, Italy
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j47]Stefano Mazzocchetti, Mirko Bevini, Giovanni Badiali, Giuseppe Lisanti, Luigi Di Stefano, Samuele Salti:
Automatic Implant Generation for Cranioplasty via Occupancy Networks. IEEE Access 12: 95185-95195 (2024) - [j46]Musawar Ali, Nicola Fioraio, Samuele Salti, Luigi Di Stefano:
AnomalyControl: Few-Shot Anomaly Generation by ControlNet Inpainting. IEEE Access 12: 192903-192914 (2024) - [j45]Pierluigi Zama Ramirez, Alex Costanzino, Fabio Tosi, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Booster: A Benchmark for Depth From Images of Specular and Transparent Surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 46(1): 85-102 (2024) - [j44]Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Neural Disparity Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 8900-8917 (2024) - [j43]Pierluigi Zama Ramirez, Luca De Luigi, Daniele Sirocchi, Adriano Cardace, Riccardo Spezialetti, Francesco Ballerini, Samuele Salti, Luigi Di Stefano:
Deep Learning on Object-Centric 3D Neural Fields. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 9940-9956 (2024) - [c147]Francesco Ballerini, Pierluigi Zama Ramirez, Roberto Mirabella, Samuele Salti, Luigi Di Stefano:
Connecting NeRFs, Images, and Text. CVPR Workshops 2024: 866-876 - [c146]Alex Costanzino, Pierluigi Zama Ramirez, Mirko Del Moro, Agostino Aiezzo, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano:
Test Time Training for Industrial Anomaly Segmentation. CVPR Workshops 2024: 3910-3920 - [c145]Pierluigi Zama Ramirez, Fabio Tosi, Luigi Di Stefano, Radu Timofte, Alex Costanzino, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Yangyang Zhang, Cailin Wu, Zhuangda He, Shuangshuang Yin, Jiaxu Dong, Yangchenxu Liu, Hao Jiang, Jun Shi, Yong A, Yixiang Jin, Dingzhe Li, Bingxin Ke, Anton Obukhov, Tinafu Wang, Nando Metzger, Shengyu Huang, Konrad Schindler, Yachuan Huang, Jiaqi Li, Junrui Zhang, Yiran Wang, Zihao Huang, Tianqi Liu, Zhiguo Cao, Pengzhi Li, Jui-Lin Wang, Wenjie Zhu, Hui Geng, Yuxin Zhang, Long Lan, Kele Xu, Tao Sun, Qisheng Xu, Sourav Saini, Aashray Gupta, Sahaj K. Mistry, Aryan Shukla, Vinit Jakhetiya, Sunil Prasad Jaiswal, Yuejin Sun, Zhuofan Zheng, Yi Ning, Jen-Hao Cheng, Hou-I Liu, Hsiang-Wei Huang, Cheng-Yen Yang, Zhongyu Jiang, Yi-Hao Peng, Aishi Huang, Jenq-Neng Hwang:
NTIRE 2024 Challenge on HR Depth from Images of Specular and Transparent Surfaces. CVPR Workshops 2024: 6499-6512 - [c144]Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, Luigi Di Stefano:
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping. CVPR 2024: 17234-17243 - [c143]Adriano Cardace, Pierluigi Zama Ramirez, Francesco Ballerini, Allan Zhou, Samuele Salti, Luigi Di Stefano:
Neural Processing of Tri-Plane Hybrid Neural Fields. ICLR 2024 - [i50]Alex Costanzino, Pierluigi Zama Ramirez, Mirko Del Moro, Agostino Aiezzo, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano:
Test Time Training for Industrial Anomaly Segmentation. CoRR abs/2404.03743 (2024) - [i49]Francesco Ballerini, Pierluigi Zama Ramirez, Roberto Mirabella, Samuele Salti, Luigi Di Stefano:
Connecting NeRFs, Images, and Text. CoRR abs/2404.07993 (2024) - [i48]Andrea Amaduzzi, Pierluigi Zama Ramirez, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano:
LLaNA: Large Language and NeRF Assistant. CoRR abs/2406.11840 (2024) - [i47]Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, Luigi Di Stefano:
Looking for Tiny Defects via Forward-Backward Feature Transfer. CoRR abs/2407.04092 (2024) - 2023
- [j42]Adriano Cardace, Andrea Conti, Pierluigi Zama Ramirez, Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano:
Boosting Multi-Modal Unsupervised Domain Adaptation for LiDAR Semantic Segmentation by Self-Supervised Depth Completion. IEEE Access 11: 85155-85164 (2023) - [j41]Pierluigi Zama Ramirez, Adriano Cardace, Luca De Luigi, Alessio Tonioni, Samuele Salti, Luigi Di Stefano:
Learning Good Features to Transfer Across Tasks and Domains. IEEE Trans. Pattern Anal. Mach. Intell. 45(8): 9981-9995 (2023) - [c142]Adriano Cardace, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. CVPR Workshops 2023: 98-109 - [c141]Pierluigi Zama Ramirez, Fabio Tosi, Luigi Di Stefano, Radu Timofte, Alex Costanzino, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Jun Shi, Dafeng Zhang, Yong A, Yixiang Jin, Dingzhe Li, Chao Li, Zhiwen Liu, Qi Zhang, Yixing Wang, Shi Yin:
NTIRE 2023 Challenge on HR Depth from Images of Specular and Transparent Surfaces. CVPR Workshops 2023: 1384-1395 - [c140]Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti, Daniele De Gregorio, Luigi Di Stefano, Samuele Salti:
ReLight My NeRF: A Dataset for Novel View Synthesis and Relighting of Real World Objects. CVPR 2023: 20762-20772 - [c139]Alex Costanzino, Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Learning Depth Estimation for Transparent and Mirror Surfaces. ICCV 2023: 9210-9221 - [c138]Andrea Amaduzzi, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano:
Looking at words and points with attention: a benchmark for text-to-shape coherence. ICCV (Workshops) 2023: 2860-2869 - [c137]Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Deep Learning on Implicit Neural Representations of Shapes. ICLR 2023 - [c136]Luca De Luigi, Damiano Bolognini, Federico Domeniconi, Daniele De Gregorio, Matteo Poggi, Luigi Di Stefano:
ScanNeRF: a Scalable Benchmark for Neural Radiance Fields. WACV 2023: 816-825 - [c135]Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Self-Distillation for Unsupervised 3D Domain Adaptation. WACV 2023: 4155-4166 - [i46]Pierluigi Zama Ramirez, Alex Costanzino, Fabio Tosi, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Booster: a Benchmark for Depth from Images of Specular and Transparent Surfaces. CoRR abs/2301.08245 (2023) - [i45]Pierluigi Zama Ramirez, Adriano Cardace, Luca De Luigi, Alessio Tonioni, Samuele Salti, Luigi Di Stefano:
Learning Good Features to Transfer Across Tasks and Domains. CoRR abs/2301.11310 (2023) - [i44]Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Deep Learning on Implicit Neural Representations of Shapes. CoRR abs/2302.05438 (2023) - [i43]Adriano Cardace, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. CoRR abs/2304.02991 (2023) - [i42]Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti, Daniele De Gregorio, Luigi Di Stefano, Samuele Salti:
ReLight My NeRF: A Dataset for Novel View Synthesis and Relighting of Real World Objects. CoRR abs/2304.10448 (2023) - [i41]Alex Costanzino, Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Learning Depth Estimation for Transparent and Mirror Surfaces. CoRR abs/2307.15052 (2023) - [i40]Andrea Amaduzzi, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano:
Looking at words and points with attention: a benchmark for text-to-shape coherence. CoRR abs/2309.07917 (2023) - [i39]Adriano Cardace, Pierluigi Zama Ramirez, Francesco Ballerini, Allan Zhou, Samuele Salti, Luigi Di Stefano:
Neural Processing of Tri-Plane Hybrid Neural Fields. CoRR abs/2310.01140 (2023) - [i38]Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, Luigi Di Stefano:
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping. CoRR abs/2312.04521 (2023) - [i37]Pierluigi Zama Ramirez, Luca De Luigi, Daniele Sirocchi, Adriano Cardace, Riccardo Spezialetti, Francesco Ballerini, Samuele Salti, Luigi Di Stefano:
Deep Learning on 3D Neural Fields. CoRR abs/2312.13277 (2023) - 2022
- [j40]Yong Dai, Weiwei Song, Yi Li, Luigi Di Stefano:
Feature disentangling and reciprocal learning with label-guided similarity for multi-label image retrieval. Neurocomputing 511: 353-365 (2022) - [j39]Matteo Poggi, Alessio Tonioni, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Continual Adaptation for Deep Stereo. IEEE Trans. Pattern Anal. Mach. Intell. 44(9): 4713-4729 (2022) - [j38]Marlon Marcon, Riccardo Spezialetti, Samuele Salti, Luciano Silva, Luigi Di Stefano:
Unsupervised Learning of Local Equivariant Descriptors for Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9687-9702 (2022) - [c134]Matteo Poggi, Pierluigi Zama Ramirez, Fabio Tosi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Cross-Spectral Neural Radiance Fields. 3DV 2022: 606-616 - [c133]Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation. CVPR 2022: 15937-15947 - [c132]Pierluigi Zama Ramirez, Fabio Tosi, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Open Challenges in Deep Stereo: the Booster Dataset. CVPR 2022: 21136-21146 - [c131]Gianluca Berardi, Luca De Luigi, Samuele Salti, Luigi Di Stefano:
Learning the Space of Deep Models. ICPR 2022: 2482-2488 - [c130]Adriano Cardace, Luca De Luigi, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Plugging Self-Supervised Monocular Depth into Unsupervised Domain Adaptation for Semantic Segmentation. WACV 2022: 1999-2009 - [c129]Adriano Cardace, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries. WACV 2022: 2010-2020 - [i36]Pierluigi Zama Ramirez, Fabio Tosi, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Open Challenges in Deep Stereo: the Booster Dataset. CoRR abs/2206.04671 (2022) - [i35]Gianluca Berardi, Luca De Luigi, Samuele Salti, Luigi Di Stefano:
Learning the Space of Deep Models. CoRR abs/2206.05194 (2022) - [i34]Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation. CoRR abs/2206.07047 (2022) - [i33]Matteo Poggi, Pierluigi Zama Ramirez, Fabio Tosi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Cross-Spectral Neural Radiance Fields. CoRR abs/2209.00648 (2022) - [i32]Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Self-Distillation for Unsupervised 3D Domain Adaptation. CoRR abs/2210.08226 (2022) - [i31]Luca De Luigi, Damiano Bolognini, Federico Domeniconi, Daniele De Gregorio, Matteo Poggi, Luigi Di Stefano:
ScanNeRF: a Scalable Benchmark for Neural Radiance Fields. CoRR abs/2211.13762 (2022) - 2021
- [j37]Daniele De Gregorio, Matteo Poggi, Pierluigi Zama Ramirez, Gianluca Palli, Stefano Mattoccia, Luigi Di Stefano:
Beyond the Baseline: 3D Reconstruction of Tiny Objects With Single Camera Stereo Robot. IEEE Access 9: 119755-119765 (2021) - [j36]Patrizia Tassinari, Marco Bovo, Stefano Benni, Simone Franzoni, Matteo Poggi, Ludovica Maria Eugenia Mammi, Stefano Mattoccia, Luigi Di Stefano, Filippo Bonora, Alberto Barbaresi, Enrica Santolini, Daniele Torreggiani:
A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Comput. Electron. Agric. 182: 106030 (2021) - [j35]Samuele Salti, Alessandro Lanza, Luigi Di Stefano:
Keypoint detection by wave propagation. J. Electronic Imaging 30(1): 013003 (2021) - [c128]Filippo Aleotti, Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Neural Disparity Refinement for Arbitrary Resolution Stereo. 3DV 2021: 207-217 - [c127]Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
RefRec: Pseudo-labels Refinement via Shape Reconstruction for Unsupervised 3D Domain Adaptation. 3DV 2021: 331-341 - [c126]Gianluca Berardi, Samuele Salti, Luigi Di Stefano:
SketchyDepth: from Scene Sketches to RGB-D Images. ICCVW 2021: 2414-2423 - [i30]Adriano Cardace, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries. CoRR abs/2110.02833 (2021) - [i29]Adriano Cardace, Luca De Luigi, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
Plugging Self-Supervised Monocular Depth into Unsupervised Domain Adaptation for Semantic Segmentation. CoRR abs/2110.06685 (2021) - [i28]Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano:
RefRec: Pseudo-labels Refinement via Shape Reconstruction for Unsupervised 3D Domain Adaptation. CoRR abs/2110.11036 (2021) - [i27]Filippo Aleotti, Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano:
Neural Disparity Refinement for Arbitrary Resolution Stereo. CoRR abs/2110.15367 (2021) - 2020
- [j34]Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, Luigi Di Stefano:
Unsupervised Domain Adaptation for Depth Prediction from Images. IEEE Trans. Pattern Anal. Mach. Intell. 42(10): 2396-2409 (2020) - [j33]Tommaso Cavallari, Stuart Golodetz, Nicholas A. Lord, Julien P. C. Valentin, Victor Adrian Prisacariu, Luigi Di Stefano, Philip H. S. Torr:
Real-Time RGB-D Camera Pose Estimation in Novel Scenes Using a Relocalisation Cascade. IEEE Trans. Pattern Anal. Mach. Intell. 42(10): 2465-2477 (2020) - [j32]Alessandro Berlati, Oliver Scheel, Luigi Di Stefano, Federico Tombari:
Ambiguity in Sequential Data: Predicting Uncertain Futures With Recurrent Models. IEEE Robotics Autom. Lett. 5(2): 2935-2942 (2020) - [j31]Daniele De Gregorio, Alessio Tonioni, Gianluca Palli, Luigi Di Stefano:
Semiautomatic Labeling for Deep Learning in Robotics. IEEE Trans Autom. Sci. Eng. 17(2): 611-620 (2020) - [c125]Pierluigi Zama Ramirez, Claudio Paternesi, Luca De Luigi, Luigi Lella, Daniele De Gregorio, Luigi Di Stefano:
Shooting Labels: 3D Semantic Labeling by Virtual Reality. AIVR 2020: 99-106 - [c124]Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Luigi Di Stefano, Stefano Mattoccia:
Distilled Semantics for Comprehensive Scene Understanding from Videos. CVPR 2020: 4653-4664 - [c123]Marco Boschi, Luigi Di Stefano, Martino Alessandrini:
SAFFIRE: System for Autonomous Feature Filtering and Intelligent ROI Estimation. ICPR Workshops (4) 2020: 552-565 - [c122]Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano:
Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings. ICPR 2020: 7419-7426 - [c121]Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, Luigi Di Stefano:
Learning to Orient Surfaces by Self-supervised Spherical CNNs. NeurIPS 2020 - [i26]Alessandro Berlati, Oliver Scheel, Luigi Di Stefano, Federico Tombari:
Ambiguity in Sequential Data: Predicting Uncertain Futures with Recurrent Models. CoRR abs/2003.10381 (2020) - [i25]Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Luigi Di Stefano, Stefano Mattoccia:
Distilled Semantics for Comprehensive Scene Understanding from Videos. CoRR abs/2003.14030 (2020) - [i24]Matteo Poggi, Alessio Tonioni, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Continual Adaptation for Deep Stereo. CoRR abs/2007.05233 (2020) - [i23]Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, Luigi Di Stefano:
Learning to Orient Surfaces by Self-supervised Spherical CNNs. CoRR abs/2011.03298 (2020) - [i22]Marco Boschi, Luigi Di Stefano, Martino Alessandrini:
SAFFIRE: System for Autonomous Feature Filtering and Intelligent ROI Estimation. CoRR abs/2012.02502 (2020) - [i21]Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano:
Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings. CoRR abs/2012.13210 (2020)
2010 – 2019
- 2019
- [j30]Alessio Tonioni, Luigi Di Stefano:
Domain invariant hierarchical embedding for grocery products recognition. Comput. Vis. Image Underst. 182: 81-92 (2019) - [j29]Oscar Rahnama, Tommaso Cavallari, Stuart Golodetz, Alessio Tonioni, Thomas Joy, Luigi Di Stefano, Simon Walker, Philip H. S. Torr:
Real-Time Highly Accurate Dense Depth on a Power Budget Using an FPGA-CPU Hybrid SoC. IEEE Trans. Circuits Syst. II Express Briefs 66-II(5): 773-777 (2019) - [c120]Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, Luigi Di Stefano:
Real-Time Self-Adaptive Deep Stereo. CVPR 2019: 195-204 - [c119]Simone Melzi, Riccardo Spezialetti, Federico Tombari, Michael M. Bronstein, Luigi Di Stefano, Emanuele Rodolà:
GFrames: Gradient-Based Local Reference Frame for 3D Shape Matching. CVPR 2019: 4629-4638 - [c118]Alessio Tonioni, Oscar Rahnama, Thomas Joy, Luigi Di Stefano, Thalaiyasingam Ajanthan, Philip H. S. Torr:
Learning to Adapt for Stereo. CVPR 2019: 9661-9670 - [c117]Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano:
Learning an Effective Equivariant 3D Descriptor Without Supervision. ICCV 2019: 6400-6409 - [c116]Pierluigi Zama Ramirez, Alessio Tonioni, Samuele Salti, Luigi Di Stefano:
Learning Across Tasks and Domains. ICCV 2019: 8109-8118 - [c115]Marlon Marcon, Riccardo Spezialetti, Samuele Salti, Luciano Silva, Luigi Di Stefano:
Boosting Object Recognition in Point Clouds by Saliency Detection. ICIAP Workshops 2019: 321-331 - [c114]Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano:
Performance Evaluation of Learned 3D Features. ICIAP (1) 2019: 519-531 - [i20]Alessio Tonioni, Luigi Di Stefano:
Domain invariant hierarchical embedding for grocery products recognition. CoRR abs/1902.00760 (2019) - [i19]Alessio Tonioni, Oscar Rahnama, Thomas Joy, Luigi Di Stefano, Thalaiyasingam Ajanthan, Philip H. S. Torr:
Learning to Adapt for Stereo. CoRR abs/1904.02957 (2019) - [i18]Pierluigi Zama Ramirez, Alessio Tonioni, Samuele Salti, Luigi Di Stefano:
Learning Across Tasks and Domains. CoRR abs/1904.04744 (2019) - [i17]Oscar Rahnama, Tommaso Cavallari, Stuart Golodetz, Alessio Tonioni, Thomas Joy, Luigi Di Stefano, Simon Walker, Philip H. S. Torr:
Real-Time Highly Accurate Dense Depth on a Power Budget using an FPGA-CPU Hybrid SoC. CoRR abs/1907.07745 (2019) - [i16]Daniele De Gregorio, Alessio Tonioni, Gianluca Palli, Luigi Di Stefano:
Semi-Automatic Labeling for Deep Learning in Robotics. CoRR abs/1908.01862 (2019) - [i15]Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, Luigi Di Stefano:
Unsupervised Domain Adaptation for Depth Prediction from Images. CoRR abs/1909.03943 (2019) - [i14]Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano:
Performance Evaluation of Learned 3D Features. CoRR abs/1909.06884 (2019) - [i13]Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano:
Learning an Effective Equivariant 3D Descriptor Without Supervision. CoRR abs/1909.06887 (2019) - [i12]Pierluigi Zama Ramirez, Claudio Paternesi, Daniele De Gregorio, Luigi Di Stefano:
Shooting Labels: 3D Semantic Labeling by Virtual Reality. CoRR abs/1910.05021 (2019) - [i11]Marlon Marcon, Riccardo Spezialetti, Samuele Salti, Luciano Silva, Luigi Di Stefano:
Boosting Object Recognition in Point Clouds by Saliency Detection. CoRR abs/1911.02286 (2019) - 2018
- [j28]Alessio Tonioni, Samuele Salti, Federico Tombari, Riccardo Spezialetti, Luigi Di Stefano:
Learning to Detect Good 3D Keypoints. Int. J. Comput. Vis. 126(1): 1-20 (2018) - [j27]Alioscia Petrelli, Luigi Di Stefano:
Learning-to-rank approach to RGB-D visual search. J. Electronic Imaging 27(05): 051212 (2018) - [c113]Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Geometry Meets Semantics for Semi-supervised Monocular Depth Estimation. ACCV (3) 2018: 298-313 - [c112]Daniele De Gregorio, Gianluca Palli, Luigi Di Stefano:
Let's Take a Walk on Superpixels Graphs: Deformable Linear Objects Segmentation and Model Estimation. ACCV (2) 2018: 662-677 - [c111]Alessio Tonioni, Eugenio Serra, Luigi Di Stefano:
A deep learning pipeline for product recognition on store shelves. IPAS 2018: 25-31 - [c110]Pierluigi Zama Ramirez, Alessio Tonioni, Luigi Di Stefano:
Exploiting semantics in adversarial training for image-level domain adaptation. IPAS 2018: 49-54 - [c109]Luca Ranalli, Luigi Di Stefano, Emanuele Plebani, Mirko Falchetto, Danilo Pau, Viviana D'Alto:
Automated Generation of a Single Shot Detector C Library from High Level Deep Learning Frameworks. RTSI 2018: 1-4 - [i10]Alessio Tonioni, Eugenio Serra, Luigi Di Stefano:
A deep learning pipeline for product recognition on store shelves. CoRR abs/1810.01733 (2018) - [i9]Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano:
Geometry meets semantics for semi-supervised monocular depth estimation. CoRR abs/1810.04093 (2018) - [i8]Daniele De Gregorio, Gianluca Palli, Luigi Di Stefano:
Let's take a Walk on Superpixels Graphs: Deformable Linear Objects Segmentation and Model Estimation. CoRR abs/1810.04461 (2018) - [i7]Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, Luigi Di Stefano:
Real-time self-adaptive deep stereo. CoRR abs/1810.05424 (2018) - [i6]Pierluigi Zama Ramirez, Alessio Tonioni, Luigi Di Stefano:
Exploiting Semantics in Adversarial Training for Image-Level Domain Adaptation. CoRR abs/1810.05852 (2018) - [i5]Tommaso Cavallari, Stuart Golodetz, Nicholas A. Lord, Julien P. C. Valentin, Victor Adrian Prisacariu, Luigi Di Stefano, Philip H. S. Torr:
Real-Time RGB-D Camera Pose Estimation in Novel Scenes using a Relocalisation Cascade. CoRR abs/1810.12163 (2018) - 2017
- [c108]Fabio Tosi, Matteo Poggi, Stefano Mattoccia, Alessio Tonioni, Luigi Di Stefano:
Learning confidence measures in the wild. BMVC 2017 - [c107]Tommaso Cavallari, Stuart Golodetz, Nicholas A. Lord, Julien P. C. Valentin, Luigi Di Stefano, Philip H. S. Torr:
On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation. CVPR 2017: 218-227 - [c106]Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, Luigi Di Stefano:
Unsupervised Adaptation for Deep Stereo. ICCV 2017: 1614-1622 - [c105]Daniele De Gregorio, Tommaso Cavallari, Luigi Di Stefano:
SkiMap++: Real-Time Mapping and Object Recognition for Robotics. ICCV Workshops 2017: 660-668 - [c104]Alioscia Petrelli, Luigi Di Stefano:
Learning to Weight Color and Depth for RGB-D Visual Search. ICIAP (1) 2017: 648-659 - [c103]