


default search action
13. AISTATS 2010: Sardinia, Italy
- Yee Whye Teh, D. Mike Titterington:

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010. JMLR Proceedings 9, JMLR.org 2010 - Yee Whye Teh, D. Mike Titterington:

Preface. - Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani:

Learning the Structure of Deep Sparse Graphical Models. 1-8 - Alekh Agarwal, Peter L. Bartlett, Max Dama:

Optimal Allocation Strategies for the Dark Pool Problem. 9-16 - Morteza Alamgir, Moritz Grosse-Wentrup, Yasemin Altun:

Multitask Learning for Brain-Computer Interfaces. 17-24 - Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, Neil D. Lawrence:

Efficient Multioutput Gaussian Processes through Variational Inducing Kernels. 25-32 - Arthur U. Asuncion, Qiang Liu, Alexander Ihler, Padhraic Smyth:

Learning with Blocks: Composite Likelihood and Contrastive Divergence. 33-40 - Haakon Michael Austad, Nial Friel:

Deterministic Bayesian inference for the p* model. 41-48 - Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Corinna Cortes, Mehryar Mohri:

Half Transductive Ranking. 49-56 - Gilles Blanchard, Nicole Krämer:

Kernel Partial Least Squares is Universally Consistent. 57-64 - Antoine Bordes, Nicolas Usunier, Ronan Collobert, Jason Weston:

Towards Understanding Situated Natural Language. 65-72 - Hei Chan, Manabu Kuroki:

Using Descendants as Instrumental Variables for the Identification of Direct Causal Effects in Linear SEMs. 73-80 - Shaunak Chatterjee, Stuart Russell:

Why are DBNs sparse? 81-88 - Anton Chechetka, Carlos Guestrin:

Focused Belief Propagation for Query-Specific Inference. 89-96 - Yutian Chen, Max Welling:

Parametric Herding. 97-104 - Fabio Corradi:

Mass Fatality Incident Identification based on nuclear DNA evidence. 105-112 - Corinna Cortes, Mehryar Mohri, Ameet Talwalkar:

On the Impact of Kernel Approximation on Learning Accuracy. 113-120 - Botond Cseke, Tom Heskes:

Improving posterior marginal approximations in latent Gaussian models. 121-128 - Shai Ben-David, Tyler Lu, Teresa Luu, Dávid Pál:

Impossibility Theorems for Domain Adaptation. 129-136 - Ofer Dekel, Ohad Shamir:

Multiclass-Multilabel Classification with More Classes than Examples. 137-144 - Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio, Pascal Vincent, Olivier Delalleau:

Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines. 145-152 - Paramveer S. Dhillon, Dean P. Foster, Lyle H. Ungar:

Feature Selection using Multiple Streams. 153-160 - Christos Dimitrakakis:

Bayesian variable order Markov models. 161-168 - Nan Ding, Yuan (Alan) Qi, Rongjing Xiang, Ian M. Molloy, Ninghui Li:

Nonparametric Bayesian Matrix Factorization by Power-EP. 169-176 - Trinh Minh Tri Do, Thierry Artières:

Neural conditional random fields. 177-184 - Frederick Eberhardt, Patrik O. Hoyer, Richard Scheines:

Combining Experiments to Discover Linear Cyclic Models with Latent Variables. 185-192 - Michael Eichler:

Graphical Gaussian modelling of multivariate time series with latent variables. 193-200 - Dumitru Erhan, Aaron C. Courville, Yoshua Bengio, Pascal Vincent:

Why Does Unsupervised Pre-training Help Deep Learning? 201-208 - Ayse Erkan, Yasemin Altun:

Semi-Supervised Learning via Generalized Maximum Entropy. 209-216 - Raphael Fonteneau, Susan A. Murphy, Louis Wehenkel, Damien Ernst:

Model-Free Monte Carlo-like Policy Evaluation. 217-224 - Florence Forbes, Senan Doyle, Daniel García-Lorenzo, Christian Barillot, Michel Dojat:

A Weighted Multi-Sequence Markov Model For Brain Lesion Segmentation. 225-232 - Cameron E. Freer, Daniel M. Roy:

Posterior distributions are computable from predictive distributions. 233-240 - Thomas Furmston, David Barber:

Variational methods for Reinforcement Learning. 241-248 - Xavier Glorot

, Yoshua Bengio:
Understanding the difficulty of training deep feedforward neural networks. 249-256 - Vibhav Gogate

, Rina Dechter:
On Combining Graph-based Variance Reduction schemes. 257-264 - Dian Gong, Fei Sha, Gérard G. Medioni:

Locally Linear Denoising on Image Manifolds. 265-272 - Steffen Grünewälder, Jean-Yves Audibert, Manfred Opper, John Shawe-Taylor:

Regret Bounds for Gaussian Process Bandit Problems. 273-280 - Hui Guo, A. Philip Dawid:

Sufficient covariates and linear propensity analysis. 281-288 - Shengbo Guo, Scott Sanner:

Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries. 289-296 - Michael Gutmann, Aapo Hyvärinen:

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. 297-304 - Timothy Hancock, Hiroshi Mamitsuka:

Boosted Optimization for Network Classification. 305-312 - Lauren Hannah, David M. Blei, Warren B. Powell:

Dirichlet Process Mixtures of Generalized Linear Models. 313-320 - Steve Hanneke, Liu Yang:

Negative Results for Active Learning with Convex Losses. 321-325 - Philipp Hennig, David H. Stern, Thore Graepel:

Coherent Inference on Optimal Play in Game Trees. 326-333 - Bert Huang, Tony Jebara:

Collaborative Filtering via Rating Concentration. 334-341 - Jim C. Huang, Nebojsa Jojic:

Maximum-likelihood learning of cumulative distribution functions on graphs. 342-349 - Tzu-Kuo Huang, Le Song, Jeff G. Schneider:

Learning Nonlinear Dynamic Models from Non-sequenced Data. 350-357 - Tommi S. Jaakkola, David A. Sontag, Amir Globerson, Marina Meila:

Learning Bayesian Network Structure using LP Relaxations. 358-365 - Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:

Structured Sparse Principal Component Analysis. 366-373 - Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Manuel Davy:

Nonlinear functional regression: a functional RKHS approach. 374-380 - Sham M. Kakade, Ohad Shamir, Karthik Sindharan, Ambuj Tewari:

Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity. 381-388 - Alexandros Karatzoglou, Alexander J. Smola, Markus Weimer:

Collaborative Filtering on a Budget. 389-396 - Jingu Kim, Haesun Park:

Fast Active-set-type Algorithms for L1-regularized Linear Regression. 397-404 - Marius Kloft, Pavel Laskov:

Online Anomaly Detection under Adversarial Impact. 405-412 - Mladen Kolar, Eric P. Xing:

Ultra-high Dimensional Multiple Output Learning With Simultaneous Orthogonal Matching Pursuit: Screening Approach. 413-420 - Branislav Kveton, Michal Valko, Ali Rahimi, Ling Huang:

Semi-Supervised Learning with Max-Margin Graph Cuts. 421-428 - Nevena Lazic, Brendan J. Frey, Parham Aarabi:

Solving the Uncapacitated Facility Location Problem Using Message Passing Algorithms. 429-436 - Guy Lever:

Relating Function Class Complexity and Cluster Structure in the Function Domain with Applications to Transduction. 437-444 - Fuxin Li, Cristian Sminchisescu:

The Feature Selection Path in Kernel Methods. 445-452 - Jun Li, Dacheng Tao:

Simple Exponential Family PCA. 453-460 - Han Liu, Jian Zhang, Xiaoye Jiang, Jun Liu:

The Group Dantzig Selector. 461-468 - Alexander Lorbert, Peter J. Ramadge:

Descent Methods for Tuning Parameter Refinement. 469-476 - Alexander Lorbert, David J. Eis, Victoria Kostina, David M. Blei, Peter J. Ramadge:

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net. 477-484 - Tyler Lu, Dávid Pál, Martin Pal:

Contextual Multi-Armed Bandits. 485-492 - Justin Ma, Alex Kulesza, Mark Dredze, Koby Crammer, Lawrence K. Saul, Fernando Pereira:

Exploiting Feature Covariance in High-Dimensional Online Learning. 493-500 - Kai Mao, Feng Liang, Sayan Mukherjee:

Supervised Dimension Reduction Using Bayesian Mixture Modeling. 501-508 - Benjamin M. Marlin, Kevin Swersky, Bo Chen, Nando de Freitas:

Inductive Principles for Restricted Boltzmann Machine Learning. 509-516 - James Martens, Ilya Sutskever:

Parallelizable Sampling of Markov Random Fields. 517-524 - Julian J. McAuley, Tibério S. Caetano:

Exploiting Within-Clique Factorizations in Junction-Tree Algorithms. 525-532 - Mehryar Mohri, Pedro J. Moreno, Eugene Weinstein:

Discriminative Topic Segmentation of Text and Speech. 533-540 - Iain Murray, Ryan Prescott Adams, David J. C. MacKay:

Elliptical slice sampling. 541-548 - Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Shing-hon Lau, Steven J. Lee, Satish Rao, Anthony Tran, J. Doug Tygar:

Near-Optimal Evasion of Convex-Inducing Classifiers. 549-556 - Duy Nguyen-Tuong, Jan Peters:

Incremental Sparsification for Real-time Online Model Learning. 557-564 - Yung-Kyun Noh, Byoung-Tak Zhang, Daniel D. Lee:

Fluid Dynamics Models for Low Rank Discriminant Analysis. 565-572 - Jimmy Olsson, Jonas Ströjby:

Approximation of hidden Markov models by mixtures of experts with application to particle filtering. 573-580 - Silvia Pandolfi, Francesco Bartolucci, Nial Friel:

A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection. 581-588 - Pekka Parviainen, Mikko Koivisto:

Bayesian structure discovery in Bayesian networks with less space. 589-596 - Jonas Peters, Dominik Janzing, Bernhard Schölkopf:

Identifying Cause and Effect on Discrete Data using Additive Noise Models. 597-604 - Barnabás Póczos, Sergey Kirshner, Csaba Szepesvári:

REGO: Rank-based Estimation of Renyi Information using Euclidean Graph Optimization. 605-612 - Piyush Rai, Hal Daumé III:

Infinite Predictor Subspace Models for Multitask Learning. 613-620 - Marc'Aurelio Ranzato, Alex Krizhevsky, Geoffrey E. Hinton:

Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images. 621-628 - Vikas C. Raykar, Linda H. Zhao:

Nonparametric prior for adaptive sparsity. 629-636 - Mark D. Reid, Robert C. Williamson:

Convexity of Proper Composite Binary Losses. 637-644 - Jaakko Riihimäki, Aki Vehtari:

Gaussian processes with monotonicity information. 645-652 - Lorenzo Rosasco, Matteo Santoro, Sofia Mosci, Alessandro Verri, Silvia Villa:

A Regularization Approach to Nonlinear Variable Selection. 653-660 - Stéphane Ross, Drew Bagnell:

Efficient Reductions for Imitation Learning. 661-668 - Andreas Ruttor, Manfred Opper:

Approximate parameter inference in a stochastic reaction-diffusion model. 669-676 - Hannes P. Saal, Jo-Anne Ting, Sethu Vijayakumar:

Active Sequential Learning with Tactile Feedback. 677-684 - Sivan Sabato, Nathan Srebro, Naftali Tishby:

Reducing Label Complexity by Learning From Bags. 685-692 - Ruslan Salakhutdinov, Hugo Larochelle:

Efficient Learning of Deep Boltzmann Machines. 693-700 - Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun, Trevor Darrell:

Factorized Orthogonal Latent Spaces. 701-708 - Mark Schmidt, Kevin P. Murphy:

Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials. 709-716 - Nic Schraudolph:

Polynomial-Time Exact Inference in NP-Hard Binary MRFs via Reweighted Perfect Matching. 717-724 - Kevin Sharp, Magnus Rattray:

Dense Message Passing for Sparse Principal Component Analysis. 725-732 - Pannagadatta K. Shivaswamy, Tony Jebara:

Empirical Bernstein Boosting. 733-740 - Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon:

Reduced-Rank Hidden Markov Models. 741-748 - Aarti Singh, Robert D. Nowak, A. Robert Calderbank:

Detecting Weak but Hierarchically-Structured Patterns in Networks. 749-756 - Nikolai Slavov:

Inference of Sparse Networks with Unobserved Variables. Application to Gene Regulatory Networks. 757-764 - Le Song, Arthur Gretton, Carlos Guestrin:

Nonparametric Tree Graphical Models. 765-772 - Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R. G. Lanckriet:

On the relation between universality, characteristic kernels and RKHS embedding of measures. 773-780 - Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara:

Conditional Density Estimation via Least-Squares Density Ratio Estimation. 781-788 - Ilya Sutskever, Tijmen Tieleman:

On the Convergence Properties of Contrastive Divergence. 789-795 - Charles Sutton, Michael I. Jordan:

Inference and Learning in Networks of Queues. 796-803 - Taiji Suzuki, Masashi Sugiyama:

Sufficient Dimension Reduction via Squared-loss Mutual Information Estimation. 804-811 - Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel:

HOP-MAP: Efficient Message Passing with High Order Potentials. 812-819 - Matus Telgarsky, Andrea Vattani:

Hartigan's Method: k-means Clustering without Voronoi. 820-827 - Evangelos A. Theodorou, Jonas Buchli, Stefan Schaal:

Learning Policy Improvements with Path Integrals. 828-835 - Ivan Titov, Alexandre Klementiev, Kevin Small, Dan Roth:

Unsupervised Aggregation for Classification Problems with Large Numbers of Categories. 836-843 - Michalis K. Titsias, Neil D. Lawrence:

Bayesian Gaussian Process Latent Variable Model. 844-851 - Péter Torma, András György, Csaba Szepesvári:

A Markov-Chain Monte Carlo Approach to Simultaneous Localization and Mapping. 852-859 - Sofia Triantafilou, Ioannis Tsamardinos, Ioannis G. Tollis:

Learning Causal Structure from Overlapping Variable Sets. 860-867 - Ryan D. Turner, Marc Peter Deisenroth, Carl Edward Rasmussen:

State-Space Inference and Learning with Gaussian Processes. 868-875 - Yener Ülker, Bilge Günsel, Ali Taylan Cemgil:

Sequential Monte Carlo Samplers for Dirichlet Process Mixtures. 876-883 - Nicolas Usunier, Antoine Bordes, Léon Bottou:

Guarantees for Approximate Incremental SVMs. 884-891 - Hanna M. Wallach, Shane T. Jensen, Lee H. Dicker, Katherine A. Heller:

An Alternative Prior Process for Nonparametric Bayesian Clustering. 892-899 - Shijun Wang, Rong Jin, Hamed Valizadegan:

A Potential-based Framework for Online Multi-class Learning with Partial Feedback. 900-907 - Zhuang Wang, Slobodan Vucetic:

Online Passive-Aggressive Algorithms on a Budget. 908-915 - David J. Weiss, Benjamin Taskar:

Structured Prediction Cascades. 916-923 - Sinead Williamson, Peter Orbanz, Zoubin Ghahramani:

Dependent Indian Buffet Processes. 924-931 - Yan Yan, Rómer Rosales, Glenn Fung, Mark Schmidt, Gerardo Hermosillo Valadez, Luca Bogoni, Linda Moy, Jennifer G. Dy:

Modeling annotator expertise: Learning when everybody knows a bit of something. 932-939 - Ji Won Yoon, Simon P. Wilson, K. Hun Mok:

A highly efficient blocked Gibbs sampler reconstruction of multidimensional NMR spectra. 940-947 - Chao Zhang, Dacheng Tao:

Risk Bounds for Levy Processes in the PAC-Learning Framework. 948-955 - Xinhua Zhang, Thore Graepel, Ralf Herbrich:

Bayesian Online Learning for Multi-label and Multi-variate Performance Measures. 956-963 - Yu Zhang, Dit-Yan Yeung:

Multi-Task Learning using Generalized t Process. 964-971 - Zhihua Zhang, Guang Dai, Donghui Wang, Michael I. Jordan:

Bayesian Generalized Kernel Models. 972-979 - Zhihua Zhang, Guang Dai, Michael I. Jordan:

Matrix-Variate Dirichlet Process Mixture Models. 980-987 - Yang Zhou, Rong Jin, Steven C. H. Hoi:

Exclusive Lasso for Multi-task Feature Selection. 988-995

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














