


Остановите войну!
for scientists:


default search action
Joachim M. Buhmann
Person information

- affiliation: ETH Zurich, Switzerland
- affiliation: University of Bonn, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j69]Fabian Laumer
, Mounir Amrani
, Laura Manduchi, Ami Beuret, Lena Rubi, Alina Dubatovka
, Christian M. Matter, Joachim M. Buhmann
:
Weakly supervised inference of personalized heart meshes based on echocardiography videos. Medical Image Anal. 83: 102653 (2023) - [c187]João B. S. Carvalho, Carlos Cotrini, Fabian Laumer, André Euler, Katharina Martini, Thomas Frauenfelder, Joachim M. Buhmann:
Domain Generalization for Diagnosis of Pulmonary Fibrosis Using Dose-Invariant Feature Selection. ISBI 2023: 1-5 - [i35]Zhongbin Fang, Xiangtai Li, Xia Li, Joachim M. Buhmann, Chen Change Loy, Mengyuan Liu:
Explore In-Context Learning for 3D Point Cloud Understanding. CoRR abs/2306.08659 (2023) - [i34]Lukas Klein, João B. S. Carvalho, Mennatallah El-Assady, Paolo Penna, Joachim M. Buhmann, Paul F. Jaeger:
Improving Explainability of Disentangled Representations using Multipath-Attribution Mappings. CoRR abs/2306.09035 (2023) - [i33]Ivan Ovinnikov, Joachim M. Buhmann:
Regularizing Adversarial Imitation Learning Using Causal Invariance. CoRR abs/2308.09189 (2023) - 2022
- [c186]Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann:
Statistical and computational thresholds for the planted k-densest sub-hypergraph problem. AISTATS 2022: 11615-11640 - [c185]João B. S. Carvalho, João A. Santinha, Djordje Miladinovic, Carlos Cotrini, Joachim M. Buhmann:
Holistic Modeling In Medical Image Segmentation Using Spatial Recurrence. MIDL 2022: 199-218 - [c184]Lukas Klein, João B. S. Carvalho, Mennatallah El-Assady, Paolo Penna, Joachim M. Buhmann, Paul F. Jaeger:
Improving Explainability of Disentangled Representations using Multipath-Attribution Mappings. MIDL 2022: 689-712 - [c183]Djordje Miladinovic, Kumar Shridhar, Kushal Jain, Max B. Paulus, Joachim M. Buhmann, Carl Allen:
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs. NeurIPS 2022 - [c182]Matteo Turchetta, Luca Corinzia, Scott Sussex, Amanda Burton, Juan Herrera, Ioannis Athanasiadis, Joachim M. Buhmann, Andreas Krause:
Learning Long-Term Crop Management Strategies with CyclesGym. NeurIPS 2022 - [i32]Simon Föll, Alina Dubatovka, Eugen Ernst, Martin Maritsch
, Patrik Okanovic, Gudrun Thäter, Joachim M. Buhmann, Felix Wortmann, Krikamol Muandet:
Gated Domain Units for Multi-source Domain Generalization. CoRR abs/2206.12444 (2022) - [i31]Eugene Bykovets, Yannick Metz, Mennatallah El-Assady, Daniel A. Keim, Joachim M. Buhmann:
BARReL: Bottleneck Attention for Adversarial Robustness in Vision-Based Reinforcement Learning. CoRR abs/2208.10481 (2022) - [i30]Djorde Miladinovic, Kumar Shridhar, Kushal Jain, Max B. Paulus, Joachim M. Buhmann, Carl Allen:
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs. CoRR abs/2209.12590 (2022) - [i29]Eugene Bykovets, Yannick Metz, Mennatallah El-Assady, Daniel A. Keim, Joachim M. Buhmann:
How to Enable Uncertainty Estimation in Proximal Policy Optimization. CoRR abs/2210.03649 (2022) - 2021
- [j68]Daniel Paysan
, Luis Haug, Michael Bajka, Markus Oelhafen, Joachim M. Buhmann:
Self-supervised representation learning for surgical activity recognition. Int. J. Comput. Assist. Radiol. Surg. 16(11): 2037-2044 (2021) - [j67]Viktor Wegmayr
, Joachim M. Buhmann:
Entrack: Probabilistic Spherical Regression with Entropy Regularization for Fiber Tractography. Int. J. Comput. Vis. 129(3): 656-680 (2021) - [c181]Ðorðe Miladinovic, Aleksandar Stanic, Stefan Bauer, Jürgen Schmidhuber, Joachim M. Buhmann:
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling. ICLR 2021 - [c180]Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann:
On maximum-likelihood estimation in the all-or-nothing regime. ISIT 2021: 1106-1111 - [i28]Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann:
On maximum-likelihood estimation in the all-or-nothing regime. CoRR abs/2101.09994 (2021) - [i27]Djordje Miladinovic, Aleksandar Stanic, Stefan Bauer, Jürgen Schmidhuber, Joachim M. Buhmann:
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling. CoRR abs/2103.08877 (2021) - [i26]João B. S. Carvalho, João A. Santinha, Djordje Miladinovic, Joachim M. Buhmann:
Spatially Dependent U-Nets: Highly Accurate Architectures for Medical Imaging Segmentation. CoRR abs/2103.11713 (2021) - 2020
- [j66]Luca Corinzia, Fabian Laumer, Alessandro Candreva
, Maurizio Taramasso, Francesco Maisano, Joachim M. Buhmann:
Neural collaborative filtering for unsupervised mitral valve segmentation in echocardiography. Artif. Intell. Medicine 110: 101975 (2020) - [c179]Patrick Schwab, Lorenz Linhardt
, Stefan Bauer, Joachim M. Buhmann, Walter Karlen:
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves. AAAI 2020: 5612-5619 - [c178]Aytunc Sahin, Yatao Bian, Joachim M. Buhmann, Andreas Krause:
From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models. ICML 2020: 8388-8397 - [c177]Fabian Laumer, Gabriel Fringeli, Alina Dubatovka, Laura Manduchi, Joachim M. Buhmann:
DeepHeartBeat: Latent trajectory learning of cardiac cycles using cardiac ultrasounds. ML4H@NeurIPS 2020: 194-212 - [c176]Viktor Wegmayr, Aytunc Sahin, Björn Sæmundsson, Joachim M. Buhmann:
Instance Segmentation for the Quantification of Microplastic Fiber Images. WACV 2020: 2199-2206 - [i25]Aytunc Sahin, Yatao Bian, Joachim M. Buhmann, Andreas Krause:
From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models. CoRR abs/2006.01293 (2020) - [i24]Yatao Bian, Joachim M. Buhmann, Andreas Krause:
Continuous Submodular Function Maximization. CoRR abs/2006.13474 (2020) - [i23]Luca Corinzia, Fabian Laumer, Alessandro Candreva, Maurizio Taramasso, Francesco Maisano, Joachim M. Buhmann:
Neural collaborative filtering for unsupervised mitral valve segmentation in echocardiography. CoRR abs/2008.05867 (2020) - [i22]Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann:
Statistical and computational thresholds for the planted k-densest sub-hypergraph problem. CoRR abs/2011.11500 (2020)
2010 – 2019
- 2019
- [j65]Ðorðe Miladinovic, Christine Muheim
, Stefan Bauer, Andrea Spinnler, Daniela Noain
, Mojtaba Bandarabadi
, Benjamin Gallusser
, Gabriel Krummenacher
, Christian R. Baumann
, Antoine Adamantidis
, Steven A. Brown, Joachim M. Buhmann:
SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species. PLoS Comput. Biol. 15(4) (2019) - [c175]Luca Corinzia, Jesse Provost, Alessandro Candreva
, Maurizio Tamarasso, Francesco Maisano
, Joachim M. Buhmann:
Unsupervised Mitral Valve Segmentation in Echocardiography with Neural Network Matrix Factorization. AIME 2019: 410-419 - [c174]Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann:
Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs. AISTATS 2019: 1351-1360 - [c173]Viktor Wegmayr, Giacomo Giuliari, Joachim M. Buhmann:
Entrack: A Data-Driven Maximum-Entropy Approach to Fiber Tractography. GCPR 2019: 232-244 - [c172]Viktor Wegmayr, Maurice Hörold, Joachim M. Buhmann:
Generative Aging of Brain MR-Images and Prediction of Alzheimer Progression. GCPR 2019: 247-260 - [c171]Ðorðe Miladinovic, Muhammad Waleed Gondal, Bernhard Schölkopf, Joachim M. Buhmann, Stefan Bauer:
Disentangled State Space Models: Unsupervised Learning of dynamics across Heterogeneous Environments. DGS@ICLR 2019 - [c170]Yatao An Bian, Joachim M. Buhmann, Andreas Krause
:
Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference. ICML 2019: 644-653 - [c169]Viktor Wegmayr, Maurice Hörold, Joachim M. Buhmann:
Generative Aging Of Brain MRI For Early Prediction Of MCI-AD Conversion. ISBI 2019: 1042-1046 - [c168]Luca Corinzia, Paolo Penna, Luca Mondada, Joachim M. Buhmann:
Exact Recovery for a Family of Community-Detection Generative Models. ISIT 2019: 415-419 - [i21]Luca Corinzia, Paolo Penna, Luca Mondada, Joachim M. Buhmann:
Exact Recovery for a Family of Community-Detection Generative Models. CoRR abs/1901.06799 (2019) - [i20]Patrick Schwab, Lorenz Linhardt
, Stefan Bauer, Joachim M. Buhmann, Walter Karlen:
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves. CoRR abs/1902.00981 (2019) - [i19]Ðorðe Miladinovic, Muhammad Waleed Gondal, Bernhard Schölkopf, Joachim M. Buhmann, Stefan Bauer:
Disentangled State Space Representations. CoRR abs/1906.03255 (2019) - [i18]Luca Corinzia, Joachim M. Buhmann:
Variational Federated Multi-Task Learning. CoRR abs/1906.06268 (2019) - 2018
- [j64]Joachim M. Buhmann
, Alexey Gronskiy, Matús Mihalák, Tobias Pröger, Rastislav Srámek, Peter Widmayer:
Robust optimization in the presence of uncertainty: A generic approach. J. Comput. Syst. Sci. 94: 135-166 (2018) - [j63]Stefan Frässle
, Ekaterina I. Lomakina, Lars Kasper
, Zina M. Manjaly, Alexander P. Leff
, Klaas P. Pruessmann, Joachim M. Buhmann, Klaas E. Stephan:
A generative model of whole-brain effective connectivity. NeuroImage 179: 505-529 (2018) - [j62]Nico S. Gorbach, Marc Tittgemeyer, Joachim M. Buhmann:
Pipeline validation for connectivity-based cortex parcellation. NeuroImage 181: 219-234 (2018) - [j61]Joachim M. Buhmann, Julien Dumazert, Alexey Gronskiy
, Wojciech Szpankowski:
Posterior agreement for large parameter-rich optimization problems. Theor. Comput. Sci. 745: 1-22 (2018) - [j60]Gabriel Krummenacher
, Cheng Soon Ong, Stefan Koller, Seijin Kobayashi, Joachim M. Buhmann:
Wheel Defect Detection With Machine Learning. IEEE Trans. Intell. Transp. Syst. 19(4): 1176-1187 (2018) - [c167]Joachim M. Buhmann:
VIS Capstone Address : Can I believe what I see?-Information theoretic algorithm validation. VAST 2018: 1 - [c166]Viktor Wegmayr, Giacomo Giuliari, Stefan Holdener, Joachim M. Buhmann:
Data-driven fiber tractography with neural networks. ISBI 2018: 1030-1033 - [c165]Alexey Gronskiy, Joachim M. Buhmann, Wojciech Szpankowski:
Free Energy Asymptotics for Problems with Weak Solution Dependencies. ISIT 2018: 2132-2136 - [c164]Viktor Wegmayr, Sai Aitharaju, Joachim M. Buhmann:
Classification of brain MRI with big data and deep 3D convolutional neural networks. Medical Imaging: Computer-Aided Diagnosis 2018: 105751S - [i17]Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann:
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs. CoRR abs/1804.04378 (2018) - [i16]An Bian, Joachim M. Buhmann, Andreas Krause:
Optimal DR-Submodular Maximization and Applications to Provable Mean Field Inference. CoRR abs/1805.07482 (2018) - 2017
- [j59]Julian G. Zilly, Joachim M. Buhmann, Dwarikanath Mahapatra:
Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Medical Imaging Graph. 55: 28-41 (2017) - [j58]Stefan Frässle
, Ekaterina I. Lomakina, Adeel Razi
, Karl J. Friston
, Joachim M. Buhmann, Klaas E. Stephan
:
Regression DCM for fMRI. NeuroImage 155: 406-421 (2017) - [c163]Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause:
Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains. AISTATS 2017: 111-120 - [c162]Joachim M. Buhmann, Julien Dumazert, Alexey Gronskiy, Wojciech Szpankowski:
Phase Transitions in Parameter Rich Optimization Problems. ANALCO 2017: 148-155 - [c161]Nico S. Gorbach, Andrew An Bian
, Benjamin Fischer, Stefan Bauer, Joachim M. Buhmann:
Model Selection for Gaussian Process Regression. GCPR 2017: 306-318 - [c160]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. ICML 2017: 498-507 - [c159]Gabriele Abbati, Stefan Bauer, Sebastian Winklhofer, Peter J. Schüffler, Ulrike Held, Jakob M. Burgstaller, Johann Steurer, Joachim M. Buhmann:
MRI-Based Surgical Planning for Lumbar Spinal Stenosis. MICCAI (3) 2017: 116-124 - [c158]An Bian, Kfir Yehuda Levy, Andreas Krause, Joachim M. Buhmann:
Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms. NIPS 2017: 486-496 - [c157]Nico S. Gorbach, Stefan Bauer, Joachim M. Buhmann:
Scalable Variational Inference for Dynamical Systems. NIPS 2017: 4806-4815 - [c156]Stefan Bauer, Nico S. Gorbach, Ðorðe Miladinovic, Joachim M. Buhmann:
Efficient and Flexible Inference for Stochastic Systems. NIPS 2017: 6988-6998 - [i15]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. CoRR abs/1703.02100 (2017) - [i14]An Bian, Kfir Y. Levy, Andreas Krause, Joachim M. Buhmann:
Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms. CoRR abs/1711.02515 (2017) - 2016
- [j57]Dwarikanath Mahapatra, Franciscus M. Vos, Joachim M. Buhmann:
Active learning based segmentation of Crohns disease from abdominal MRI. Comput. Methods Programs Biomed. 128: 75-85 (2016) - [c155]Dmitry Laptev, Nikolay Savinov, Joachim M. Buhmann, Marc Pollefeys
:
TI-POOLING: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks. CVPR 2016: 289-297 - [c154]Yatao Bian
, Alexey Gronskiy, Joachim M. Buhmann:
Information-theoretic analysis of MaxCut algorithms. ITA 2016: 1-5 - [c153]Gabriel Krummenacher, Brian McWilliams, Yannic Kilcher, Joachim M. Buhmann, Nicolai Meinshausen:
Scalable Adaptive Stochastic Optimization Using Random Projections. NIPS 2016: 1750-1758 - [i13]Thomas J. Fuchs, Joachim M. Buhmann:
Computational Pathology: Challenges and Promises for Tissue Analysis. CoRR abs/1601.00027 (2016) - [i12]Dmitry Laptev, Nikolay Savinov, Joachim M. Buhmann, Marc Pollefeys:
TI-POOLING: transformation-invariant pooling for feature learning in Convolutional Neural Networks. CoRR abs/1604.06318 (2016) - [i11]Stefan Bauer, Nicolas Carion, Peter J. Schüffler, Thomas J. Fuchs, Peter J. Wild, Joachim M. Buhmann:
Multi-Organ Cancer Classification and Survival Analysis. CoRR abs/1606.00897 (2016) - [i10]Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause:
Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains. CoRR abs/1606.05615 (2016) - [i9]Yatao Bian, Alexey Gronskiy, Joachim M. Buhmann:
Greedy MAXCUT Algorithms and their Information Content. CoRR abs/1609.00810 (2016) - [i8]Gabriel Krummenacher, Brian McWilliams, Yannic Kilcher, Joachim M. Buhmann, Nicolai Meinshausen:
Scalable Adaptive Stochastic Optimization Using Random Projections. CoRR abs/1611.06652 (2016) - 2015
- [j56]Andreas P. Streich, Joachim M. Buhmann:
Asymptotic analysis of estimators on multi-label data. Mach. Learn. 99(3): 373-409 (2015) - [j55]Ekaterina I. Lomakina, Saee Paliwal, Andreea Oliviana Diaconescu
, Kay Henning Brodersen
, Eduardo A. Aponte, Joachim M. Buhmann, Klaas E. Stephan
:
Inversion of hierarchical Bayesian models using Gaussian processes. NeuroImage 118: 133-145 (2015) - [c152]David Balduzzi, Hastagiri Vanchinathan, Joachim M. Buhmann:
Kickback Cuts Backprop's Red-Tape: Biologically Plausible Credit Assignment in Neural Networks. AAAI 2015: 485-491 - [c151]Dmitry Laptev, Joachim M. Buhmann:
Transformation-Invariant Convolutional Jungles. CVPR 2015: 3043-3051 - [c150]Dwarikanath Mahapatra, Joachim M. Buhmann:
A field of experts model for optic cup and disc segmentation from retinal fundus images. ISBI 2015: 218-221 - [c149]Dwarikanath Mahapatra, Peter J. Schüffler, Frans Vos, Joachim M. Buhmann:
Crohn's disease segmentation from MRI using learned image priors. ISBI 2015: 625-628 - [c148]Dwarikanath Mahapatra, Zhang Li, Frans Vos, Joachim M. Buhmann:
Joint segmentation and groupwise registration of cardiac DCE MRI using sparse data representations. ISBI 2015: 1312-1315 - [c147]Yatao Bian
, Alexey Gronskiy, Joachim M. Buhmann:
Greedy MaxCut algorithms and their information content. ITW 2015: 1-5 - [c146]Dwarikanath Mahapatra, Joachim M. Buhmann:
Visual Saliency Based Active Learning for Prostate MRI Segmentation. MLMI 2015: 9-16 - [c145]Julian G. Zilly, Joachim M. Buhmann, Dwarikanath Mahapatra:
Boosting Convolutional Filters with Entropy Sampling for Optic Cup and Disc Image Segmentation from Fundus Images. MLMI 2015: 136-143 - 2014
- [j54]Dwarikanath Mahapatra, Joachim M. Buhmann:
Prostate MRI Segmentation Using Learned Semantic Knowledge and Graph Cuts. IEEE Trans. Biomed. Eng. 61(3): 756-764 (2014) - [c144]Dmitry Laptev, Joachim M. Buhmann:
Convolutional Decision Trees for Feature Learning and Segmentation. GCPR 2014: 95-106 - [c143]Dmitry Laptev, Joachim M. Buhmann:
SuperSlicing Frame Restoration for Anisotropic ssTEM and Video Data. Neural Connectomics 2014: 91-101 - [c142]Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A. W. Tielbeek, Jesica Makanyanga, Jaap Stoker
, Stuart A. Taylor
, Franciscus M. Vos, Joachim M. Buhmann:
Active learning based segmentation of Crohn's disease using principles of visual saliency. ISBI 2014: 226-229 - [c141]Dmitry Laptev, A. Veznevets, Joachim M. Buhmann:
Superslicing frame restoration for anisotropic sstem. ISBI 2014: 1198-1201 - [c140]Guangyao Zhou, Stuart Geman, Joachim M. Buhmann:
Sparse feature selection by information theory. ISIT 2014: 926-930 - [c139]Alexey Gronskiy, Joachim M. Buhmann:
How informative are Minimum Spanning Tree algorithms? ISIT 2014: 2277-2281 - [c138]Peter J. Schüffler, Dwarikanath Mahapatra, Robiel Naziroglu, Zhang Li, Carl A. J. Puylaert, Rado Andriantsimiavona, Franciscus M. Vos, Doug A. Pendsé, C. Yung Nio, Jaap Stoker
, Stuart A. Taylor
, Joachim M. Buhmann:
Semi-automatic Crohn's Disease Severity Estimation on MR Imaging. ABDI@MICCAI 2014: 128-138 - [c137]Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A. W. Tielbeek, Carl A. J. Puylaert, Jesica C. Makanyanga, Alex Menys, Rado Andriantsimiavona, Jaap Stoker
, Stuart A. Taylor
, Franciscus M. Vos, Joachim M. Buhmann:
Combining Multiple Expert Annotations Using Semi-supervised Learning and Graph Cuts for Crohn's Disease Segmentation. ABDI@MICCAI 2014: 139-147 - [c136]Brian McWilliams, Gabriel Krummenacher, Mario Lucic, Joachim M. Buhmann:
Fast and Robust Least Squares Estimation in Corrupted Linear Models. NIPS 2014: 415-423 - [i7]David Balduzzi, Hastagiri Vanchinathan, Joachim M. Buhmann:
Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks. CoRR abs/1411.6191 (2014) - 2013
- [j53]Tanja Käser, Gian-Marco Baschera, Alberto Giovanni Busetto, Severin Klingler, Barbara Solenthaler, Joachim M. Buhmann, Markus H. Gross:
Towards a Framework for Modelling Engagement Dynamics in Multiple Learning Domains. Int. J. Artif. Intell. Educ. 22(1-2): 59-83 (2013) - [j52]Alberto Giovanni Busetto, Alain Hauser, Gabriel Krummenacher, Mikael Sunnåker
, Sotiris Dimopoulos, Cheng Soon Ong, Jörg Stelling, Joachim M. Buhmann:
Near-optimal experimental design for model selection in systems biology. Bioinform. 29(20): 2625-2632 (2013) - [j51]Dwarikanath Mahapatra, Peter Schueffler
, Jeroen A. W. Tielbeek, Joachim M. Buhmann, Franciscus M. Vos:
A Supervised Learning Approach for Crohn's Disease Detection Using Higher-Order Image Statistics and a Novel Shape Asymmetry Measure. J. Digit. Imaging 26(5): 920-931 (2013) - [j50]Kay Henning Brodersen, Jean Daunizeau
, Christoph Mathys
, Justin R. Chumbley, Joachim M. Buhmann, Klaas E. Stephan
:
Variational Bayesian mixed-effects inference for classification studies. NeuroImage 76: 345-361 (2013) - [j49]Mario Frank, Joachim M. Buhmann, David A. Basin:
Role Mining with Probabilistic Models. ACM Trans. Inf. Syst. Secur. 15(4): 15:1-15:28 (2013) - [j48]Dwarikanath Mahapatra, Peter J. Schüffler
, Jeroen A. W. Tielbeek, Jesica Makanyanga, Jaap Stoker
, Stuart A. Taylor
, Franciscus M. Vos, Joachim M. Buhmann:
Automatic Detection and Segmentation of Crohn's Disease Tissues From Abdominal MRI. IEEE Trans. Medical Imaging 32(12): 2332-2347 (2013) - [c135]Ludwig M. Busse, Morteza Haghir Chehreghani, Joachim M. Buhmann:
Approximate Sorting. GCPR 2013: 142-152 - [c134]Gabriel Krummenacher, Cheng Soon Ong, Joachim M. Buhmann:
Ellipsoidal Multiple Instance Learning. ICML (2) 2013: 73-81 - [c133]Joachim M. Buhmann, Matús Mihalák, Rastislav Srámek, Peter Widmayer:
Robust optimization in the presence of uncertainty. ITCS 2013: 505-514 - [c132]Dwarikanath Mahapatra, Peter J. Schüffler
, Jeroen A. W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann:
Crohn's disease tissue segmentation from abdominal MRI using semantic information and graph cuts. ISBI 2013: 358-361 - [c131]Dwarikanath Mahapatra, Alexander Vezhnevets, Peter J. Schüffler
, Jeroen A. W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann:
Weakly supervised semantic segmentation of Crohn's disease tissues from abdominal MRI. ISBI 2013: 844-847 - [c130]Dwarikanath Mahapatra, Joachim M. Buhmann:
Automatic cardiac RV segmentation using semantic information with graph cuts. ISBI 2013: 1106-1109 - [c129]Peter J. Schüffler
, Dwarikanath Mahapatra, Jeroen A. W. Tielbeek, Franciscus M. Vos, Jesica Makanyanga, Doug Pendsé, C. Yung Nio, Jaap Stoker, Stuart A. Taylor
, Joachim M. Buhmann:
A Model Development Pipeline for Crohn's Disease Severity Assessment from Magnetic Resonance Images. Abdominal Imaging 2013: 1-10 - [c128]Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A. W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann:
Semi-Supervised and Active Learning for Automatic Segmentation of Crohn's Disease. MICCAI (2) 2013: 214-221 - [c127]Dwarikanath Mahapatra, Peter J. Schüffler
, Jeroen A. W. Tielbeek, Franciscus M. Vos, Joachim M. Buhmann:
Localizing and segmenting Crohn's disease affected regions in abdominal MRI using novel context features. Medical Imaging: Image Processing 2013: 86693K - [c126]Brian McWilliams, David Balduzzi, Joachim M. Buhmann:
Correlated random features for fast semi-supervised learning. NIPS 2013: 440-448 - [p4]Joachim M. Buhmann:
SIMBAD: Emergence of Pattern Similarity. Similarity-Based Pattern Analysis and Recognition 2013: 45-64 - [p3]Volker Roth
, Thomas J. Fuchs, Julia E. Vogt, Sandhya Prabhakaran, Joachim M. Buhmann:
Structure Preserving Embedding of Dissimilarity Data. Similarity-Based Pattern Analysis and Recognition 2013: 157-177 - [p2]